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In recent years, many studies have indicated that vitamin C might be negatively associated
with the risk of cancer, but the actual relationship between vitamin C and cancer remains
ambivalent. Therefore, we utilized a two-sample Mendelian randomization (MR) study to
explore the causal associations of genetically predicted vitamin Cwith the risk of a variety of
cancers. Single-nucleotide polymorphisms (SNPs) associated with vitamin C at a
significance level of p < 5 × 10–8 and with a low level of linkage disequilibrium (LD) (r2
< 0.01) were selected from a genome-wide association study (GWAS) meta-analysis of
plasmid concentration of vitamin C consisting of 52,018 individuals. The data of the GWAS
outcomes were obtained from United Kingdom Biobank, FinnGen Biobank and the
datasets of corresponding consortia. In the inverse-variance weight (IVW) method, our
results did not support the causal association of genetically predicted vitamin C with the
risk of overall cancer and 14 specific types of cancer. Similar results were observed in
sensitivity analyses where the weighted median and MR-Egger methods were adopted,
and heterogeneity and pleiotropy were not observed in statistical models. Therefore, our
study suggested that vitamin C was not causally associated with the risk of cancer. Further
studies are warranted to discover the potential protective and therapeutic effects of vitamin
C on cancer, and its underlying mechanisms.
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INTRODUCTION

Vitamin C, also called ascorbic acid, is a water-soluble vitamin commonly considered an electron
donor with an antioxidant function that can eliminate fatal reactive oxygen species (ROS) (Lane and
Richardson, 2014). On the other hand, vitamin C can also be a pro-oxidant at a pharmacological
plasma concentration (Padayatty and Levine, 2016). In recent years, many researchers have indicated
that vitamin Cmight be negatively associated with the risk of cancer (Bo et al., 2016; Aune et al., 2018;
Jenkins et al., 2021), but the actual relationship and the underlying mechanisms of vitamin C in the
pathogenesis or therapeutic effect of cancer remain ambivalent.

Cancer is the second-leading cause of death in the USA and causes approximately 600,000
deaths each year (Islami et al., 2020). Thus, prevention and treatment of cancer are of vital
importance. Although cancer is known to be associated with some genetic and environmental
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factors and different cancers may have different risk factors,
some studies suggested that vitamin C may also influence the
development of cancer. However, previous studies have
yielded inconclusive findings on the potential impact of
vitamin C on cancer. One systematic review and
dose–response meta-analysis study revealed that when the
concentration of vitamin C in blood increased to 50 μmol/L,
the relative risk (RR) for total cancer risk was 0.74 (95%
confidence interval (CI): 0.66–0.82) (Aune et al., 2018). On
the other hand, another systematic review that included 19
trials did not support the positive effect of vitamin C
supplementation in patients with cancer on their clinical
status and overall survival (van Gorkom et al., 2019). In
addition, the relationship between vitamin C and cancer
risk may be different in different types of cancer. Vitamin C
has been linked to a lower risk of renal cell carcinoma,
esophageal cancer, colon cancer, breast cancer, endometrial
cancer, and cervical cancer (Bandera et al., 2009; Park et al.,
2010; Fulan et al., 2011; Jia et al., 2015a; Bo et al., 2016).
However, some studies also suggested that supplementary
intake of vitamin C had no relationship with the risk of
pancreatic cancer, bladder cancer, prostate cancer, cervical
cancer, and ovarian cancer (Jiang et al., 2010; Chen et al., 2015;
Cao et al., 2016; Hua et al., 2016; Long et al., 2020). Therefore,
the causal role of vitamin C in the development of cancers
remains unclear and warrants future studies.

A Mendelian randomization (MR) study uses genetic
variation, typically single-nucleotide polymorphisms (SNPs),
associated with an exposure to assess its potential causal
relationship with an outcome. Compared with traditional
observational studies, the MR study provides relatively more
convincing evidence for detecting the association between the
exposure and the outcome. The MR study can minimize the
potential bias generated by potential confounding factors and
reverse causality and will not be affected by disease progression
because the genetic variants that are used as instrument
variables (IVs) in the MR study are strongly and solely
related to the exposure (Little, 2018). Using two-sample MR
analysis, many studies have found a potential relationship
between many risk factors and the risk of cancer (Larsson

et al., 2020; Yuan et al., 2020). However, the causal association
between vitamin C and the risk of cancer has not yet been fully
established using MR analysis. A recent MR study did not
support the association between vitamin C and five types of
cancer, including lung, breast, prostate, colon, and rectal
cancer (Fu et al., 2021), but whether there are causal
associations between vitamin C and other types of cancer
remains unclear.

Therefore, in this study, we aimed to comprehensively explore
the causal associations of genetically predicted vitamin C with the
risk of different types of cancer by utilizing a two-sample
MR study.

MATERIALS AND METHODS

Study Design
In order to obtain reliable results from a two-sample MR study,
the genetic variants used in this study should be in conformity
with three principles (Figure 1), including the relevance
assumption, independence assumption, and exclusion
restriction assumption, which means these genetic variants
should be strongly related to the exposure (i.e., vitamin C), be
not associated with confounding factors of the
exposure–outcome relationship, and have an effect on the
outcome (i.e., cancer) only through the exposure and not any
other pathway (Little, 2018).

Genetic Instrumental Variables for
Vitamin C
The SNPs associated with vitamin C were selected from a
genome-wide association study (GWAS) meta-analysis of
vitamin C (Zheng et al., 2021) consisting of 52,018 individuals
from the following studies: 10,771 participants from the Fenland
study (Ashor et al., 2017); 16,841 participants from the European
Prospective Investigation into Cancer and Nutrition (EPIC)-
InterAct study (Consortium, 2011); 16,756 participants from
the EPIC Norfolk study (Day et al., 1999) (excluding
duplicated samples with EPIC-InterAct); and 7,650

FIGURE 1 | Overview of the design and three key assumptions of the Mendelian randomization study. IVs, instrument variables; SNPs, single-nucleotide
polymorphisms.
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participants from the EPIC-CVD study (Danesh et al., 2007)
(excluding duplicated samples with EPIC-InterAct or EPIC-
Norfolk). A total of 11 independent SNPs were reported to be

related to vitamin C at the genome-wide significance level (p < 5 ×
10−8). Since rs7740812 was correlated (r2 < 0.01) in linkage
disequilibrium (LD) analysis, the remaining 10 SNPs were
included to establish the genetic IVs for vitamin C (Table 1).

Genetic Association Datasets for Cancer
Overall cancer and ten types of site-specific cancer were
included as cancer outcomes in our MR study (Table 2).
GWAS summary statistics on overall cancer and nine site-
specific cancers, including lung, breast, colon, rectum, kidney,
bladder, prostate, ovarian, and uterine/endometrial cancer,
were obtained from the United Kingdom Biobank dataset.
Summary statistics of GWAS on overall cancer and
malignant neoplasm of the bronchus and lung, breast,
pancreas, colon, rectum, kidney, bladder, prostate, ovary,
and corpus uteri were acquired from the FinnGen Biobank
database. Summary statistics of GWAS on lung cancer were
obtained from the International Lung Cancer Consortium
(ILCCO) (Wang et al., 2014). Summary statistics of GWAS
on breast cancer were obtained from the Breast Cancer
Association Consortium (BCAC) (Michailidou et al., 2017).
GWAS summary statistics on pancreatic cancer were obtained
from the Pancreatic Cancer Cohort Consortium (PanScan1)
(Amundadottir et al., 2009). The GWAS summary of prostate
cancer was derived from the Prostate Cancer Association
group to Investigate Cancer Associated Alterations in the
Genome (PRACTICAL) (Schumacher et al., 2018).
Summary statistics of GWAS on ovarian cancer were
obtained from the Ovarian Cancer Association Consortium
(OCAC) (Phelan et al., 2017). In this study, we extracted the
effect estimates and standard errors for each of the 10 vitamin
C–related SNPs from the meta-GWAS summary statistics of
overall cancer risk and site-specific cancer risk.

TABLE 1 | Vitamin C SNPs used to construct the instrument variable.

Chr Position SNP Effect
allele

Other
allele

EAF Beta SE Gene p Value F Statistics

1 2330190 rs6693447 T G 0.551 0.039 0.006 RER1 6.25E-
10

42.25

2 220031255 rs13028225 T C 0.857 0.102 0.009 SLC23A3 2.38E-
30

128.4444

5 138715502 rs33972313 C T 0.968 0.36 0.018 SLC23A1 4.61E-
90

400

5 176799992 rs10051765 C T 0.342 0.039 0.007 RGS14 3.64E-
09

31.04082

11 61570783 rs174547 C T 0.328 0.036 0.007 FADS1 3.84E-
08

26.44898

12 96249111 rs117885456 A G 0.087 0.078 0.012 SNRPF 1.70E-
11

42.25

12 102093459 rs2559850 A G 0.598 0.058 0.006 CHPT1 6.30E-
20

93.44444

14 105253581 rs10136000 A G 0.283 0.04 0.007 AKT1 1.33E-
08

32.65306

16 79740541 rs56738967 C G 0.321 0.041 0.007 MAF 7.62E-
10

34.30612

17 59456589 rs9895661 T C 0.817 0.063 0.008 BCAS3 1.05E-
14

62.01563

Abbreviations: Chr, chromosome; SNP, single-nucleotide polymorphism; EAF, effect allele frequency; SE, standard error.

TABLE 2 | Characteristics of included studies or consortia of cancer.

Type of Cancer Source Year Sample size Population

Overall cancer UKBB 2018 461311 European
FinnGen Biobank 2020 96499 European

Bronchus and lung UKBB 2018 361194 European
FinnGen Biobank 2020 96499 European
ILCCO 2014 27209 European

Breast UKBB 2018 462933 European
FinnGen Biobank 2020 96499 European
BCAC 2017 228951 European

Pancreas PanScan1 2009 3,835 European
FinnGen Biobank 2020 96499 European

Colon UKBB 2018 462933 European
FinnGen Biobank 2020 96499 European

Rectum UKBB 2018 463010 European
FinnGen Biobank 2020 96499 European

Kidney UKBB 2018 463010 European
FinnGen Biobank 2020 96499 European

Bladder UKBB 2018 462933 European
FinnGen Biobank 2020 96499 European

Prostate UKBB 2018 463010 European
FinnGen Biobank 2020 96499 European
PRACTICAL 2018 140254 European

Ovary UKBB 2018 463010 European
FinnGen Biobank 2020 96499 European
OCAC 2017 66450 European

Uterus/endometrium UKBB 2018 462933 European
FinnGen Biobank 2020 96499 European

Abbreviations: UKBB, United Kingdom, biobank; ILCCO, international lung cancer
consortium; BCAC, breast cancer association consortium; PanScan1, Pancreatic
Cancer Cohort Consortium GWAS; PRACTICAL, prostate cancer association group to
investigate cancer-associated alterations in the genome; OCAC, ovarian cancer
association consortium.
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TABLE 3 | Associations between genetically predicted vitamin C and risk of cancer.

Type
of cancer

Data
source

Number
of SNPs

Inverse variance weighted MR-Egger Simple mode Weighted median Weighted mode

Or
(95%CI)

P Or
(95%CI)

P Or
(95%CI)

P Or
(95%CI)

P Or
(95%CI)

P

Overall cancer UKBB 10 0.998 (0.992–1.004) 0.452 1.003 (0.994–1.012) 0.562 0.991 (0.977–1.006) 0.28 1.002 (0.994–1.009) 0.663 1.003 (0.995–1.011) 0.492
FinnGen
Biobank

7 1.046 (0.839–1.304) 0.692 1.107 (0.779–1.573) 0.596 1.073 (0.731–1.574) 0.732 1.076 (0.848–1.367) 0.546 1.077 (0.834–1.392) 0.59

Bronchus and
lung

UKBB 10 0.999 (0.998–1.001) 0.323 1.000 (0.997–1.003) 0.982 0.996 (0.993–1.000) 0.058 1.000 (0.998–1.002) 0.795 1.000 (0.998–1.002) 0.889
FinnGen
Biobank

7 1.035 (0.355–3.017) 0.95 2.274 (0.522–9.903) 0.323 1.414 (0.388–5.156) 0.618 1.517 (0.582–3.957) 0.394 1.590 (0.561–4.505) 0.416

ILCCO 9 1.014 (0.690–1.491) 0.943 1.259 (0.678–2.340) 0.49 1.174 (0.757–1.820) 0.494 1.075 (0.830–1.391) 0.586 1.078 (0.829–1.402) 0.592
Breast UKBB 10 1.002 (0.999–1.005) 0.15 1.002 (0.998–1.007) 0.362 0.999 (0.993–1.006) 0.826 1.002 (0.998–1.006) 0.292 1.002 (0.998–1.007) 0.301

FinnGen
Biobank

7 0.842 (0.470–1.507) 0.562 0.516 (0.246–1.079) 0.139 0.780 (0.381–1.598) 0.523 0.669 (0.430–1.041) 0.075 0.652 (0.420–1.012) 0.105

BCAC 8 1.046 (0.931–1.176) 0.447 1.039 (0.862–1.252) 0.704 1.002 (0.826–1.215) 0.985 1.042 (0.948–1.146) 0.389 1.053 (0.951–1.166) 0.355
Pancreas PanScan1 4 1.440 (0.556–3.731) 0.452 0.612 (0.058–6.485) 0.723 1.253 (0.289–5.439) 0.783 1.249 (0.417–3.746) 0.691 1.173 (0.339–4.060) 0.818

FinnGen
Biobank

7 0.783 (0.230–2.672) 0.697 0.873 (0.120–6.358) 0.898 1.043 (0.130–8.376) 0.969 0.721 (0.177–2.925) 0.647 0.897 (0.210–3.830) 0.888

Colon UKBB 6 0.997 (0.994–0.999) 0.003 1.000 (0.987–1.013) 0.986 0.997 (0.993–1.001) 0.167 0.997 (0.994–1.000) 0.048 0.997 (0.993–1.001) 0.164
FinnGen
Biobank

7 0.624 (0.269–1.445) 0.271 0.590 (0.151–2.297) 0.481 0.633 (0.138–2.889) 0.576 0.616 (0.252–1.503) 0.287 0.619 (0.256–1.497) 0.328

Rectum UKBB 6 0.998 (0.996–1.001) 0.164 0.993 (0.980–1.006) 0.342 0.998 (0.993–1.002) 0.39 0.998 (0.995–1.001) 0.157 0.997 (0.993–1.001) 0.227
FinnGen
Biobank

7 0.831 (0.278–2.490) 0.741 1.287 (0.252–6.556) 0.774 0.361 (0.064–2.027) 0.291 0.971 (0.273–3.457) 0.964 1.055 (0.252–4.418) 0.944

Kidney UKBB 5 1.001 (0.999–1.003) 0.348 1.008 (0.996–1.019) 0.296 1.002 (0.998–1.005) 0.405 1.002 (0.999–1.004) 0.168 1.002 (0.999–1.006) 0.319
FinnGen
Biobank

7 1.019 (0.258–4.032) 0.979 3.268 (0.566–18.852) 0.243 1.411 (0.226–8.812) 0.725 1.875 (0.555–6.342) 0.312 1.936 (0.606–6.192) 0.308

Bladder UKBB 5 0.999 (0.997–1.002) 0.568 1.005 (0.993–1.017) 0.475 1.000 (0.996–1.004) 0.921 1.000 (0.998–1.003) 0.869 1.001 (0.997–1.004) 0.759
FinnGen
Biobank

7 1.177 (0.316–4.384) 0.808 3.023 (0.489–18.67) 0.287 1.916 (0.276–13.28) 0.535 1.694 (0.527–5.442) 0.376 2.039 (0.638–6.515) 0.275

Prostate UKBB 9 1.000 (0.996–1.004) 0.966 1.000 (0.989–1.011) 0.995 1.002 (0.995–1.009) 0.59 1.000 (0.995–1.005) 0.937 1.001 (0.996–1.007) 0.661
FinnGen
Biobank

7 1.393 (0.899–2.156) 0.138 1.491 (0.779–2.854) 0.282 1.389 (0.612–3.150) 0.462 1.396 (0.826–2.362) 0.213 1.428 (0.831–2.455) 0.245

PRACTICAL 10 0.966 (0.886–1.054) 0.438 0.974 (0.850–1.116) 0.715 0.984 (0.823–1.177) 0.863 0.980 (0.880–1.091) 0.709 0.986 (0.876–1.108) 0.814
Ovary UKBB 5 0.998 (0.996–1.000) 0.04 0.996 (0.984–1.007) 0.526 0.997 (0.994–1.001) 0.192 0.998 (0.995–1.000) 0.052 0.997 (0.994–1.000) 0.17

FinnGen
Biobank

7 0.957 (0.260–3.519) 0.947 0.470 (0.068–3.254) 0.479 1.247 (0.124–12.539) 0.857 0.685 (0.148–3.172) 0.628 0.655 (0.117–3.652) 0.646

OCAC 8 0.928 (0.792–1.088) 0.358 0.801 (0.638–1.006) 0.105 1.093 (0.797–1.498) 0.599 0.891 (0.739–1.074) 0.227 0.857 (0.712–1.033) 0.149
Uterus/
endometrium

UKBB 5 1.000 (0.998–1.002) 0.809 1.004 (0.992–1.016) 0.527 1.000 (0.996–1.003) 0.973 1.000 (0.997–1.003) 0.948 1.000 (0.997–1.003) 0.889
FinnGen
Biobank

7 1.230 (0.488–3.101) 0.661 2.922 (0.743–11.488) 0.185 0.862 (0.134–5.553) 0.881 1.864 (0.607–5.723) 0.276 1.940 (0.661–5.696) 0.273

Abbreviations: SNP, single-nucleotide polymorphism; OR, odds ratio; CI, confidence interval; UKBB, UK biobank; ILCCO, international lung cancer consortium; BCAC, breast cancer association consortium; PanScan1, Pancreatic Cancer
Cohort Consortium GWAS; PRACTICAL, prostate cancer association group to investigate cancer-associated alterations in the genome; OCAC, ovarian cancer association consortium.
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Statistical Analysis
An MR analysis was performed utilizing 10 vitamin C–related
SNPs as IVs to evaluate the association of vitamin C with overall
cancer risk and site-specific cancer risk. We used the inverse-
variance weight (IVW) method with random effects to
implement the primary MR analysis. The odds ratio (OR) and
95% CI for risk of overall cancer and site-specific cancer were
estimated.

We then performed sensitivity analyses, including MR-Egger
regression, simple mode, weighted median, and weighted mode
methods to determine whether the IVs can influence cancer only
through their effect on vitamin C. To test bias from pleiotropic
effects, we used MR-Egger regression. In addition, the slope
coefficient from an Egger regression provided a reliable
estimate of any causal effect (Bowden et al., 2015). The
weighted median method could provide a consistent
assessment of the finding if more than half of the weight
comes from valid IVs (Bowden et al., 2016). When the most
common horizontal pleiotropy value was zero regardless of the
type of horizontal pleiotropy, we performed the simple mode
method to offer a consistent assessment (Bowden et al., 2016). In
addition, the weighted mode requires that the largest subset of
instruments identifying the same causal effect estimates is
contributed by valid IVs (Hartwig et al., 2017). A pleiotropy
test was also performed to test whether IVs had horizontal
pleiotropy. We also applied the MR-Pleiotropy Residual Sum
and Outlier (MR-PRESSO) analysis to determine the horizontal

pleiotropy and correct the potential outliers (Verbanck et al.,
2018). In addition, we utilized Cochran’s Q test on the IVW and
MR-Egger estimates to test the heterogeneity of the causal
estimates. We also used a leave-one-out sensitivity test to test
whether the MR outcome was sensitive to its related IV. MR and
sensitivity analyses were performed in R (version 4.0.2) using the
Two-Sample MR package (version 0.5.5) and the MRPRESSO
package (version 1.0).

RESULTS

Our findings did not support the causal association between
vitamin C and the risk of overall cancer in the UK Biobank and
FinnGen Biobank (OR: 0.998, 95% CI: 0.992–1.004, p = 0.452,
and OR: 1.046, 95% CI: 0.839–1.304, p = 0.692, respectively). The
results of MR-Egger, weighted median, simple mode, and
weighted mode analyses were similar to those of the IVW
(Table 3). In sensitivity analysis, heterogeneity was not
detected (Supplementary Table S1). In addition, we did not
detect horizontal pleiotropy via pleiotropy tests andMR-PRESSO
analysis (Supplementary Tables S2, S3). A scatter plot of the
association between vitamin C and overall cancer is shown in
Supplementary Figure S1.

When analyzing the causal relationship between vitamin C
and different types of cancer, our IVW results did not support the
causal association between vitamin C and the risk of any of the

FIGURE 2 | Causal effect estimates of vitamin C on cancer outcomes. SNP, single-nucleotide polymorphism; OR, odds ratio; CI, confidence interval; UKBB, UKn
Biobank; ILCCO, International Lung Cancer Consortium; BCAC, Breast Cancer Association Consortium; PanScan1, Pancreatic Cancer Cohort Consortium GWAS;
PRACTICAL, Prostate Cancer Association group To Investigate Cancer-Associated Alterations in the Genome; OCAC, Ovarian Cancer Association Consortium.
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ten types of cancer, including malignant neoplasm of the
bronchus and lung, breast, pancreas, colon, rectum, kidney,
bladder, prostate, ovary, and endometrium (Figure 2). Using
MR-Egger, weighted median, simple mode, and weighted mode
methods, we obtained similar results to those of IVW, which did
not support the causal association between vitamin C and any
type of cancer (Table 3).

In sensitivity analysis of vitamin C and site-specific cancer, our
results did not reveal substantial heterogeneity except for that in
lung cancer and breast cancer (Supplementary Table S1), and a
pleiotropy test using the MR-Egger intercept did not detect any
pleiotropy across the studies (Supplementary Table S2). In MR-
PRESSO analysis, we did not detect horizontal pleiotropy except
for the association between vitamin C and lung cancer in the
ILCCO dataset (Supplementary Table S3). We further found
that rs174547 was a potential outlier (p < 0.01), and after omitting
rs174547, vitamin C was still not associated with the risk of lung
cancer (OR: 0.999, 95% CI: 0.998–1.001, p = 0.481). Details of the
leave-one-out sensitivity test are displayed in Supplementary
Table S4. A scatter plot of the association between vitamin C and
10 types of site-specific cancer is shown in Supplementary
Figures S2–S11.

DISCUSSION

The prevention and therapeutic effects of vitamin C on cancer
have been debated for decades. In this MR study, we
demonstrated that vitamin C was not causally associated with
the risk of cancer. In particular, our findings did not support the
causal association between vitamin C and the risk of overall
cancer or any specific type of cancer, including colon cancer and
ovarian cancer, and the risk of malignant neoplasm of the
bronchus and lung, breast, pancreas, colon, rectum, kidney,
bladder, prostate, ovary, and uterine/endometrium. MR-Egger
regression, simple mode, weighted median, and weighted mode
methods showed similar findings. In addition, in sensitivity
analysis, heterogeneity and horizontal pleiotropy were not
detected in most of our studies.

In general, our findings were in line with those of previous
studies aimed at investigating the association between vitamin C
and cancer. A recent systematic review included 19 clinical trials
that did not support the protective effect of vitamin C
supplementation in patients with cancer on their clinical status
and overall survival (van Gorkom et al., 2019). One meta-analysis
included three studies that indicated vitamin C had no significant
effect on lung cancer incidence (Cortés-Jofré et al., 2020). Ameta-
analysis that included 20 observational studies did not support
the relationship between vitamin C intake and the risk of
pancreatic cancer (Hua et al., 2016). Another meta-analysis of
three prospective cohort studies did not observe an association
between vitamin C intake and the risk of renal cell carcinoma (Jia
et al., 2015b). A meta-analysis involving 16 studies indicated no
effect of vitamin C on reducing the risk of ovarian cancer (RR:
0.95, 95% CI: 0.81–1.11) (Long et al., 2020). In addition, for
prostate cancer, a meta-analysis that summarized nine RCTs
found no relationship between vitamin C intake and the

incidence of prostate cancer (RR: 1.45, 95% CI: 0.92–2.29)
(Jiang et al., 2010). However, some of our results were
inconsistent with those of several observational studies. At the
same time, a meta-analysis involving 13 cohort studies suggested
that supplementary intake of vitamin C could reduce the risk of
colon cancer (RR: 0.81, 95% CI: 0.71–0.92) (Park et al., 2010).
Moreover, targeting female-specific tumors, supplementary
intake of vitamin C could reduce the risk of cervical neoplasia
(OR: 0.58, 95% CI: 0.44–0.75) (Cao et al., 2016). In addition,
another meta-analysis included 12 studies suggesting that vitamin
C could prevent endometrial cancer (OR: 0.85, 95% CI:
0.73–0.98) (Bandera et al., 2009). But, most of the available
clinical studies were cross-sectional, case-control, and cohort
studies, the results of which were easily affected by known and
unknown confounding factors and reverse causality (Bandera
et al., 2009; Bo et al., 2016). Heterogeneity was detected in most of
the studies. In addition, case-control studies were also affected by
recall and selection biases. The current study used MR analysis,
which utilized genetically predicted SNPs as IVs for the exposure,
to explore the causal relationship between exposure and outcome
that could minimize the effect of the potential confounders and
reverse causality. Therefore, the findings of high-quality MR
studies could be more convincing than those of the
aforementioned observational studies. One previous MR study
assessed the relationships between plasma vitamin C levels and
five types of cancer, including lung, breast, prostate, colon, and
rectal cancer. Similar to our findings, the use of vitamin C
supplements was not causally associated with the risk of these
types of cancer (Fu et al., 2021).

Previous experiments have well-investigated the
therapeutic effects of vitamin C and confirmed that vitamin
C is capable of killing cancer cells in vitro and shrinking tumor
size in vivo. Multiple pathways might be involved in the
antitumor effect of vitamin C, including targeting redox
imbalance, acting as an epigenetic regulator and modifying
hypoxia-inducible factor 1 (HIF1) signaling (Cimmino et al.,
2017; Ngo et al., 2019). But, there were few experimental
studies that supported the prevention effect of vitamin C on
the risk of cancer (Reczek and Chandel, 2015). In that case,
vitamin C seemed to be unable to reduce cancer incidence but
could act as an additional therapeutic agent for cancer
treatment. Moreover, even with the usage of supplementary
vitamin C, the plasma vitamin C concentration among a
healthy population was likely unable to reach the dose of
vitamin C utilized in experiments in vivo and in vitro,
which led to the fact that supplementary vitamin C intake
failed to reduce the risk of cancer in the general population.

The current study had several advantages and disadvantages.
A major strength of this study was the MR study design, which
could diminish confounding and reverse causality. Second, in this
study, we broadly assessed the causal relationship of plasma
vitamin C concentrations with the overall and a wide range of
different types of cancer with a large number of cancer cases.
Third, for each type of cancer, we validated our results in at least
two datasets, which improved the robustness of our findings.
However, there were also several limitations to the present study.
First, the sample sizes of several types of cancer cases were small,
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resulting in low precision in the assessment. In that case, we
might have ignored some weak associations. To deal with the
problem, for those MR results generated from GWASs with small
sample sizes, we validated the findings using another GWAS with
a larger sample size. It should also be noted that the analyses are
limited by the potential of the GWAS studies from which the IVs
have been identified. In addition, in our study, the IVs were
extracted from the largest GWAS study of vitamin C, and the
F-statistics for the IVs were over 10, which could reduce the
potential weak instrument bias. Second, our analyses were based
on GWAS of European ancestry, and the results may be different
in different ancestries; hence, our results might not be
generalizable to all populations. Third, our study could only
determine the causal relationship between circulating vitamin
C levels and cancer risk but did not investigate the therapeutic
effect of vitamin C on cancer.

CONCLUSION

This MR study did not support the causal association between
vitamin C and the risk of overall or any specific types of cancer.
Although previous observational studies and experiments
confirmed an anticancer effect of vitamin C, these results
might be influenced by confounding factors and were
unable to illustrate the actual connection between vitamin C
and cancer. Therefore, further studies are warranted to explore
the relationship between vitamin C and the risk of cancer.
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