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N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), and 7-
methylguanosine (m7G) are the major forms of RNA methylation modifications, which are
closely associated with the development of many tumors. However, the prognostic value
of RNA methylation-related long non-coding RNAs (lncRNAs) in colon cancer (CC) has not
been defined. This study summarised 50 m6A/m1A/m5C/m7G-related genes and
downloaded 41 normal and 471 CC tumor samples with RNA-seq data and
clinicopathological information from The Cancer Genome Atlas (TCGA) database. A
total of 1057 RNA methylation-related lncRNAs (RMlncRNAs) were identified with
Pearson correlation analysis. Twenty-three RMlncRNAs with prognostic values were
screened using univariate Cox regression analysis. By consensus clustering analysis,
CC patients were classified into two molecular subtypes (Cluster 1 and Cluster 2) with
different clinical outcomes and immune microenvironmental infiltration characteristics.
Cluster 2 was considered to be the “hot tumor” with a better prognosis, while cluster
1 was regarded as the “cold tumor” with a poorer prognosis. Subsequently, we
constructed a seven-lncRNA prognostic signature using the least absolute shrinkage
and selection operator (LASSO) Cox regression. In combination with other clinical traits, we
found that the RNA methylation-related lncRNA prognostic signature (called the “RMlnc-
score”) was an independent prognostic factor for patients with colon cancer. In addition,
immune infiltration, immunotherapy response analysis, and half-maximum inhibitory
concentration (IC50) showed that the low RMlnc-score group was more sensitive to
immunotherapy, while the high RMlnc-score group was sensitive to more
chemotherapeutic agents. In summary, the RMlnc-score we developed could be used
to predict the prognosis, immunotherapy response, and drug sensitivity of CC patients,
guiding more accurate, and personalized treatment regimens.
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INTRODUCTION

Colon cancer (CC), a common gastrointestinal malignancy, is the
third leading cause of cancer-related mortality, and morbidity
worldwide (Siegel et al., 2022). Although patient prognosis has
significantly improved with the advances in surgery,
radiotherapy, and chemotherapy techniques, the 5-years
survival rate for patients with advanced CC is only 10% (Su
and Zhang, 2017). In recent years, immunotherapy has shown
excellent anti-tumor efficacy in many types of malignancies, such
as colon cancer, head and neck tumors, melanoma, kidney cancer,
and lung cancer (Constantinidou et al., 2019; Morse et al., 2020).
However, not all CC patients respond to immunotherapy.
Patients who benefit from immunotherapy are mainly those
with mismatch repair-deficient (dMMR) or microsatellite
instability-high (MSI-H), with an efficacy rate of only 30–40%,
and this population represents only a small fraction of those with
advanced CC(Le et al., 2017; Morse et al., 2020). Other
immunotherapeutic biomarkers include tumor mutational
burden (TMB) and programmed cell death ligand-1 (PD-L1)
expression (Chan et al., 2019; Luchini et al., 2019; Sagredou et al.,
2021). However, the above markers have significant limitations in
clinical application, and there exist some patients who are
negative for the above markers and can also benefit from PD-
1/PD-L1 based immunotherapy (Liu et al., 2019; He et al., 2021).
Therefore, it is urgent to find some novel and effective biomarkers
to detect the prognosis of CC and to guide immunotherapy
regimens.

RNA methylation is considered an important process in
epigenetic regulation, which occurs in mRNA and in ncRNA (Xu
et al., 2021). Various forms of RNA methylation exist depending on
the site of methylation, including N1-methyladenosine (m1A), 5-
methylcytosine (m5C), N6-methyladenosine (m6A), 7-
methylguanosine (m7G), and 2-O-dimethyladenosine (m6Am)
(Xie et al., 2020). RNA methylation is involved in various
physiological and pathological processes, and its dysregulation is
closely associated with the development of human cancer. For
example, the m6A-related regulator METTL3 was found to be
highly expressed in several types of cancers and associated with
poor prognosis, including gastric cancer (Wang et al., 2020), liver
cancer (Chen et al., 2018), and colon cancer (Li et al., 2019a). The
m5C-related factors form a tumor microenvironment suitable for
migration and metastasis of various cancer cells by regulating some
known tumor promoters, such as HDGF, TGF-β, FGF2, and
G3BP1(Zhang et al., 2021c). The m1A demethylase ALKBH3,
also known as prostate cancer antigen 1 (PCA-1), in addition to
being exceptionally abundant in prostate cancer (Konishi et al.,
2005), the oncogenic role of m1A demethylation has been found in
colon (Zhao et al., 2019), breast (Woo and Chambers, 2019), and
lung cancers (Tasaki et al., 2011). METTL1/WDR4-mediated
enhancement of m7G modification improves translation
efficiency and is associated with poor prognosis in several cancers
(Katsara and Schneider, 2021). In addition, recent studies have
demonstrated that RNA methylation can play a critical role in
tumor immunity by affecting immune cell maturation and RNA
immunogenicity, which provides a new direction for future cancer
immunotherapy (Zhang et al., 2021a).

Long non-coding RNAs (lncRNAs) are a class of non-protein-
coding RNAs with transcripts longer than 200 nt, mainly
involved in epigenetic regulation, transcriptional, and post-
transcriptional regulation (Cao et al., 2019). Increasing
evidence suggests that lncRNAs play an integral role in the
development and progression of several cancers, including
colon cancer, suggesting that they could serve as novel
biomarkers, and therapeutic targets (Meng et al., 2021; Dong
et al., 2022; Shen et al., 2022). In recent years, studies on the
relationship between RNA methylation and lncRNA in tumors
have become the hot topic. For example, NSUN2-mediated m5C
methylation of lncRNA H19 may contribute to the development
and growth of hepatocellular carcinoma by affecting the
interaction with oncoprotein G3BP1 (Sun et al., 2020).
ALKBH5 promotes the invasion and metastasis of gastric
cancer cells by demethylating lncRNA NEAT1 (Zhang et al.,
2019). Wang et al. developed an m5C-related lncRNA prognostic
model to predict patient prognosis (Wang et al., 2021b). Zhang
et al. constructed a risk model including 31m6A-related lncRNAs
in colon cancer that could be used to predict patient prognosis
(Zhang et al., 2021b). However, studies including four major
(m6A, m1A, m5C, and m7G) RNA methylation modification-
related lncRNAs in tumors have remained relatively rare so far. In
this study, we collected transcriptomic data and clinical
information from CC patients and performed a series of
bioinformatic analyses to understand the expression of m6A,
m1A, m5C, and m7G-RNA methylation modification-related
lncRNAs and their impact in CC, and to elucidate the
potential mechanisms of prognosis. The significance and
originality of this study is that it further reveals a potential
link between RNA methylation modification patterns and
tumor microenvironment and clinical treatment response. This
novel signature can be used to assess the sensitivity of CC patients
to immunotherapy and chemotherapy.

MATERIALS AND METHODS

Data Acquisition and Processing
Transcriptome profiling data, somatic mutation data, and
corresponding clinical data for the TCGA-CORD cohort were
downloaded from The Cancer Genome Atlas (TCGA) database
(https://cancergenome.nih.gov/), including data from 471 CC
and 41 normal case samples. Gene expression profiles were
then fully annotated with the Gencode project (Frankish et al.,
2019) and distinguished into mRNAs and lncRNAs profiles. The
GSE17536 dataset (N = 177) was obtained from Gene Expression
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo) as an external
validation set to better verify the role of target lncRNAs.

Differential Expression and Mutational
Analysis of RNA Methylation Regulators
Through the review of the latest literature, a total of 50m6A-, m1A-,
m5C-, and m7G-RNA methylation regulators were obtained.
Among them, 25 m6A regulators (METTL3, METTL14,
METTL16, WTAP, KIAA1429, VIRMA, RBM1, RBM15,
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RBM15B, and ZC3H13, FTO, ALKBH5, YTHDC1, YTHDC2,
YTHDF1, YTHDF2, YTHDF3 IGF2BP1, IGF2BP2, IGF2BP3,
HNRNPA2B1, HNRNPC, HNRNPG, RBMX, LRPPRC, and
FMR1) (Li et al., 2019b; Hu et al., 2019; An and Duan, 2022), 13
m1A regulators (TRMT6, TRMT61A, TRMT61B, TRMT61C,
TRMT10C, BMT2 RRP8, YTHDF1, YTHDF2, YTHDF3, and
YTHDC1, ALKBH1, and ALKBH3) (Xie et al., 2020; Song et al.,
2021a), 14 m5C regulators (NOP2, NSUN1, NSUN2, NSUN3,
NSUN4, NSUN5, NSUN7, DNMT1, TRDMT1, DNMT3A,
DNMT3B, TET2, YBX1, and ALYREF) (Meng et al., 2021), and
2 m7G regulators (METTL1 and WDR4) (Tomikawa, 2018) were
included. RNA methylation regulators differentially expressed in
colon cancer and normal tissues in the TCGA-CORD cohort were
identified using the “limma” package. The “maftools” package was
used to generate mutation maps of RNA methylation regulators in
CC patients. CNV altered positions of RNA methylation regulators
on 23 chromosomes were mapped using the “RCircos” package.

Identification of RNA Methylation-Related
lncRNA and Analysis of Their Prognostic
Value
Pearson correlation analysis was used to screen for lncRNAs co-
expressed with differentially expressed RNA methylation-related
genes (|Pearson R|>0.5 and p-value <0.001). Univariate Cox
regression analysis was performed to screen for RMlncRNAs
significantly associated with OS (p < 0.05), and the Sankey
diagram was mapped by the “ggalluvial” R package. The Wilcoxon
test was used to detect differences in the expression of prognosis-
related RMlncRNAs between tumor tissues and normal tissues.

Consistent Clustering of RNA
Methylation-Related lncRNAs
Based on the expression of RMlncRNAs with prognostic value,
unsupervised consensus clustering was performed using
“ConsensusClusterPlus” on 433 colon cancer patients to identify
potential molecular subtypes (Wilkerson and Hayes, 2010). R
packages “ survival” and “survminer” were used to analyze the
prognosis of samples with different molecular subtypes. Clinical data
were included and analyzed for differences in molecular subtypes by
using the “heatmap” R package for distinct clinicopathological
features. The proportion of 22 tumor-infiltrating immune cells
(TICs) in each sample was quantified using the CIBERSORT
algorithm (Newman et al., 2015). The ESTIMATE algorithm was
used to calculate the tumor microenvironment (TME) score
(including immune score, stromal score, ESTIMATE score, and
tumor purity) for each sample (Yoshihara et al., 2013). In addition,
we synthesized 38 immune checkpoint genes from the literature and
examined the expression of these checkpoint genes amongmolecular
subtypes (Pardoll, 2012; Nirschl and Drake, 2013).

Construction and Validation of RNA
Methylation-Related lncRNA Signature
The TCGA-CORD cohort was randomly divided into a training
set and a test set (1:1 ratio). A minimum absolute shrinkage and

selection operator (LASSO) Cox regression analysis was used to
narrow down candidate lncRNAs and develop an RNA
methylation-related lncRNA signature (we named it RMlnc-
score). The formula is as follows: RMlnc-score = Σ (βi × Expi)
(β: coefficients, Exp: lncRNA expression level). Patients were then
divided into high RMlnc-score and low RMlnc-score groups
based on the median value of RMlnc-score. Kaplan-Meier
survival curves were plotted using the R package “survival” to
describe the overall survival difference between the high and low
score groups. Receiver operating characteristic curves (ROC)
analysis was performed to evaluate its sensitivity and accuracy.
Heatmaps were generated to reveal differences in signature
lncRNA expression in the low and high RMlnc-score groups.

Analysis of the Prognostic Value and
Clinical Relevance for the RMlnc-Score
The student’s t-test was used to assess the relationship between
RMlnc-score and clinical characteristics. In addition, survival
analysis was performed to further elucidate the relationship
between RMlnc-score by sex (male and female), age (≤65 and
>65 years), T-stage (T1-2 and T3-4), N-stage (N0 and N1-2),
M-stage (M0 andM1), and grade (stages I-II and stages III-IV) in
each subgroup for prognostic ability. Subsequently, univariate
and multivariate Cox regression analyses were used to determine
the relationship and independence between clinicopathological
characteristics and RMlnc-score. A nomogram and calibration
curves were then constructed based on independent prognostic
factors from multivariate Cox regression analysis to predict the
probability of survival at 1, 3, and 5 years in CC patients. The
GSE17536 dataset was used as an external validation cohort to
further assess the prognostic value and clinical relevance of model
lncRNAs.

Principal Component Analysis and
Assessment of Immune Cell Infiltration
The R package “scatterplot3d” was used to perform PCA analysis
to explore potential differences between high and low RMlnc-
score groups. To analyze the correlation between RMlnc-score
and TICs, we used different software (including ssGSEA, xCELL,
Timer, Quantiseq, MCPcounter, EPIC, CIBERSORT-ABS, and
CIBERSORT) to comprehensively analyze of immune cell
infiltration.

Assessment of Response to Anti-Tumor
Therapy
The tumor immune dysfunction and exclusion (TIDE) algorithm
(Fu et al., 2020) was used to assess the potential response of colon
cancer patients in the different RMlnc-score groups to
immunotherapy. Data from the Genomics of Drug Sensitivity
in Cancer (GDSC) database were used to predict the response of
CC patients to chemotherapeutic drug therapy. The
“pRRophetic” R package (Geeleher et al., 2014) was used to
calculate the half-maximal inhibitory concentration (IC50) of
common chemotherapeutic agents.
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Prediction of RNA Methylation Modification
Sites on 7 lncRNAs
m6A-Atlas (Tang et al., 2021) and SRAMP(Zhou et al., 2016)
were used to predict the m6A site of the lncRNAs; m5C-Atlas
(Ma et al., 2022) and RNAm5Cfinder (Li et al., 2018) were used to
predict the m5C site of the lncRNAs; m7GHub (Song et al., 2020)

and iRNA-m7G (Chen et al., 2019) databases were used to predict
the m7G site of the lncRNAs.

Statistical Analysis
All statistical analyses were performed using R software (v4.0.2). p
values < 0.05 were considered statistically significant if not
explicitly stated.

FIGURE 1 | Workflow diagram of this study.
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RESULTS

Landscape of RNA Methylation Regulator
Expression and Gene Mutation in CC
The workflow of this study is illustrated in Figure 1. First, we
investigated the expression of 50 m1A-, m5C-, m6A-, and m7G-
RNA methylation regulatory genes in the TCGA-CORD cohort
(Figure 2A). The results showed that there were 42 differentially
expressed RNA methylation regulatory genes. Among them, 37
regulators were highly expressed in colon cancer tissues, and five
were lowly expressed in colon cancer tissues. Next, we investigated the
incidence of somatic mutations and copy number variations for 50
regulators in TCGA-CORD. A total of 140 of 399 samples (35.09%)
experienced genetic alterations in RNA methylation regulators
(Figure 2B). Among them, ZC3H13 (9%) was the gene with the
highest mutation frequency, followed by YTHDC2 (6%), and RBM15
(5%.) The investigation of CNV alteration frequency revealed that all

RNA methylation regulators were found to show prevalent CNV
alterations. Among them, DNMT3B, ALYREF, YTHDF1/3,
IGF2BP2/3, YBX1, and HNRNPA2B1 showed significant copy
number amplification, while TRMT6, YTHDF2, YTHDC2, and
RBM15/15B showed remarkable copy number deletions
(Figure 2C). Figure 2D shows the location of CNV changes in
RNA methylation regulators on chromosomes. The above analysis
revealed a high degree of heterogeneity in the expression and inherited
variation status of RNAmethylation in CC, demonstrating that RNA
methylation-related regulators may play a pivotal position in the
occurrence and development of CC.

Identification of RNA Methylation-Related
lncRNAs in CC Patients
We identified 1,057 lncRNAs significantly associated with 42
differentially expressed RNA methylation regulators by using

FIGURE 2 | Characteristics and differences of RNA methylation-related regulators in CC. (A) Heatmap of differential expression of RNA methylation-related
regulators between normal (n = 41) and colon cancer tissues (n = 471) in the TCGA-CORD cohort. (B) Mutation waterfall plots of 399 colon cancer patients from the
TCGA-CORD cohort. (C) Copy number variation (CNV) frequency of RNA methylation-related regulators in the TCGA-CORD cohort. (D) The location of CNV alterations
of RNA methylation-associated regulators on chromosomes in the TCGA-CORD cohort. *p<0.05; **p<0.01; ***p<0.001.
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Pearson correlation analysis and defined them as RMlncRNAs.
Based on the mRNA-lncRNA co-expression pattern, we
constructed a Sankey diagram to show their linkage
(Figure 3A). After excluding normal tissues or patients lacking
survival data, we merged survival information with RMlncRNA
expression data of colon cancer patients (final number of patients
= 433). Subsequently, we performed univariate Cox regression
analysis and found that 23 RMlncRNAs were significantly
associated with OS of colon cancer patients (p < 0.05,
Figure 3B). Among them, only TNFRSF10A-AS1 was
identified as a protective factor with a risk ratio (HR) < 1,
while all others were considered as risk factors. The bar graph
and heatmap showed significant differences in the expression of
these 23 prognosis-related RMlncRNAs between normal and
colon cancer tissues (Figures 3C, D).

Molecular Subtypes Mediated by
23 Prognosis-Related RMlncRNAs
Based on the expression levels of 23 prognosis-related
RMlncRNAs in CC samples, we clustered 433 samples by an
unsupervised clustering approach to further elucidate the
biological differences between subgroups. Our results showed
that K = 2 was the optimal number of clusters with the highest

correlation within groups and the least interference between
groups (Figures 4A–C). Therefore, CC patients were divided
into two subgroups: Cluster1 (n = 170) and Cluster2 (n = 263).
The survival analysis results showed a significant survival
advantage for Cluster2 patients (p = 0.021, Figure 4D). The
heatmap showed differences in prognosis-related RMlncRNA
expression between subgroups (Figure 4E), and most
RMlncRNAs were highly expressed in Cluster1. In addition,
we found that patients with distant metastasis (M1) were
more represented in Cluster1 (p < 0.05), while other
clinicopathological features were not significantly different
between the two subgroups.

Characterization of Immune
Microenvironmental Infiltration Between
the Distinct Clusters
We further explored the differences in immune
microenvironment characteristics between distinct clusters to
understand the interactions between RNA methylation-related
lncRNAs and the immune microenvironment (TME). The results
of CIBERSORT analysis (Figure 5A) showed that 8 of the 22
immune infiltrating cells differed between clusters, with T cells
CD8, T cells regulatory (Tregs), NK cells resting, NK cells

FIGURE 3 | Identification of prognostic value of RNA methylation-related lncRNAs. (A) 1,057 lncRNAs were co-expressed with differentially expressed RNA
methylation-related regulators. (B) Univariate Cox regression analysis screened 23 lncRNAs with prognostic value. (C,D) The boxplot and heatmap of 23 lncRNAs with
prognostic value differentially expressed between 41 normal and 471 tumor tissues in the TCGA-CORD cohort. *p<0.05; **p<0.01; ***p<0.001; ns, no sense.
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activated, monocytes, dendritic cells resting, and neutrophils
showed more infiltration in Cluster2, while only T cells CD4
memory activated were highly enriched in Cluster1. The
percentages of 22 immune cell types in GC patients between
the two clusters are shown in Figure 5B. ESTIMATE analysis
showed (Figure 5C) that the immune score (p < 0.001), stromal
score (p = 0.0062), and ESTIMATE score (p < 0.001) were
significantly higher in Cluster2 than Cluster1, while the tumor
purity in Cluster1 (p < 0.001) was considerably higher than
Cluster2. In addition, we tried to determine the correlation
between subgroups and some immune checkpoints. We found
remarkable differences in the expression levels of 18 immune
checkpoint genes between the two subtypes (p < 0.05). The
expression levels of PD-1, PD-L1, HAVCR2, CTLA4, LDHA,
LGALS9, TNFRSF18, YTHDF1, LAG3, CD40, TNFRSF4,
TNFRSF9, CD86, B2M, and CD8A were higher in Cluster2,
whereas PDCD1LG2, IL12A, PVR, and JAK1 were higher in
Cluster 2 (Figure 5D). Previous studies have shown that high
immune scores and activation of suppressive immune
checkpoints (like HAVCR2, PD-L1, CTLA-4) play a crucial
role in “hot tumors” (Zhan et al., 2021). “Hot tumors” are

more likely to benefit from immune checkpoint blockade
(ICB) therapy, whereas “cold tumors” with low levels of
immune infiltration are more likely to become resistant to
immunotherapy (Galon and Bruni, 2019). Therefore, we may
consider cluster 1 as the “cold tumor” and cluster 2 as the “hot
tumor”, which may predict different immunotherapy responses.

Construction and Validation of RNA
Methylation-Related lncRNA Prognostic
Signature
The 433 colon cancer patients were randomly divided into a training
set (n = 217) and a test set (n = 216). To avoid overfitting, we
screened the seven most powerful prognostic RMlncRNAs by
LASSO regression analysis, which were used to construct the
RNA methylation-related lncRNA prognostic signature (RMlnc-
score) (Figures 6A, B). The correlation coefficients are shown in
Table 1. Patients were classified into low RMlnc-score and high
RMlnc-score groups according to the cut-off values of RMlnc-score.
The RMlnc-score for each patient was calculated as follows:RMlnc-
score=(0.0645*ALMS1-IT1 expression) + (−0.1268*TNFRSF10A-

FIGURE 4 |Overall survival and clinical characteristics of different subgroups of CC. (A) Consensus matrix at optimal k = 2. (B) The cumulative distribution function
(CDF) from k = 2 to 9. (C) Relative variation of the area under the CDF region at k = 2–9. (D) Kaplan-Meier curves of the overall survival (OS) time of cluster 1 and cluster 2
(p = 0.021). (E) Heatmap of clinical characteristics and 23 prognostic lncRNA expressions among the two clusters. *p<0.05.
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AS1 expression) + (0.6464*FRMD6-AS1 expression) +
(0.6173*STARD7-AS1) + (0.4430*LINC02257 expression) +
(0.2254*AP001505.1 expression) + (0.2329*AC019205.1
expression). The Kaplan-Meier curves showed that in the training
set (p < 0.001, Figure 6C) and test set (p = 0.002, Figure 6D),
patients in the high RMlnc-score group had a worse prognosis
compared to the low RMlnc-score group. The area under the curve
(AUC) for 5-years overall survival (OS) was 0.741 and 0.734 for the
training and test sets, respectively (Figures 6E, F). In the overall
cohort (Figure 6G), the RMlnc-score (our study) had an AUC of
0.737 at 5-years overall survival, which was substantially higher than
ChaiLncSig (AUC = 0.653), YunLncSig (AUC = 0.658), and

ZhangLncSig (AUC = 0.659). This suggests that the RMlnc-score
has higher accuracy in predicting survival compared to three recently
published lncRNA signatures for colon cancer (Chai et al., 2021; Yun
and Yang, 2021; Zhang et al., 2021d). The survival status and RMlnc-
score score curves for the training and test sets showed (Figure 6H, I,
7I) that RMlnc-score was proportional to the number of deaths in
CC patients. The heatmaps showed (Figures 6J, K) that the
expression of ALMS1-IT1, FRMD6-AS1, STARD7-AS1,
LINC02257, AP001505.1, and AC019205.1 was upregulated in
the high RMlnc-score group, while TNFRSF10A-AS1 was
upregulated in the low RMlnc -score group was up-regulated. In
addition, we performed a validation analysis of the signature

FIGURE 5 | Characterization of TME cell infiltration in different clusters. (A) CIBERSORT analysis of the abundance of 22 tumor-infiltrating immune cells (TICs)
infiltration between the two groups. (B) The bar graph displaying the ratio of 22 TICs types for CC patients in cluster 1 and cluster 2. (C) The violin plots depicting the
difference in tumormicroenvironment scores (including immune score, stromal score, ESTIMATE score, and tumor purity) between the two clusters. (D) Expression of 32
immune checkpoint genes between the two clusters. pp < 0.05; ppp < 0.01; pppp < 0.001;ns, no sense.
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FIGURE 6 | RNA methylation-related lncRNA prognostic signature. (A,B) Seven optimal RNA methylation-related lncRNAs were found using the least absolute
shrinkage and selection operator (LASSO) cox regression. (C,D) Kaplan-Meier curves for overall survival in the training and test sets. (E,F) ROC curves were used to
predict the 5-years survival of patients in the training and test sets. The AUC was 0.741 in the training set and 0.734 in the test set. (G) Comparison of RMlinc-score with
other prognostic evaluation models. (H,I) Survival status and RMlinc-score curves in the training and test sets. (J,K) Heatmap of RNAmethylation-related lncRNAs
expression in the training and test sets.
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lncRNA in theGSE17536 cohort. However, due to fewer non-coding
genes in the microarray data, we only detected ALMS1-IT1 and
FRMD6-AS1. Our results showed that high expression of ALMS1-
IT1 (p = 0.044) and FRMD6-AS1 (p = 0.034) was significantly
associated with poor prognosis of patients (Figures 7A, B). High
expression of ALMS1-IT1 was associated with high grade (p =
0.0017, Figure 7C) and high expression of FRMD6-AS1 was

associated with high stage (p = 0.021, Figure 7D) and high grade
(p = 0.028, Figure 7E).

Independent Prognostic and Clinical
Correlation Analysis
Stratified survival analysis in combination with clinical
characteristics (Figures 8A–L) showed that in age>65 (p <
0.001), age ≤ 65 (p < 0.001), male (p < 0.001), female (p =
0.004), stage III-IV (p = 0.002), T3-4 (p < 0.001), M0 (p < 0.001),
and N1-2 (p < 0.001) subgroups of patients, survival was
significantly lower in the high RMlnc-score group than in the
low RMlnc-score group. By comparing the RMlnc-score of
patients in different groups, we found that RMlnc-score
increased with increasing T-stage, N-stage, M-stage, and
clinical stage, while no significant differences were seen for age
and gender (Figures 8M–R). Univariate Cox regression analysis
showed that age, stage, T-stage, N-stage, M-stage, and RMlnc-
score (all p < 0.001) were strongly associated with prognosis
(Figure 9A). Multivariate Cox regression analysis confirmed that

TABLE 1 | The correlation coefficients of 7 RNA methylation-related lncRNAs.

Gene Coef

ALMS1-IT1 0.064532959
TNFRSF10A-AS1 −0.12683763
FRMD6-AS1 0.64643134
STARD7-AS1 0.617319233
LINC02257 0.443023664
AP001505.1 0.225414755
AC019205.1 0.232908459

FIGURE 7 | Validation of lncRNA prognostic signatures in the GEO cohort. (A) Kaplan-Meier survival curve of ALMS1-IT1. (B) Kaplan-Meier survival curves of
FRMD6-AS1. (C)Correlation between ALMS1-IT1 expression and grade. (D)Correlation between FRMD6-AS1 expression and stage. (E)Correlation between FRMD6-
AS1 expression and grade.
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FIGURE 8 | Correlation of clinical characteristics with RMlnc-score by subgroup analysis. Kaplan-Meier curves stratified by (A,B) age, (C,D) sex, (E,F) N stage,
(G,H) T stage, (I,J) M stage, and (K,L) clinical stage. (M–R) Differential analysis of RMlnc-score for different subgroups.
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age, T-stage, and RMlnc-score were independent prognostic
factors for CC patients (Figure 9B). Based on the three
independent prognostic factors in the multivariate Cox
regression analysis, we created a nomogram capable of
predicting the incidence of OS in CC patients at 1, 3, and
5 years (Figure 9C). The calibration curve demonstrated the
high accuracy and sensitivity of this nomogram (Figure 9D).

PCA Analysis and Immune
Microenvironment Characterization
The results of principal component analysis (PCA) showed no
significant differences between the high RMlnc-score group and
the low RMlnc-score group in the expression of all genes
(Figure 10A), RNA methylation-related genes (Figure 10B), and
RNA methylation-related lncRNAs (Figure 10C). However, in the

expression of the seven lncRNAs used in the prognostic model
(Figure 10D), there was a significant difference between the high
RMlnc-score and low RMlnc-score groups. We also explored
whether our model could predict immune cell infiltration in CC.
The bubble plot (Figure 10E) showed that RMlnc-score was
positively correlated with CD4+ T cells, cancer-associated
fibroblast (CAFs), myeloid dendritic cell, macrophage M0, NK
cell activated, hematopoietic stem cell while negative correlation
with CD4+8 cell, monocyte, neutrophil, and B cell plasma. The
ssGSEA results (Figure 10F) showed that some immune cells,
including dendritic cells (DCs), activated dendritic cells (aDCs),
immature dendritic cells (iDCs), mast cells, neutrophils, NK cells,
and type 2 T helper were significantly increased in the low RMlnc-
score group, and some pathways associated with immune function,
namely APC co-stimulation, C-C chemokine receptor, and cytolytic
activity, were significantly activated in the low RMlnc-score group.

FIGURE 9 | Establishment of nomogram for predicting OS in colon cancer patients. (A) Univariate Cox regression analysis of clinical characteristics and RMlnc-
score in CC samples. (B)Multivariate Cox regression analysis of clinical characteristics and RMlnc-score in CC samples. (C) The nomogram with multiple independent
predictors, including age, T-stage, and RMlnc-score, was employed to predict 1-, 3-, and 5-years OS in patients with colon cancer. (D) Calibration curves of the
nomogram for predicting 1,3,5-years OS.
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Immunotherapy Response Analysis
TMB and MSI have been reported to be predictive biomarkers of
immunotherapeutic response (Ock et al., 2017; Vandekerkhove
et al., 2021). Therefore, we first compared somatic mutations in
high RMlnc-score and low RMlnc-score and visualized the top 20
genes with the highest mutation frequency (Figures 11A, B).
However, there was no significant difference in tumor mutational
load between the high RMlnc-score and low RMlnc-score groups
(Figure 11C). We then compared the differences in MSI
distribution between the different scoring groups and found
that the low RMlnc-score group was associated with higher
microsatellite instability (MSI) (Figure 11D). TIDE, a novel
predictive marker of immunotherapy, was better than known
immunotherapy biomarkers (including TMB and PD-L1
expression) for response to immunotherapy in certain tumors
(Wang et al., 2019). Higher TIDE scores indicate that tumor cells
are more likely to induce immune escape, thus indicating a lower
response rate to immunotherapy. Surprisingly, we found that
patients in the low RMlnc-score group had significantly lower
TIDE scores (including T cell dysfunction and exclusion scores)
than those in the high RMlnc-score group (Figures 11E–G). The
above findings suggested that RMlnc-score correlates with the
response of CC patients to immunotherapy and may help predict
the efficacy of ICB immunotherapy.

Drug Sensitivity Analysis
To explore the effect of RMlnc-score on drug response, we
compared the half-maximal inhibitory concentration (IC50) of
the commonly used drugs in both groups. The results showed that
the IC50 values of bicalutamide, lapatinib, sorafenib, metformin,
and temsirolimus were higher in the high RMlnc-score group,
indicating that patients in the low-scoring group were more
sensitive to these five drugs. In contrast, axitinib, bexarotene,
bosutinib, elesclomol, embelin, etoposide, imatinib, lenalidomide,
methotrexate, midostaurin, nilotinib, pazopanib, shikonin,
vinblastine, vinorelbine, and vorinostat had higher IC50 in
patients with low RMlnc-score, implying that patients in the
high RMlnc-score group were more sensitive to these drugs
(Figure 12).

Analysis of RNA Methylation Modification
Sites
After scanning the m6A-Atlas, m5C-Atlas, and m7GHub
databases, we eventually obtained six m6A, nine m5C, and
one m7G modification sites on STARD7-AS1 and five m5C
modification sites on FRMD6-AS1, which have been
experimentally validated (Supplementary Table S1). Then, we
also utilized the widely used bioinformatics tools SRAMP,

FIGURE 10 | The principal component analysis and immune microenvironment differences of high and low RMlnc-score groups. Principal component analysis
between low RMlnc-score and high RMlnc-score groups based on the expression of (A) all genes, (B) RNAmethylation-related genes, and (C) RNAmethylation-related
lncRNAs and the (D) seven lncRNAs of prognostic signature. (E) Correlation between RMlnc-score and tumor-infiltrating immune cells. The correlation coefficient higher
than 0 indicated positive correlation and lower than 0 denoted negative correlation. (F) Differences in immune cells and immune function between the high RMlnc-
score and low RMlnc-score groups. *p<0.05; **p<0.01; ***p<0.001; ns, no sense.
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FIGURE 11 | Predictability of immunotherapy response in the prognostic signature. (A,B)Waterfall plot of the tumor mutational burden (TMB) landscape in the high
RMlnc-score and low RMlnc-score groups presenting the top 20 genes with the highest mutation frequency. (C) Differences in TMB of colon cancer patients in the high
and low RMlnc-score groups. (D)Differences in microsatellite instability (MSI) of colon cancer patients in high and low RMlnc-score groups. (E-G) TIDE prediction scores
(including TIDE score, dysfunction score, and exclusion score) between high RMlnc-score and low RMlnc-score groups. *p<0.05; **p<0.01.
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FIGURE 12 | Anti-tumor drug sensitivity in high RMlnc-score and low RMlnc-score populations.
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RNAm5Cfinder, and iRNA-m7G to predict potential m6A, m5C,
and m7G modification sites on our seven lncRNAs. Some
meaningful results showed that all seven lncRNAs were
potentially methylated (Supplementary Table S2).

DISCUSSION

CC is a highly complex and heterogeneous tumor characterized
by high morbidity and poor prognosis (Kumar et al., 2021).
Chemotherapy for CC has progressed in recent years, but tumor
resistance is frequent when traditional histological and
anatomical classifications are used to guide anti-tumor
therapy. Therefore, accurate identification of molecular
subtypes of CC is vital to guide individualized treatment.
Although previous studies have also identified several
prognostic signatures of CC for the stratification of colon
cancer patients, considerable heterogeneity remains between
subtypes (Cui et al., 2021; Song et al., 2021b). Therefore, more
accurate prognostic signatures of CC are urgently needed to
improve patient survival. An increasing number of studies
have shown that RNA methylation modifications (including
m6A, m5C, m1A, and m7G) play an essential role in tumor
progression and influence specific biological processes by
interacting with lncRNAs (Chen et al., 2021; Yao et al., 2021).
Huang et al. constructed an m5C-associated lncRNA prognostic
signature that accurately predicted breast cancer patient’s
prognosis and immune microenvironment characteristics
(Huang et al., 2021). A recent study has identified the critical
role of m6A/m5C/m1A-related lncRNA-based prognostic
signature in predicting molecular subtypes and prognosis of
head and neck tumors (Wang et al., 2021a). However, to the
best of our knowledge, no prognostic signature based on m6A/
m1A/m5C/m7G-related lncRNAs has been found to be accurate
and applicable to CC patients.

In this study, we first identified 1057 RNA methylation-
associated lncRNAs in the TCGA-CORD cohort, 23 of which
were confirmed with prognostic value. In addition, we defined
two clusters by consensus clustering analysis to investigate
potential molecular subtypes of CC. The results showed that
the subtypes were strongly correlated with tumor stage and OS,
with cluster 2 having better OS and less distant metastasis than
cluster 1, reflecting the association between RNA methylation-
associated lncRNAs and CC progression and prognosis. Recent
studies have shown that RNA methylation and lncRNAs play a
critical regulatory role in the immune system, especially in
immune cell infiltration and anti-tumor immune responses (Li
et al., 2017; Wu et al., 2020; Eptaminitaki et al., 2021). Based on
these findings, we obtained TME scores and immune
microenvironmental landscapes for each CC sample to
investigate the relationship between clusters, TME, and
immune checkpoints. The results showed that TME scores,
immune infiltrating cells, and immune checkpoints differed
significantly between the two clusters. Among them, cluster 2
had a significantly higher immune score, stromal score, and
ESTIMATE score than cluster 1, while cluster 1 had a higher
tumor purity than cluster 2. The majority of immune infiltrating

cells were enriched in cluster 2, including T cells CD8, Tregs, NK
cells resting, NK cells activated, Monocytes Dendritic cells
resting, and Neutrophils. In addition, we found that 15 out of
18 differentially expressed immune checkpoint molecules
(including PD-1, PD-L1, HAVCR2, CTLA4, LDHA, LGALS9,
TNFRSF18, YTHDF1, LAG3, CD40, TNFRSF4, TNFRSF9,
CD86, B2M, and CD8A) were highly expressed in cluster 2. It
was reported that high PD-L1 expression/infiltrating tumors with
high immune scores are usually considered hot tumors which are
sensitive to immunotherapy. In contrast, low PD-L1 expression/
non-infiltrating tumors with low immune scores are typically
regarded as cold tumors which are less effective for
immunotherapy (Kuriyama et al., 2020). Therefore, we
identified cluster 2 as “hot tumor” and cluster 1 as “cold
tumor,” corresponding to different prognoses and
immunotherapeutic responses.

Among the 23 RNA methylation-related lncRNAs, seven
lncRNAs were used to generate prognostic gene signatures
that stratified CC patients into low RMlnc-score and high
RMlnc-score groups with different OS. The survival time of
patients in the high RMlnc-score group was significantly
shorter than that in the low RMlnc-score group, both in the
training and test sets, which also demonstrated that the
prognostic model consisting of all seven lncRNAs could well
predict the prognosis of CC patients. We validated the predictive
ability of RMlnc-score in patients stratified based on
clinicopathological parameters. We noticed that RMlnc-score
showed a strong positive correlation with tumor progression
(T3-4, N1-2, M1, and stage III-IV). Univariate and
multivariate cox regression analyses showed that RMlnc-score,
age, and T-stage were available as independent prognostic factors
for OS in CC patients. By integrating these independent
prognostic factors, we constructed nomograms that could
predict 1-, 3-, and 5-years survival in CC patients, which were
highly accurate and reliable in estimating individual survival
rates. Notably, we further validated the correlation of our
signature lncRNA with clinicopathological features in the
GSE17536 cohort. We detected that high expression of
lncRNAs ALMS1-IT1 and FRMD6-AS1 was associated with
poorer prognosis and poorer differentiation. High FRMD6-
AS1 expression was also associated with higher clinical stage.
Previous studies have shown that upregulation of ALMS1-IT1
can promote lung cancer progression by mediating AVL9
activation of the cell cycle protein-dependent kinase pathway
(Luan et al., 2021). Li et al. constructed a ferroptosis-related
lncRNA prognostic signature that also included ALMS1-IT1 and
found it to be strongly associated with poor prognosis in colon
cancer (Li et al., 2022). These findings validated the oncogenic
properties of ALMS1-IT1 and are consistent with our results.
Unfortunately, there are few studies on the remaining lncRNAs.
Therefore, we anticipated that our results would help to
demonstrate the prognostic value of these RNA methylation-
related lncRNAs, thus providing insights into their potential role
in carcinogenesis and progression of CC.

Currently, only a minority of CC patients have responded to
immunotherapy in clinical practice. Thus, it is necessary to assess the
value of prognostic characteristics in predicting response to
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immunotherapy. The effectiveness of immunotherapy is influenced
by the immunogenicity of the tumor microenvironment, which is
why understanding TME is essential for evaluating immunotherapy
(Turley et al., 2015). The ssGSEA results showed that the lowRMlnc-
score group had a greater enrichment of immune-related cells and
immune-related pathways, including dendritic cells (DCs), activated
dendritic cells (aDCs), immature dendritic cells (iDCs), mast cells,
neutrophils, NK cells, type 2 T helper, APC co-stimulation, C-C
chemokine receptor, and cytolytic activity. The above results
indicated that patients with low RMlnc-score had higher
immunogenicity and better immunotherapy response.

Drug efficacy is related to drug sensitivity and individual
differences in patients, and targeting the appropriate
subpopulation will improve drug efficacy. Therefore, we further
analyzed the sensitivity of patients in distinct RMlnc-score groups to
anti-tumor drugs. Prediction of chemotherapy drug sensitivity
showed that bicalutamide, lapatinib, sorafenib, metformin, and
temsirolimus were the ideal choices for CC patients in the low
RMlnc-score group. At the same time, axitinib, bexarotene,
bosutinib, elesclomol,embelin, etoposide, imatinib, lenalidomide,
methotrexate, midostaurin, nilotinib, pazopanib, shikonin,
vinblastine, vinorelbine, and vorinostat may work better in
patients in the high RMlnc-score group.

However, our study has some limitations. First, this is a
retrospective analysis based on an online public database, and we
used internal validation methods in the TCGA cohort and external
validation in the GSE17536 independent cohort, but large-scale
prospective data are still needed to validate our prognostic
signature. In addition, the potential mechanism of RMlnc-score
may need further validation by in vitro and in vivo experiments.

CONCLUSION

In summary, our study elucidated that RNA methylation-related
lncRNAs and can predict the prognosis of CC patients and guide
more effective and personalized treatment strategies by
identifying hot and cold tumors. Targeting RNA methylation
and lncRNAs would be a promising way to overcome individual
treatment failure and improve patient prognosis.
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