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Background: Clear cell renal cell carcinoma (ccRCC) is the most common solid lesion in
the kidney. This study aims to establish an aging and senescence-related mRNAmodel for
risk assessment and prognosis prediction in ccRCC patients.

Methods: ccRCC data were obtained from The Cancer Genome Atlas (TCGA) and
International Cancer Genome Consortium (ICGC) datasets. By applying univariate Cox
regression, least absolute shrinkage and selection operator (LASSO), and multivariate Cox
regression, a new prognostic model based on aging and senescence-related genes
(ASRGs) was established. Depending on the prognostic model, high- and low-risk groups
were identified for further study. The reliability of the prediction was evaluated in the
validation cohort. Pan-cancer analysis was conducted to explore the role of GNRH1 in
tumors.

Results: A novel prognostic model was established based on eight ASRGs. This model
was an independent risk factor and significantly correlated with the prognosis and
clinicopathological features of ccRCC patients. The high- and low-risk groups exhibited
distinct modes in the principal component analysis and different patterns in immune
infiltration. Moreover, the nomogram combining risk score and other clinical factors
showed excellent predictive ability, with AUC values for predicting 1-, 3-, and 5-year
overall survival in the TCGA cohort equal to 0.88, 0.82, and 0.81, respectively.

Conclusion: The model and nomogram based on the eight ASRGs had a significant value
for survival prediction and risk assessment for ccRCC patients, providing new insights into
the roles of aging and senescence in ccRCC.
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INTRODUCTION

Renal cell carcinoma (RCC) is the most common malignant solid tumor within the kidney, with an
incidence of 4.4 per 100,000 (Capitanio et al., 2019). It is reported that 30% of patients are metastatic
at diagnosis and almost 30% of the remaining patients will progress to metastases during the follow-
up (Capitanio et al., 2019). There are three main RCC subtypes, of which the most prevalent one is
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clear cell renal cell carcinoma (ccRCC) which accounts for about
70% of all RCC patients (Jonasch et al., 2021). Many markers and
models have been put forward to assess the risk of ccRCC,
providing useful but insufficient value for prognosis prediction
in clinical practice (Klatte et al., 2018). Therefore, establishing a
new prediction model is crucial to identify high-risk ccRCC
patients with poor prognosis.

Cellular senescence is described as a permanent arresting state of
the cell cycle, usually occurring in proliferous cells responding to
various stresses (Calcinotto et al., 2019). Senescence happens in
several physiological and pathological situations including tissue
reconstruction, tissue injury, tumorigenesis, and aging (Calcinotto
et al., 2019). Historically, cellular senescence has been described as a
protective factor in tumorigenesis by inhibiting the uncontrolled
proliferation of tumor-prone cells (Sieben et al., 2018). However,
studies also indicated that senescent cells within tissues can facilitate
the proliferation and invasion of neighboring pre-neoplastic cells
(Kuilman et al., 2008; Ruhland et al., 2016; Kim et al., 2017). In
general, the effects of cellular senescence on tumor cells are
extremely complex, with both beneficial and pernicious roles in
tumor formation, tumor recurrence, and therapeutic efficacy (Sieben
et al., 2018). Aging is characterized by a gradual functional decline,
resulting in progressive deterioration and tissue dysfunction
(McHugh and Gil, 2018). It is revealed as a strong prognostic
marker for shorter survival among many cancers (de Magalhães,
2013). Recently, the application of aging-related gene signatures as
diagnostic and prognostic biomarkers has caught the attention of
many cancer researchers (Liu et al., 2021; Xu and Chen, 2021; Yuan
et al., 2021; Yue et al., 2021). However, the prognostic roles of aging
and senescence-related genes (ASRGs) and their biological
mechanisms remain unclear. There has never been an ASRG
signature established for predicting ccRCC patients’ survival.

In this study, we obtained mRNA expression data and
corresponding clinical information of ccRCC patients from
public databases. Then, we constructed a prognostic signature
based on eight aging and senescence-related differentially
expressed genes (DEGs) in the TCGA cohort and validated
the model in the ICGC cohort. We further performed a
functional enrichment analysis to explore the underlying
mechanisms. Finally, an ASRG-based nomogram was built to
predict the overall survival of patients with ccRCC. Our study
provided insights into the key role of cellular aging and
senescence in ccRCC development.

MATERIALS AND METHODS

Data Acquisition
Two independent ccRCC cohorts were included in the present
study. The mRNA expression and clinicopathological data of The
Cancer Genome Atlas-Kidney Renal Clear Cell Carcinoma
(TCGA-KIRC) were downloaded from the USCS Xena website
(https://xena.ucsc.edu/welcome-to-ucsc-xena) up to August
7 2021, including 606 samples (534 tumor samples and 72
normal samples), of which 517 patients had complete
clinicopathological and prognostic data. RNA-seq data and
clinical information of another 91 ccRCC tumor samples were

obtained from the International Cancer Genome Consortium
(ICGC) portal (https://dcc.icgc.org/projects/RECA-EU). The
data from TCGA and ICGC are available to the public. This
study was exempted from the approval of local ethics committees
and strictly followed TCGA and ICGC publication guidelines and
data access policies. The clinicopathological features of the two
cohorts are summarized in Supplementary Table S1.

A total of 667 cellular aging and senescence-related genes were
retrieved from the Molecular Signatures Database (http://www.
gsea-msigdb.org/) and are presented in Supplementary Table S2.

Construction of the Aging and
Senescence-Related Prognostic Signature
The aging and senescence-related prognostic signature was
constructed using data from the TCGA cohort. The
differentially expressed aging and senescence-related genes (AS-
DEGs) between ccRCC tissues and normal tissues were obtained by
using the Limma R package. p value < 0.05 and |log2FC|≥1 were
defined as a significant difference, including both downregulated
and upregulated genes. To create the AS-DEGs prognostic model,
we applied univariate Cox regression, LASSO regression, and
multivariate Cox regression to establish a calculation formula as
follows: Risk score = αgene(a) × gene expression(a) + αgene(b) ×
gene expression(b) +. . .+ αgene(n) × gene expression(n), in which
α stands for the coefficient value. We calculated risk scores for each
patient. Then, the patients were divided into a low-risk group and
high-risk group according to the median risk score.

Evaluation and Validation of the Aging and
Senescence-Related Prognostic Signature
To evaluate and validate the aging and senescence-related
prognostic signature, we applied the same calculation formula
to each patient in the TCGA and ICGC RECA-EU cohorts. The
survminer R package was used to plot the Kaplan–Meier curve to
demonstrate the difference in overall survival (OS), disease-
specific survival (DSS), and progress-free survival (PFS)
between the low- and high-risk groups. A receiver operating
characteristic (ROC) analysis was performed to evaluate the
sensitivity and specificity of the prognosis prediction. The area
under the ROC curve (AUC) was also calculated to quantificate
the prediction accuracy. The stats and Rtsne R package were used
to explore the distribution difference between the risk groups by
the principal component analysis (PCA) and t-SNE, two
unsupervised data dimension reduction methods. To examine
whether the prognostic signature can be applied as an
independent prognostic factor in ccRCC, univariate and
multivariate Cox regression analyses were used. We used a
heat map to show the correlation between the risk score and
other clinicopathological features. A nonparametric test and
violin plots were applied to evaluate the relationship between
risk scores and clinicopathological features.

Gene Set Enrichment Analysis
For the Gene Set Enrichment Analysis (GSEA), the GSEA
software (version 3.0) was obtained from GSEA website
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(http://software.broadinstitute.org/gsea/index.jsp). We
downloaded the c2. cp.kegg.v7.4. symbols.gmt sets from the
Molecular Signatures Database (http://www.gsea-msigdb.org/
gsea/downloads.jsp) to evaluate different pathways and
molecular mechanisms between the low- and high-risk groups.
Based on gene expression profiles and phenotypic grouping, the
minimum gene set was set to 5, the maximum gene set was set to
5,000, 1,000 times of re-sampling, and p value less than 0.05 was
statistically significant.

Immune Infiltration Analysis
To quantify the immune infiltration level, the annotated gene set
file was downloaded from GSEA website. The infiltration levels of
16 immune cells and 13 immune-related pathways in each ccRCC
sample were calculated, and the calculation results were exhibited
by box plots. Furthermore, we evaluated the TME of ccRCC by
using the “ESTIMATE” package to calculate the immune/
stromal/ESTIM score.

Construction of the Predictive Nomogram
To establish a more accurate predictive model capable of
predicting the OS of the ccRCC patients, we constructed a
nomogram in TCGA cohort containing the risk score and
other clinical factors according to the analysis results of the
univariate Cox regression. Calibration plots and AUC in ROC
curves were applied to evaluate the predictive effectiveness.

Pan-Cancer Analysis
We downloaded the standardized pan-cancer dataset from the
UCSC website, including TCGA, TARGET, and PANCAN
cohorts. We extracted ENSG00000147437 (GNRH1) gene
expression data and prognostic data of each sample, screening
the sample source as solid tissue normal, primary solid tumor,
primary tumor, normal tissue, primary blood-derived cancer-bone
marrow, and primary blood-derived cancer-peripheral blood. We
eliminated the cancer types with less than three samples and finally
obtained the expression data of 34 cancer species.

Statistical Analysis
Data sorting and analysis were conducted by the R 4.1.0 software.
An independent sample t-test was used for continuous variables
with normal distribution and homogeneity of variance. The
Wilcoxon rank-sum test was used for non-normal distribution
parameters. The Pearson correlation coefficient test was applied
to analyze the correlation. p value less than 0.05 was considered
significant (*p < 0.05, **p < 0.01, and ***p < 0.001). An aging and
senescence-based nomogram was constructed and exhibited
using the Sangerbox tools, a free online platform for data
analysis (http://www.sangerbox.com/tool).

RESULTS

Construction of the Aging and
Senescence-Related Prognostic Signature
Among 667 aging and senescence-related genes derived from the
Molecular Signatures Database, 215 genes were differentially

expressed (72 underexpressed and 143 overexpressed) between
ccRCC tissues and normal tissues in the TCGA cohort
(Supplementary Figures S1A,B; Supplementary Table S3).
The results of GO and KEGG analyses confirmed that the 215
DEGs were related to aging, cell aging, and cellular senescence
(Supplementary Figures S1C,D). Among the 215 DEGs, 59
genes were identified to be associated with OS through the
univariate COX regression analysis (Supplementary Table S4).
Then, the 59 genes were subjected to a LASSO regression analysis
and 12 AS-DEGs were selected (Figures 1A,B). On the basis of
the 12 AS-DEGs, a prognostic model was built through a
multivariate Cox regression analysis. Eight different AS-DEGs
(FOXG1, FOXM1, GNRH1, HAMP, IGFBP2, IL10, MPEG1, and
VASH1) were revealed as independent prognostic factors in
ccRCC patients (Figure 1C; Supplementary Table S5) and the
following formula was generated to calculate the risk score: risk
score = (expression of FOXG1 × 0.06305) + (expression of
FOXM1 × 0.23742) + (expression of GNRH1× 0.25733) +
(expression of HAMP × 0.10576) + (expression of IGFBP2 ×
0.18935) + (expression of IL10 × 0.21992) + [expression of
MPEG1 × (−0.27295)] + [expression of VASH1 × (−0.33497)].

Evaluation and Validation of the Aging and
Senescence-Related Prognostic Signature
We calculated the risk score according to the aforementioned
calculation formula for each patient in the TCGA cohort and
then divided the patients into high- and low-risk groups based
on the median risk score. Risk survival status plots and pie
charts revealed that the risk score had an adverse association
with the survival status of patients (Figures 2A–C). The K–M
curves indicated that the high-risk group was associated with
poorer OS, DSS, and PFS (p < 0.001) (Figures 2D–F). The
AUC value for 1-, 3-, and 5-year overall survival were 0.739,
0.698, and 0.734, respectively (Figure 2G). The PCA
demonstrated that the high- and low-risk groups presented
discrete spatial distributions (Figures 2H, I). We performed
Cox regression analyses to evaluate whether the risk score can
be used as an independent predictor among other clinical
factors such as age, gender, pathological grade, and AJCC
stage. Results showed that the risk score remained as an
independent prognostic predictor for OS both in the
univariate and multivariate analyses containing age, grade,
and stage (p < 0.001) (Figures 2J,K; Supplementary
Table S6).

To verify the predictive stability and reliability of our model,
we evaluated the patients in the ICGC RECA-EU cohort with the
same statistical methods. The verification results were highly in
accordance with those in TCGA cohort. The number of deaths
increased with increasing risk scores (Figures 3A–C). A survival
analysis confirmed that patients in the high-risk group had a
shorter OS compared with patients in the low-risk group
(Figure 3D). The AUC values of the model for OS were 0.565
at one year, 0.667 at three years, and 0.626 at five years
(Figure 3E). Similarly, a significant discrete tendency between
two risk groups was shown in the PCA two-dimensional plane
(Figures 3F,G).
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Correlation Between the Aging and
Senescence-Related Prognostic Risk
Signature and Clinicopathological Features
Then, we examined the correlation between the risk group and
several important clinicopathological features including age,
gender, AJCC staging, and pathological grade. The risk group
was significantly correlated with the AJCC staging and
pathological grade, but not with age and gender. The heat
map indicated that patients in the high-risk group were more
likely to have a higher AJCC staging and pathological grade than
patients in the low-risk group. The gene expression map showed
that in the high-risk group, FOXG1, FOXM1, GnRH1, HAMP,
IGFBP2, and IL10 were highly expressed, acting as risk factors,

while MPEG1 and VASH1 were highly expressed in the low-risk
group, as protective factors (Figures 4A,D,E). In the aspect of risk
scores, there were significant differences between different stages
and grades. Higher AJCC staging and pathological grade were
associated with higher risk scores (Figures 4B,C).

GSEA Analysis Based on Risk Groups
We conducted a GSEA analysis based on KEGG and GO pathway
enrichment to explore the possible underlying functional
mechanisms contributing to different prognoses for patients in
the different risk groups in the TCGA cohort. Results of the
KEGG terms showed that the low-risk group was significantly
enriched in “valine leucine and isoleucine degradation,” while the
“alpha-linolenic acid metabolism,” “linoleic acid metabolism,”

FIGURE 1 | Construction of the prognostic signature in TCGA. (A) Select the optimal parameter (lambda) in the least absolute shrinkage and selection operator
(LASSO) model. (B) LASSO coefficient profiles of the 12 prognosis-associated ASRGs with non-zero coefficients determined by the optimal lambda. (C) Identify eight
ASRGs to construct a risk signature by the multivariate Cox regression analysis.
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FIGURE 2 | Evaluation of the prognostic signature in TCGA. (A) Distribution of the risk scores in the low- and high-risk groups. (B,C) Patient distribution in the low-
and high-risk groups based on the survival status. (D–F) Overall survival (OS), disease-specific survival (DSS), and progress-free survival (PFS) curves stratified by the
low- and high-risk groups. (G) Time-dependent ROC curves for OS prediction by the ASRG-based signature. (H,I) Two risk groups were distinguished by the principal
component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE). (J,K)Univariate andmultivariate Cox regression analyses of the signature and
other clinical factors.
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FIGURE 3 | Validation of the prognostic signature in the ICGC. (A) Distribution of the risk scores in the low- and high-risk groups. (B,C) Patient distribution in the
low- and high-risk groups based on the survival status. (D) OS curve stratified by the low- and high-risk groups. (E) Time-dependent ROC curves for OS prediction by
ASRG-based signature. (F,G) Two risk groups were distinguished by PCA and t-SNE.
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FIGURE 4 | Relationship between the risk groups and clinicopathological features in TCGA. (A) Heat map depicting the prognostic signature and
clinicopathological features of ASRGs. (B,C) Relationship between risk scores and the AJCC stage and pathological grade. (D,E) Expression levels of MPEG1 and
VASH1 in low- and high-risk groups in TCGA and ICGC cohorts.
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FIGURE 5 |Gene Set Enrichment Analysis (GSEA) of the high-and low-risk groups in TCGA. (A) Enriched KEGG pathways between the high- and low-risk groups.
(B–D) Enriched GOBP, GOCC, and GOMF terms between the high- and low-risk groups. (E,F) Enrichment results of the immune cell and immune function scores of the
high- and low-risk groups. (G,H) Results of the stromal/immune/ESTIMATES scores of the high- and low-risk groups.
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“GNRH signaling pathway,” and “taurine and hypotaurine
metabolism” were significantly enriched in the high-risk group
(Figure 5A). For GO terms, the high-risk group was significantly
enriched with “antimicrobial humoral response,” “keratin

filament,” “calcium-dependent phospholipase A2 activity,” and
“peptidase regulator activity” (Figures 5B–D; Supplementary
Table S7). These results may shed light on the cellular biological
mechanisms of the ASRGs.

FIGURE 6 | Construction of a nomogram for prognosis prediction. (A) Prognostic nomogram including risk scores and other clinical factors. (B) Calibration curves
of the 1-, 3-, and 5-year OS. (C) ROC curves to evaluate the 1-, 3-, and 5-year OS predictive efficiency. (D–F) ROC curves to compare the predictive efficiency between
the nomogram and other clinical factors for the 1-, 3-, and 5-year OS.
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Tumor Immune Infiltration Analysis
We then investigated whether there were differences in the aspect
of immune infiltration between the different risk groups.

Specifically, we analyzed and compared the infiltration level of
16 immune cells and 13 immune-related pathways. In the present
study, most immune cells and immune functions presented

FIGURE 7 | Pan-cancer analysis of GNRH1. (A) Expression status of the GNRH1 gene in 34 different cancers and the corresponding normal tissues. (B)
Correlation between GNRH1 expression and overall survival of different tumors. (C) Correlation between GNRH1 expression and disease-specific survival of different
tumors. (D–F) Kaplan–Meier curves of OS, DSS, and PFS stratified by the low- and high-expression of GNRH1 in TCGA-KIRC.
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significantly discrepant infiltration levels between the low- and
high-risk groups (Figures 5E,F; Supplementary Table S8). In
particular, CD8+ T cells, pDCs, Tfh, TIL, APC co-stimulation,
checkpoint, inflammation-promoting, T-cell co-inhibition, T-cell
co-stimulation, and type-II IFN response scores were significantly
enriched in the high-risk group. Then, the “ESTIMATE” package
was applied to evaluate tumor immunity and found similar
results. When the risk score increased, the immune scores also
increased (Figures 5G,H ; Supplementary Table S9).

Construction and Evaluation of the Aging
and Senescence-Based Nomogram
The univariate Cox regression analysis revealed that ASRGs risk
score, age, cancer stage, and pathological grade were significant
prognostic factors for the overall survival in the TCGA dataset
(Figure 2I). Therefore, we used the risk score together with age,
stage, and grade to construct a nomogram (Figure 6A). We also
draw the calibration curves and ROC to evaluate the predictive
accuracy and effectiveness of the prognosis nomogram (Figures
6B,C). For the 1-, 3-, and 5-year OS probability, the AUC of the
total score was 0.88, 0.82, and 0.81, respectively (Figure 6C). The
ROC curve showed that the total score was more effective than
the model constructed only by risk score (Figures 6D–F). The
total score outperformed any other clinical factors to predict the
1- and 3-year OS (Figures 6D,E).

Pan-Cancer Analysis of GNRH1
To investigate the underlying mechanisms relevant to the ASRGs
risk model more specifically, we paid attention to the 8 AS-DEGs
in the model. Among the six risk factors (FOXG1, FOXM1,
GNRH1, HAMP, IGFBP2, and IL10), the coefficients of
FOXM1 and GNRH1 were higher than the others, indicating a
more prognostically important role. It has been put forward that
FOXM1 is a major factor of adverse prognosis in 18,000 cancer
cases across 39 human malignancies, confirming the important
role of FOXM1 in cancer (Gentles et al., 2015; Gartel, 2017).
Therefore, GNRH1 emerged as a focal point of subsequent
research. To begin with, we evaluated the disparity of GNRH1
expression between normal and tumor tissues. Data of 34
malignancies showed that GNRH1 was highly expressed in
tumor tissues compared with normal tissues in 10 tumors,
including KIRC, KIRP (kidney renal papillary cell carcinoma),
KIPAN (pan-kidney cohort), LAML (acute myeloid leukemia),
HNSC (head and neck squamous cell carcinoma), PAAD
(pancreatic adenocarcinoma), and WT (high-risk Wilms
tumor) (Figure 7A). On the other hand, in other 21 tumors,
GNRH1 was expressed at a lower level in tumor tissues than in
normal tissues (Figure 7A).

Given the significant discrepancy in expression levels between
tumor and normal tissues in most tumor types, we next
investigated the relationship between GNRH1 expression and
the prognosis of different tumors. We found that the higher
GNRH1 was expressed, the shorter OS was observed in KIPAN
(p = 2.9e-5), KIRC (p = 5.5e-5), LAML (p = 5.4e-3), and ACC
(adrenocortical carcinoma) (p = 0.02). DSS analysis data showed
a similar pattern that higher GNRH1 expression was associated

with poorer prognosis in KIPAN (p = 3.4e-3), KIRC (p = 7.7e-4),
and ACC (p = 0.03). On the contrary, a lower expression of
GNRH1 was correlated with shorter OS in HNSC (p = 0.02) and
SKCM (skin cutaneous melanoma) (p = 0.04) (Figures 7B,C).
The Kaplan–Meier survival analysis demonstrated that the higher
expression of GNRH1 was connected with poorer OS (p < 0.001),
DSS (p < 0.001), and PFS (p < 0.001) in ccRCC (Figures 7D–F).

The aforementioned findings revealed that though GNRH1
was differently expressed between tumor and normal tissues in
most tumor types, the GNRH1 expression only correlated with
the prognosis of a few types of tumors, in particular with RCC. To
further explore the role of GNRH1 in cancers, we downloaded the
interaction network of the top 20 proteins binding with GNRH1,
which was available from the STRING website (Supplementary
Figure S2A). The PPI network indicated that GNRH1 interacted
with several essential oncogenes and tumor suppressor genes,
such as KiSS1 (Kisspeptin), AKT1/3 (serine/threonine kinase 1/
3), and MAPK1/3 (mitogen-activated protein kinase 1/3)
(Revathidevi and Munirajan, 2019; Ji et al., 2013; Burotto
et al., 2014). In addition, the GEPIA2 tool was used to
evaluate the expression correlation of the hot tumor-related
genes and GNRH1 in ccRCC. We found that the GNRH1
expression level was negatively correlated with MAPK1 and
MAPK3 (Supplementary Figures S2B,C). There was evidence
indicating that the MAPK/ERK signaling node can function as a
tumor suppressor (Burotto et al., 2014). In addition, according to
the GNRH1 expression level, patients in the TCGA cohort were
divided into a high-expression group (≥50%) and low-expression
group (<50%). The GSEA analysis revealed that the MAPK
pathway is enriched in the GNRH1 high-expression group
(p < 0.05), indicating a potential upstream and downstream
relationship between the GNRH1 and MAPK pathways
(Supplementary Figure S2D). Therefore, we could speculate
that GNRH1 negatively affected the prognosis of ccRCC
through the MAPK pathway. More importantly, a study
confirmed that MAPK pathways mediate GnRH1-stimulated
FSHB promoter activities in immortalized murine gonadotrope
cells (Wang et al., 2008). However, how GNRH1 interacts with
the MAPK pathway in ccRCC still needs more in vitro and in vivo
experiments.

DISCUSSION

Cellular senescence was first described in 1961 by Hayflick and
Moorhead when they found that human diploid fibroblasts
in vitro could divide to a maximum number before they
arrested their growth (Hayflick and Moorhead, 1961).
Generally speaking, cellular senescence is considered a stable
arresting status of the cell cycle in response to various stresses
(Herranz and Gil, 2018). Senescent cells were observed to
cumulate in the aging process and play roles in aging-related
diseases, such as osteoarthritis and osteoporosis, atherosclerosis,
diabetes, glaucoma, and neurodegeneration diseases (van
Deursen, 2014; McHugh and Gil, 2018; Calcinotto et al.,
2019). Moreover, it was revealed that cellular senescence had
complicated effects on tumor by suppressing tumor development
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at an early stage, promoting tumor growth in the later stage and
participating in tumor relapse after chemotherapy (Pérez-
Mancera et al., 2014; Calcinotto et al., 2019). Recently, a study
detected that various aging/senescence-induced genes (ASIGs)
were upregulated in malignant diseases compared with healthy
control samples, and an scRNA-seq analysis revealed that all
cancer entities (chronic myelogenous leukemia, colorectal cancer,
hepatocellular carcinoma, lung cancer, and pancreatic ductal
adenocarcinoma) evaluated in the study comprised a cellular
subpopulation expressing aging/senescence-associated genes
(Saul and Kosinsky, 2021). Xu and Chen (2021) constructed
an aging-related gene signature, which were was significantly
correlated with the diagnosis and prognosis of lung
adenocarcinoma. Yue et al. (2021) also built a novel gene
signature associated with aging, which can be used to predict
the prognosis of colorectal cancer. Similar research results were
also found in breast cancer and ovarian cancer (Liu et al., 2021;
Yuan et al., 2021). There are several studies investigating the role
of senescence in kidneys. Evidence suggests that cellular
senescence is important in the pathogenesis of different forms
of renal damage, including acute and chronic kidney disease, and
renal transplantation (Li and Lerman, 19792020). A previous
study showed that senescence-associated protein p400 is a
prognostic biomarker in renal cell carcinoma and lowered
expression of p400 associated with worsening prognosis
(Macher-Goeppinger et al., 2013). However, no studies have
attempted to construct an aging and senescence-related
prognostic model of RCC.

A number of studies have attempted to develop models to
predict the prognosis in ccRCC patients based on gene
sequencing and clinical data (Li et al., 2020a; Chen et al.,
2020; Hua et al., 2020; Wang et al., 2020; Zhang et al., 2020;
Zhong et al., 2020; Xing et al., 2021). However, few results have
been applied in clinical practice. In the present study, we
established an aging and senescence-based signature of eight
AS-DEGs, including FOXG1, FOXM1, GNRH1, HAMP,
IGFBP2, IL10, MPEG1, and VASH1. The ASRG signature was
proven to be an independent risk factor for patients with ccRCC
and was significantly associated with patients’ prognosis and
clinicopathological features. Furthermore, a nomogram based
on ASRG signature was established. Our aging and
senescence-related prognostic signature showed good
performance and AUC values to predict 1-, 3-, and 5-year OS
in the training set were 0.739, 0.698, and 0.734, respectively.
Moreover, our nomogram combining risk scores and other
clinical factors showed superior discrimination and calibration,
with AUC values for predicting 1-, 3-, and 5-year OS in the
training set reaching 0.88, 0.82, and 0.81, respectively. These
results showed that the present approach had an excellent ability
to predict the survival in patients with ccRCC.

The aging and senescence-related prognostic risk signature
proposed in the present study is composed of eight genes, which
are associated with tumor initiation, proliferation, metastasis, and
drug resistance. The gonadotropin-releasing hormone (GNRH1)
triggers the release of the follicle-stimulating hormone and
luteinizing hormone from the pituitary (Canzian et al., 2009).
A previous study revealed that IKK-β and NF-κB mediate aging-

related hypothalamic GNRH decline, and GNRH treatment
amends aging-impaired neurogenesis and decelerates aging
(Zhang et al., 2013). GNRH1 was also reported to be
correlated with the prognosis of cancer. One study found that
GNRH1 expression could be considered a method of tumor cell
metastatic spread detection in patients with gynecological
malignances (Andrusiewicz et al., 2011). A recent study also
found that GNRH1 and the leukotriene B4 receptor (LTB4R)
might be novel immune-related prognostic biomarkers in ccRCC
(Wu et al., 2021). Our study further explored the role of GNRH1
in different tumors. An expression analysis revealed that GNRH1
was differentially expressed between tumor tissues and the
corresponding normal tissues in the majority of tumor types.
A survival analysis suggested that increased GNRH1 expression
related to poorer prognosis in KIPAN, KIRC, LAML, and ACC.
Nevertheless, in HNSC and SKCM, the lower expression of
GNRH1 in patients had poorer OS. A PPI network indicated
the GNRH1 interacted with several important cancer-related
proteins, including AKT1/3, MAPK1/3, and KISS1. A further
analysis found that the GNRH1 expression level was negatively
correlated withMAPK1 andMAPK3. These results could serve as
a basis for future studies on the role of GNRH1 in human
malignancies.

Forkhead box protein M1 (FOXM1) is a transcription factor of
the Forkhead family that is required for cell proliferation of
normal cells (Gartel, 2017). It is closely involved with the
processes of cell proliferation, self-renewal, and tumorigenesis
(Liao et al., 2018). It is also associated with aging and senescence.
In hepatocellular carcinoma, a long non-coding RNA-encoded
peptide PINT87aa could induce cellular senescence by blocking
FOXM1-mediated PHB2 (Xiang et al., 2021). Another study
reveals that FOXM1 induction in elderly and Hutchison-
Gilford progeria syndrome fibroblasts prevents aneuploidy and
ameliorates cellular aging phenotypes (Macedo et al., 2018).
FOXM1 also plays an important role in ccRCC. Experiments
showed that the downregulation of FOXM1 reduced the
expression and function of the matrix metalloproteinase-2/9
(MMP-2/9) and vascular endothelial growth factor (VEGF),
leading to the inhibition of tumor invasion, migration, and
angiogenesis (Xue et al., 2012). Another member of the
Forkhead family, Forkhead box G1 (FOXG1) was also
associated with aging and senescence and is important for a
variety of cellular events in cancer cells (Chan et al., 2009;
Verginelli et al., 2013; Chen et al., 2018; Wang et al., 2018;
Zheng et al., 2019). In glioblastoma, FOXG1 knockdown in
brain tumor-initiating cells causes the downregulation of the
neural stem/progenitor and increased replicative senescence
(Verginelli et al., 2013). In glioma, FOXG1 has been shown to
regulate cell proliferation and cell cycles (Chen et al., 2018). In
addition, FOXG1 plays a key role in mediating cancer cell
metastasis through the Wnt/β-catenin pathway in HCC cells
and predicts HCC prognosis after surgery (Zheng et al., 2019).
Hepcidin (HAMP) plays a key role in tumor cell proliferation and
metastasis (Guo et al., 2015; Bao et al., 2016; Wu et al., 2020).
Experiments indicated that maladjusted hepcidin signaling was
associated with an increased risk of HCC (Bao et al., 2016). It was
also discovered that HAMP promoted lung cancer cell homing
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and fostered tumor progression (Guo et al., 2015). Insulin-like
growth factor-binding protein 2 (IGFBP2) is secreted by white
adipocytes and contributes to the prevention of diet-induced
obesity and age-related insulin resistance (Li and Picard, 2010). It
is also an essential oncogenic protein that has both extracellular
and intracellular functions with a clear causal role in cancer
development (Chua et al., 2016; Li et al., 2020b; Sun et al., 2021;
Wei et al., 2021). Interleukin-10 (IL-10) has been thought to
promote tumor immune escape by diminishing anti-tumor
immune response in the tumor microenvironment (Mannino
et al., 2015). Multiple studies have found a positive correlation
between IL-10 levels and poor prognosis in various cancers,
including melanoma, lung cancer, and T/NK-cell lymphomas
(Boulland et al., 1998; Boyano et al., 2000; Li et al., 2014). Two
protective factors (MPEG1 and VASH1) in our prognostic model
were mentioned in other studies as well. Macrophage-expressed
gene 1 (MPEG1) was downregulated in hepatocellular carcinoma
patients with poor prognosis (Zhu et al., 2019). Vasohibin-1
(VASH1) is a negative feedback regulator of angiogenesis
(Takahashi et al., 2016). The expression of VASH1 is
downregulated during replicative senescence of endothelial
cells, which might be a risk of deterioration of vascular
homeostasis and age-related vascular diseases (Sato, 2018). In
the aspect of cancer, it inhibits the advancement of ovarian cancer
by producing various angiogenic factors (Takahashi et al., 2016).

Some of the KEGG/GO pathways shown in Figure 5 have
been reported to be related to aging and senescence. For example,
the reduction in blood levels of branched-chain amino acids
(leucine, valine, and isoleucine) is one of the most consistent
aging signatures across human studies (Le Couteur et al., 2020a;
Le Couteur et al., 2020b). Pro- and ant-inflammatory bioactive
lipids which participate in important cellular processes come
from linoleic acid and alpha-linolenic acid through desaturases,
and the activity of desaturases decreases with age (Das, 2021).
Also, a study reveals that GnRH-I and GnIH are the pivotal
neuropeptides regulating the hypothalamic–pituitary–gonadal
axis in mammals during aging (Mate et al., 2022). In addition,
a study shows that the activities of the mitochondrial citric acid
cycle enzymes decrease during the aging process, resulting in
secondary effects of citrate accumulation (Yarian and Sohal,
2005).

This study has several limitations. First, the data analyzed was
obtained from public databases, therefore, the mRNA and protein
expression of the eight genes for constructing the model needs
support from experimental evidence. Second, there are many other
factors affecting the prognosis of ccRCC patients, such as tumor
metabolism, tumor immunity, and non-coding RNA. We still need
more data to completely verify the model’s reliability. Finally, the
underlying mechanisms of this model remain unknown. In
particular, how GNRH1 influences tumor development in ccRCC
requires further experiments in vivo and in vitro.

In summary, we established a novel prognostic model of eight
aging and senescence-related genes, which has significant value in

predicting ccRCC survival. This signature is expected to be
applied as a novel method for identifying high- and low-risk
ccRCC populations and help in learning more about the
mechanism of aging and senescence in ccRCC.
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