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HLA-G is a nonclassical histocompatibility class I molecule that plays a role in immune
vigilance in cancer and infectious diseases. We previously reported that highly soluble
HLA-G (sHLA-G) levels in the bone marrow were associated with a high blood cell count in
T-acute lymphoblastic leukemia, a marker associated with a poor prognosis. To
understand the posttranscriptional HLA-G gene regulation in leukemia, we evaluated
the bone marrow microRNA profile associated with the HLA-G bone marrow mRNA
expression and sHLA-G bone marrow levels in children exhibiting acute leukemia (B-ALL,
T-ALL, and AML) using massively parallel sequencing. Ten differentially expressedmiRNAs
were associated with high sHLA-G bone marrow levels, and four of them (hsa-miR-4516,
hsa-miR-486-5p, hsa-miR-4488, and hsa-miR-5096) targeted HLA-G, acting at distinct
HLA-G gene segments. For qPCR validation, these miRNA expression levels (ΔCt) were
correlated with HLA-G5 and RREB1mRNA expressions and sHLA-G bone marrow levels
according to the leukemia subtype. The hsa-miR-4488 and hsa-miR-5096 expression
levels were lower in B-ALL than in AML, while that of hsa-miR-486-5p was lower in T-ALL
than in AML. In T-ALL, hsa-miR-5096 correlated positively with HLA-G5 and negatively
with sHLA-G. In addition, hsa-miR-4516 correlated negatively with sHLA-G levels. In AML,
hsa-miR-4516 and hsa-miR-4488 correlated positively with HLA-G5mRNA, but the HLA-
G5 negatively correlated with sHLA-G. Our findings highlight the need to validate the
findings of massively parallel sequencing since the experiment generally uses few
individuals, and the same type of leukemia can be molecularly quite variable. We
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showed that miRNA’s milieu in leukemia’s bone marrow environment varies according to
the type of leukemia and that the regulation of sHLA-G expression exerted by the same
miRNA may act by a distinct mechanism in different types of leukemia.

Keywords: leukemia, HLA-G, microRNA, bone marrow, posttranscriptional regulation, ALL, AML

INTRODUCTION

HLA-G is a nonclassical MHC class I molecule with particular
and distinct characteristics when compared with classical
molecules, including restricted tissue expression, little gene
variability at the coding region, and significant variability at
the regulatory regions. HLA-G exhibits immunomodulatory
properties rather than antigen presentation function (Castelli
et al., 2014; Carosella et al., 2015; Amodio and Gregori, 2020).
Several immune system cell functions, such as the cytotoxic effect
of NK and T CD8+ cells, antigen presentation by dendritic cells,
among others, are negatively regulated due to HLA-G binding to
the inhibitory leukocyte ILT2 (LILRB1), ILT4 (LILRB2), and
KIR2DL4 receptors (Colonna et al., 1998; Rajagopalan and
Long, 1999; Shiroishia et al., 2003, 2006; Yan and Fan, 2005;
Donadi et al., 2011; Rouas-Freiss et al., 2014; Amodio and
Gregori, 2020).

HLA-G expression has been primarily related to its
immunotolerance in pregnancy (Rouas-Freiss et al., 1997; Xu
et al., 2020), but differential HLA-G levels can also influence the
pathogenesis and outcome of infectious and noninfectious
diseases (Yan et al., 2009; Rizzo et al., 2008). In cancer,
increased HLA-G levels can alter the immunosurveillance
mechanism, favoring tumor immune escape (Yan, 2011;
Castelli et al., 2014; Rouas-Freiss et al., 2014; Lin and Yan,
2018). High plasma HLA-G (sHLA-G) levels have been
associated with immunosuppression and worse prognosis in
several hematological malignancies, such as acute and chronic
leukemias (Sebti et al., 2003; Gros et al., 2006; Rizzo et al., 2014;
Caocci et al., 2017), Hodgkin’s lymphoma (Diepstra et al., 2008;
Caocci et al., 2016), and diffuse large B-cell lymphoma (Josionek-
Kupnicka et al., 2016).

Little attention has been devoted to the role of bone marrow
sHLA-G levels in hematological disorders; however, several lines of
evidence indicate its relevant contribution. The sHLA-G levels in the
non-leukemic bone marrow are higher than in the peripheral blood
(Almeida et al., 2018; Cavalcanti et al., 2017). In a previous study
conducted by our group, high bone marrow sHLA-G levels were
associated with elevated blood cell count in childhood T-cell acute
lymphoblastic leukemia (ALL), a criterion related to poor prognosis
(Almeida et al., 2018). Bonemarrow sHLA-G levels may be regulated
by transcriptional and posttranscriptional factors, which may
differentially influence the gene expression depending on the
HLA-G gene polymorphic sites at regulatory regions and on the
microenvironment milieu (Castelli et al., 2010; Castelli et al., 2014;
Porto et al., 2015). In this context, differential microRNA expression
profiles have been associated with different types of leukemia, such as
T-cell ALL (T-ALL) (Schotte et al., 2009; Schotte et al., 2011;Wallaert
et al., 2017), B-cell ALL (B-ALL) (Schotte et al., 2009; Schotte et al.,
2011), and chronic lymphocytic leukemia (CLL) (Calin et al., 2005),

which are targets mainly to genes of innate and adaptive immunity
(O’Connell et al., 2010; Mehta and Baltimore, 2016; Omar er al.,
2019), particularly genes encoding immune checkpoint molecules
(Eichmüller et al., 2017; Hirschberger et al., 2018; Omar et al., 2019).

Since, in T-ALL, only high sHLA-G producers are associated
with elevated blood cell count (dos Santos Almeida et al., 2018),
this study was designed to clarify the relationship between the
sHLA-G levels and the microRNA profiles in the bone marrow of
untreated ALL patients to unveil some of the posttranscriptional
control of HLA-G in leukemia.

MATERIALS AND METHODS

Study Design, Population, and Ethical
Considerations
A group of 15 children with ALL (8 B-ALL and 7 T-ALL) aged
between 0 and 18 years were considered for the study of differentially
expressed microRNA (DE-miRNA) in bone marrow cells according
to the marrow stroma sHLA-G levels. For real-time quantitative PCR
validation experiments, we compared the levels of DE-miRNA in
another group of ALL patients (23 B-ALL and 11 T-ALL). To
demonstrate that the effect observed was related to the lymphoid
cell type, we also evaluated samples from 31 children with acute
myeloid leukemia (AML). We also included a control group with 14
samples from children whose myelogram confirmed the absence of
leukemia. The expressions of the HLA-G5 and RREB1 target genes
were evaluated in the bonemarrow cells of 19 children with B-ALL, 8
with T-ALL, and 28 with AML. All patients were referred, diagnosed,
and treated at the IMIP Hospital, Recife, Brazil. Bone marrow
aspirates were obtained from each patient at admission and
submitted for the isolation of mononuclear cell fractioning for
leukemia diagnosis confirmation, performed as previously
described (Marques et al., 2011). The samples were stored under
–80 °C conditions provided by a laboratory deep freezer, which was
protected against power outage by an uninterruptible power supply
(UPS) and emergency line. All the patients with leukemia presented
at least 70% of blasts in the bonemarrow. The samples were obtained
after the children’s legal guardians provided informed consent,
approving their participation in the study. The study protocol was
previously approved by the local ethics committee (CAAE:
#13296913.3.0000.5190 and #0073.0.095.000-10). The patients’ (age
and sex) and blast (immunophenotype and genetic alterations)
features are shown in Table 1.

Determination of Soluble HLA-G Levels in
Bone Marrow
A sandwich ELISA assay was used to measure the soluble HLA-G
(shredded HLA-G1 and HLA-G5 isoforms) levels, following the

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 8719722

Almeida et al. microRNA-sHLA-G Relationship in Leukemia

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


manufacturer’s instructions (BioVendor Laboratory Medicine,
Inc., Czech Republic), with the limit of detection of 0.6 Units/
mL. Our previous study detected an average of 200 U/mL ± 25 SD
(standard deviation) of sHLA-G levels in the bone marrow
stroma of healthy children (Almeida et al., 2018). Based on
this, patients presenting between 150 and 250 U/mL of sHLA-
G levels in the bone marrow stroma, that is, 200 U/mL plus two
standard deviations above or below, were defined as the
intermediate producers, those presenting with more than
250 U/mL of sHLA-G were high producers, while those who
produced less than 150 U/mL were low producers.

MicroRNA Sequencing Analysis
We used the miRNA sequencing database to evaluate the miRNA
expression related to the sHLA-G levels in the marrow stroma. Total
RNA extraction, quality assessment, library construction, and
miRNA sequencing were performed as described previously
(Almeida et al., 2019). miRNA sequencing data have been
deposited in the ArrayExpress database at EMBL-EBI (www.ebi.
ac.uk/arrayexpress) under the accession number E-MTAB-11621.
The sequencing analysis included read quality control and
contamination assessment using FastQC (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) and Cutadapt
(Martin, 2011) programs considering a Q-score ≥30 and reads
with a length ≥ 17 nucleotides. We used Bowtie (http://bowtie-
bio.sourceforge.net/index.shtml) for indexing of human reference
genome hg38 version, which is deposited in the UCSC Genome
Browser (https://genome.ucsc.edu/). The miRDeep2 2.0.0.8 software
(Friedländer et al., 2008) was applied for sequence alignment and

miRNA identification, considering miRBase release 21 (http://www.
mirbase.org/) (Griffiths-Jones et al., 2006; Kozomara and Griffiths-
Jones, 2010). Differentially expressed (DE) miRNA profiles were
obtained using the edgeR package (Robinson et al., 2010) and the
standard analysis and quantile normalization parameters in the R
software (https://cran.r-project.org/), considering at least 20 reads in
aminimumof 1 sample, a false discovery rate (FDR) ≤0.05, and a log
fold change (logFC) cutoff point of 1 or −1. A comparison of the
bone marrow miRNA levels between lower versus higher sHLA-G
producers was performed. Target prediction of DE-miRNAs was
performed using the miRWalk 2.0 (Dweep et al., 2015), and
functional annotation was determined by DAVID tools v.6.7
(Huang et al., 2009; Huang et al., 2009), considering the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways and Gene
Ontology (GO) terms: biological process and FAT level, both with
Benjamini–Hochberg (BH)–corrected p-values ≤ 0.05. The DE-
miRNA alignment with the HLA-G gene (NG_029039.1) and
mRNA sequences (NM_002127.5) was performed using the
RNAhybrid v.2.2 tool (Kruger and Rehmsmeier, 2006),
considering the essential features for the interaction of the two
molecules, that is, Watson and Crick base pairing, few gaps in the
interaction, especially on the seed sequence, seed (2–8 miRNA
nucleotide), low free energy (≤−20 Kcal), and interaction with
target 3′UTR, coding sequence, and promoter region (Castelli
et al., 2014).

A search for genes encoding proteins related to HLA-G
transcription’s positive and negative regulation was performed,
considering previous studies that describe or review the action of
such molecules (Moreau et al., 1999; Gobin et al., 2002; Flajollet

TABLE 1 | Characterization of childhood acute leukemia patients.

Features B-ALL (n = 46) T-ALL (n = 16) AML (n = 44)

Age at diagnosis

Minimum 0.3 2.7 0.8
Maximum 15 16 18
Mean 5.7 8.8 9.2
Standard deviation 3.3 3.9 5.2

Sex

Male 28 15 25
Female 18 1 19

Blast immunophenotype

Pro-B 1 ETP 1 AML-M0 6
Pre-B 40 Pre-T 9 AML-M1 4
Pre-B 3 Cortical-T 2 AML-M2 11
Transitional-B 1 Mature-T 4 AML-M3 6
Mature-B 1 AML-M4 2

AML-M5 8
AML-M6 4
AML-M7 3

Blast genetic alterations

t (12;21) ETV6-RUNX1 5 SIL/TAL 1 t (8;21) RUNX1-RUNX1T1 5
t (1;19) TCF3-PBX1 2 HOX11 0 inv (16) CBFB/MYH11 4
t (9;22) BCR/ABL 2 HOX11L2 1 t (15;17) PML-RARA 4
t (4;11) KMT2A-AFF1 0 t (9;11) KMT2A-MLLT3 2
Negative 37 Negative 14 Negative 29

Note: ETP, Early T-cell precursor.
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et al., 2009; Castelli et al., 2014; Yaghi et al., 2016). The positive
regulators that were considered were CREB1, CREBBP, JUN,
ATF2, IRF1, HIF1A, and IL10. The negative regulators that
were sought were RREB1, HDAC1, CTBP1, and CTBP2. We
also considered REST, EHMT1, ZEB1, ZEB2, ZNF217, and
LSD1 genes since the proteins are members of the CTBP core
complex (Shi et al., 2003; Shi et al., 2004) and may exert an

indirect influence on HLA-G expression. All the positive and
negative regulators of HLA-G those were considered were
analyzed for their ability to interact with the differentially
expressed miRNAs in this study, according to the miRTarBase
v. 8.0, a database of experimentally validated interactions (Chou
et al., 2018).

MicroRNA Validation by Reverse
Transcription Quantitative Polymerase
Chain Reaction Assays
For validation experiments, we selected the four miRNAs
most likely to target the HLA-G gene (NG_029039.1) and
messenger RNA (NM_002127.5) based on the sequence
alignment analysis (RNAhybrid v.2.2) (Krûger,
Rehmsmeier, 2006). The representative scheme showing the
interaction site betweenHLA-G and the four miRNAs selected
for validation was constructed using the ApE v2.0.61 software
(https://jorgensen.biology.utah.edu/wayned/ape/). The
TaqMan Advanced miRNA cDNA Synthesis Kit (Life
Technologies, Foster City, California, USA), TaqMan
Advanced miRNA Assay (reference: miR-191-5p; targets:
miR-5096, miR-4516, miR-4488, miR-486-5p; Life
Technologies), and TaqMan Fast Advanced Master Mix

FIGURE 1 | Comparison of sHLA-G levels in the bone marrow stroma of pediatric acute leukemia. (A) sHLA-G in B-ALL (square, n = 46), T-ALL (triangle, n = 16),
and AML (hexagon, n = 29); (B) sHLA-G levels in B-ALL (square: low, n = 27; intermediate, n = 12; high, n = 7); (C) sHLA-G levels in T-ALL (triangle: low, n = 10;
intermediate, n = 2; high, n = 4); and (D) sHLA-G levels in AML (hexagon: low, n = 24; intermediate, n = 2; high, n = 3). For comparison of the three groups, the
Kruskal–Wallis test was used followed by Dunn’s multiple comparison for two groups.

TABLE 2 | miRNAs differentially expressed between childhood ALL high and low
soluble HLA-G producers with FDR ≤0.05.

miRNA LogFC FDR

Upregulated in high sHLA-G producers

hsa-miR-1248 5.427 0.006
hsa-miR-205-5p 5.870 0.014
hsa-miR-3196 3.824 0.035
hsa-miR-4485-3p 5.380 0.006
hsa-miR-4488 5.036 0.013
hsa-miR-4516 3.560 0.028
hsa-miR-451a 3.003 0.014
hsa-miR-4532 3.846 0.014
hsa-miR-486-5p 2.910 0.014
hsa-miR-5096 2.589 0.030

Note: LogFC, fold change in base 2 logarithm; FDR, false discovery rate.
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(Life Technologies) were used according to the
manufacturer’s instructions to evaluate the miRNA
expression. Reverse transcription PCR (RT-PCR) assays
were performed in a SimpliAmp Thermal Cycler (Applied
Biosystems, Foster City, California, USA) and quantitative
PCR (q-PCR) in a QuantStudio 5 Real-Time System (Applied
Biosystems) and 7500 Real-Time System (Applied
Biosystems) according to the manufacturer’s instructions.

Expression ofHLA-G5 andRREB1mRNA by
Quantitative Polymerase Chain Reaction
To study the relative expression of HLA-G5 and RREB1, cDNA
synthesis was performed from total RNA using the enzyme
M-MLV-RT 200 U/µL (Invitrogen, Carlsbad, California, USA)
and SimpliAmp Thermal Cycler equipment (Applied
Biosystems). HLA-G5 primers have been described in Gomes
et al. (2018), and they were designed to target all RREB1 isoforms

FIGURE 2 |HLA-G gene binding sites for hsa-miR-5096, hsa-miR-4516, hsa-miR-486-5p, and hsa-miR-4488. ThemiRNA cascade in the figure indicates putative
binding sites in the target gene. Note: the promoter region was mapped and analyzed as described by Castelli et al. (2014). Coding sequence was considered as
described by GenBank (<https://www.ncbi.nlm.nih.gov/nuccore/NG_029039.1>), and exon 8 is considered as the HLA-G 3′UTR [5].

TABLE 3 | Positive and negative regulators of HLA-G expression potentially targeted by the DE-miRNAs in childhood ALL, encompassing high marrow sHLA-G producers.

miR-1248 miR-205-5p miR-3196 miR-4488 miR-4516 miR-451a miR-4532 miR-486-5p miR-5096

Positive regulators

CREB1 X X — — X — — — X
CREBBP X — X X — — — — X
JUN — X — X — — — — —

ATF2 X X — — — X — X X
IRF1 X X — — — — X — X
HIF1A X — — — — — — — —

IL10 — — — — — — — — X

Negative regulators

RREB-1 X X X X X — — X X
HDAC1 X — — — X — — — X
CTBP1/2 X X X — X — X X* X*
REST X X — — X — — X X
EHMT1 — — X X — — — — —

ZEB1/2 X X — — X — — X** X**
ZnF217 — — — — X — — X X

Note: * onlyCTBP2was a target of miR-486-5p andmiR-5096. ** miR-486-5p putative targets only ZEB1, andmiR-5096 targets only ZEB2. The hsa-miR-4485-3pwas not included in the
table because it does not target any of the HLA-G regulators above.
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(RREB-1F: 5′-AAAGATGGTAGAAGACGGG-3′ and RREB-1R:
5′-GTGGGTTATCTGAATGGGTC-3′). Expression was
performed using the SYBR Green DNA intercalator (Applied
Biosystems).

Statistical Analysis
The normality distribution of the miRNA–mRNA expression was
determined using the Shapiro–Wilk andKolmogorov–Smirnov tests.
For comparison between two or three groups, theMann–Whitney U
and Kruskal–Wallis tests were used, respectively. A Spearman’s
correlation coefficient analysis was performed between miRNA
and mRNA expressions. In different experiments, the number of
samplesmay have differed due to the shortage of clinical samples that
did not allow all analyses to be performed. The GraphPad Prism
V.5.01 (GraphPad Software, Inc.) was used to perform the analyses,

considering a significant p-value ≤ 0.05. For miRNA relative
expression analysis, ΔCt (cycle threshold) values were determined
based on the following equation: ΔCt = Ct (target miRNA) −Ct
(reference miRNA). The Ct values were the average duplicates with a
standard deviation (SD) ≤ 0.5. The same equation and parameters
were used to calculate themRNA expression, consideringHLA-G5 or
RREB1 as the target gene and GAPDH as the reference gene.

RESULTS

Soluble HLA-G Levels in Pediatric Acute
Leukemia Patients
Bone marrow sHLA-G levels in childhood AML, T-ALL, and
B-ALL showed no statistical differences (p = 0.3483). There were

FIGURE 3 |Most significant KEGG pathways. (A)GO, biological process terms; (B) related to upregulated miRNAs in childhood in ALL patients with high sHLA-G
levels. Note: *pathways containing genes coding for positive or negative regulators of HLA-G expression. KEGG pathway categories: hsa05200:Pathways in cancer,
hsa04910:Insulin signaling pathway, hsa04360:Axon guidance, hsa04012:ErbB signaling pathway, hsa05220:Chronic myeloid leukemia, hsa05215:Prostate cancer,
hsa04010:MAPK signaling pathway, hsa04510:Focal adhesion, hsa04666:Fc gamma R–mediated phagocytosis, hsa05214:Glioma. GO, biological process
terms: GO:0006350—transcription, GO:0045449—regulation of transcription, GO:0006357—regulation of transcription from RNA polymerase II promoter, GO:
0007242—intracellular signaling cascade, GO:0006355—regulation of transcription, DNA dependent, GO:0051252—regulation of RNA metabolic process, GO:
0051173—positive regulation of nitrogen compound metabolic process, GO:0031328—positive regulation of cellular biosynthetic process, GO:0045893—positive
regulation of transcription, DNA dependent, GO:0006468—protein amino acid phosphorylation.
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low, intermediate, and high sHLA-G producers in each leukemia
subtype (Figure 1).

Identification of Cellular MicroRNAs
Upregulated in High Marrow sHLA-G
Producers
The analysis of differentially expressed miRNA profiles in the
bone marrow cells of non-treated children with ALL revealed 10
miRNAs upregulated in high sHLA-G producers (logFC >2.0)
when compared with low sHLA-G producers (Table 2).

Target Prediction of Differentially
Expressed MicroRNAs and Functional
Annotation
The analysis of target gene prediction with the 10 miRNAs
showed 14,518 potential gene targets, of which only the hsa-
miR-5096 was predicted as a putative regulator ofHLA-GmRNA
by three different algorithms and, by less number, the hsa-miR-
4516, hsa-miR-4488, and hsa-miR-486-5p miRNAs (Figure 2).
All four miRNAs presented several anchor sites at the promoter
and coding regions of the HLA-G gene. Some of the binding sites
of miRNAs are in transcription factor zones. The cAMP-

responsive element (CRE) is a predicted site for hsa-miR-5096
binding; the heat shock element (HSE) for hsa-miR-486-5p; the
hypoxia-responsive element (HRE) for hsa-miR-4516 and hsa-
miR-4488; the Kappa B1, Kappa B2 (NF-κB responsive element),
interferon-stimulated response element (ISRE) module, and the
SXYmodule for hsa-miR-4488, hsa-miR-4516, and hsa-miR-486-
5p; and the Ras-responsive element (RRE) and progesterone-
responsive element (PRE) for hsa-miRNA-4516 and hsa-miR-
4488. The hsa-miR-5096 did not bind to any of these
transcription-binding sites. Only the hsa-miR-4516 targets the
HLA-G 3′ untranslated region at the position covering the
+3035 C/T polymorphic site.

The analysis of themiRNA gene targets for functional annotation
revealed several biological pathways involving genes already
described in the literature that may be positive or negative
regulators for the HLA-G gene. Table 3 shows the genes involved
in the induction or repression of HLA-G transcription and their
putative miRNA regulators identified in this study.

Considering the 10most significant KEGG pathways related to all
upregulated miRNAs in high sHLA-G producers, 6 included the
genes encoding known positive (CREB1, CREBBP, JUN, and IL10)
and negative (CTBP1/2 andHDAC1) regulators ofHLA-G expression
(Figure 3), as well in other pathways associated with leukemogenesis,
namely, hsa04310:Wnt, hsa04660:T-cell receptor, hsa04062:

FIGURE 4 | Difference in miRNA expression in lymphoid and myeloid leukemia. (A) Relative expression of hsa-miR-4516 in control (circle, n = 12), B-ALL (square,
n = 23), T-ALL (triangle, n = 11), ALL (inverted triangle, n = 34), and AML (hexagon, n = 31) groups; (B) relative expression of hsa-miR-486-5p in control (circle, n = 12),
B-ALL (square, n = 23), T-ALL (triangle, n = 11), ALL (inverted triangle, n = 34), and AML (hexagon, n = 31) groups; (C) relative expression of hsa-miR-4488 in control
(circle, n = 12), B-ALL (square, n = 23), T-ALL (triangle, n = 11), ALL (inverted triangle, n = 34), and AML (hexagon, n = 31) groups; and (D) relative expression of hsa-
miR-5096 in control (circle, n = 12), B-ALL (square, n = 23), T-ALL (triangle, n = 11), ALL (inverted triangle, n = 34), and AML (hexagon, n = 31) groups. For comparing
three or more groups, the Kruskal–Wallis test was used followed by Dunn’s multiple comparison for two groups. Note: For delta Ct, the higher the values, the lower the
miRNA expression.
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chemokine, hsa04662:B-cell receptor, hsa04330:Notch, and
hsa04350:TGF-beta signaling pathways. Most of the statistically
significant GO biological processes involved in regulating
transcription and cell signaling cascade include inducers (CREB1,
CREBBP, ATF2, JUN, and IL10) and repressors (RREB1, CTBP1/2,
and HDAC1) of the HLA-G expression (Figure 3).

Confirmation of Bone Marrow MicroRNA
Expression in Childhood Leukemia
The comparison of themiRNA levels in the bonemarrow showed that
miR-486-5p, miR-4488, andmiR-5096 levels were significantly higher
in controls than inALL, particularly B-ALL, and onlymiR-486-5pwas

higher in controls than in T-ALL (p < 0.05). No significant differences
in miRNA levels were observed between controls and AML bone
marrow samples (p > 0.05). In addition, the AML samples showed
higher miR-4488 and miR-5096 levels than did B-ALL and higher
miR-486-5p levels than did T-ALL (p < 0.05) (Figure 4).

Correlations BetweenMicroRNAs andHLA-
G5 mRNA Levels
In T-ALL, the hsa-miR-5096 levels correlated positively with the
HLA-G5 mRNA expression (rho = 1; p = 0.0167) (Figure 5). In
myeloid leukemia, the hsa-miR-4516 (rho = 0.4638; p = 0.0258)
and hsa-miR-4488 (rho = 0.6509, p = 0.0008) levels were also

FIGURE 5 | Correlation coefficient analysis between miRNAs and HLA-G5 mRNA levels in the bone marrow from patients with untreated leukemia. (A) Correlation
coefficient analysis between hsa-miR-4516 and HLA-G5 in B-ALL (n = 13); (B) correlation coefficient analysis between hsa-miR-486-5p and HLA-G5 in B-ALL (n = 13);
(C) correlation coefficient analysis between hsa-miR-4488 and HLA-G5 in B-ALL (n = 13); (D) correlation coefficient analysis between hsa-miR-5096 and HLA-G5 in
B-ALL (n = 13); (E) correlation coefficient analysis between hsa-miR-4516 and HLA-G5 in T-ALL (n = 5); (F) correlation coefficient analysis between hsa-miR-486-
5p and HLA-G5 in T-ALL (n = 5); (G) correlation coefficient analysis between hsa-miR-4488 and HLA-G5 in T-ALL (n = 5); (H) correlation coefficient analysis between
hsa-miR-5096 and HLA-G5 in T-ALL (n = 5); (I) correlation coefficient analysis between hsa-miR-4516 and HLA-G5 in AML (n = 23); (J) correlation coefficient analysis
between hsa-miR-486-5p and HLA-G5 in AML (n = 23); (K) correlation coefficient analysis between hsa-miR-4488 and HLA-G5 in AML (n = 23); and (L) correlation
coefficient analysis between hsa-miR-5096 and HLA-G5 in AML (n = 23). For the correlation analysis, the Spearman’s correlation coefficient was used.
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positively correlated with the HLA-G5 mRNA levels. However,
the increase in HLA-G5 mRNA expression was translated into a
significant decrease in sHLA-G only in myeloid leukemia, with
moderate and significant Spearman’s coefficient (rho = 0.475; p =
0.0397), but neither in B-ALL nor T-ALL (Figure 6). This was
assumed considering that the delta Ct values are inversely
proportional to the mRNA levels.

In addition, increased hsa-miR-5096 (rho = 0.72; p= 0.0144) and
hsa-miR-4516 (rho = 0.67; p = 0.0277) levels (low ΔCt) correlated
with decreased sHLA-G protein levels in T-ALL, but only hsa-miR-
5096 correlated also with the HLA-G mRNA (Figure 7), but only
hsa-miR-5096 correlated also with the HLA-G mRNA.

For a detailed analysis, the samples were categorized according
to the bone marrowmiRNA levels in the low or highmiRNA level
group, and sHLA-G levels in both groups were compared. In
T-ALL, patients with high levels of hsa-miR-5096 and miR-4516
had a median sHLA-G value of 46 U/mL, while patients with low
levels of miRNA had a median sHLA-G value of 200 U/mL (p =
0.0519). Overall, high miRNA expressions were associated with
homogenous low sHLA-G levels, while low miRNA levels were
associated with largely variable sHLA-G levels, which contributed
to the borderline significance of the differences. In B-ALL, the
groups of low and high miRNA levels were not capable of
segregating samples with different sHLA-G levels. In AML, the
difference between the median value of sHLA-G between the low-
and high-miRNA-level groups was not significant (Figure 8).

Considering that the RREB1 gene is a target for the four studied
miRNAs and that the RREB-1 protein has three potential binding
sites in the HLA-G gene promoter, the relationship between the
RREB1 mRNA levels and each miRNA and HLA-G5 mRNA levels
were evaluated. The results revealed that only in B-ALL, the RREB1
and HLA-G5 mRNA expressions were positively correlated (rho =
0.5632, p = 0.0018). In addition, only the hsa-miR-4488 correlated
positively with RREB1mRNA expression (rho = 0.4368, p = 0.0615),
but it did not reach significance.

DISCUSSION

In this study, the evaluation of the differential expression profiles
of miRNAs in the bone marrow among leukemia patients

exhibiting high and low marrow sHLA-G levels envisaged the
identification of new regulators of HLA-G that may play a role in
cancer immunosurveillance (Castelli et al., 2014; Lin and Yan,
2018; Aguagué et al., 2011; Paul et al., 1998). Few or no studies
have reported many of the 10 differentially expressed miRNAs as
modulators of HLA-G expression. Interestingly, according to the
next-generation sequencing analysis, all miRNAs were
upregulated in the group of high HLA-G producers,
suggesting that these miRNAs target the HLA-G gene
sequence; however, they do not downregulate HLA-G
expression. Previous studies focusing on the TNF gene
(Vasudevan et al., 2007) have shown alternative mechanisms
of action of miRNAs, increasing the transcription of the target
gene and the expression of target proteins, dependent on the
micro-ribonucleoproteins (microRNPs) and gene regions
(promoter or coding region), with which miRNAs interact
(Vasudevan et al., 2007; Place et al., 2008). The sequence
alignment analysis showed that the hsa-miR-5096, hsa-miR-
4516, hsa-miR-4488, and hsa-miR-486-5p miRNAs are capable
of binding multiple sites at coding and 5′ untranslated region of
the HLA-G gene and a unique binding site for hsa-miR-4516 at
the 3′ untranslated region.

The validation experiments showed that the hsa-miR-4516
levels in the bone marrow did not differ significantly in non-
leukemic and leukemia samples. However, the relationship
between the high hsa-miR-4516 levels and low sHLA-G
protein levels in the bone marrow in T-ALL indicated that the
classic mechanism of negative regulation by the miRNA exerted
at the 3′UTR of the HLA-G gene was active. The correlation
coefficient analysis revealed that increased hsa-miR-4516 levels
(low delta Ct values) correlated with lower sHLA-G levels.
Previously, a study reported the hsa-miR-4516 as a potential
regulator of HLA-G expression based on in silico study, which
showed a putative binding between the two molecules but lacked
functional studies (Porto et al., 2015). The predicted interaction
between hsa-miR-4516 and HLA-G occurs at the +3035
polymorphic site of 3′UTR of the HLA-G gene, which might
affect the hsa-miR-4516–mediated downregulation of HLA-G
expression. In T-ALL, we also observed that increased hsa-
miR-5096 expression levels correlated positively with HLA-G5
mRNA and negatively with sHLA-G levels. One of the predicted

FIGURE 6 | Correlation coefficient analysis between HLA-G5 mRNA and sHLA-G levels in the bone marrow from patients with untreated leukemia. (A) Correlation
coefficient analysis between HLA-G5 and sHLA-G in B-ALL (n = 28); (B) correlation coefficient analysis between HLA-G5 and sHLA-G in T-ALL (n = 11); and (C)
correlation coefficient analysis between HLA-G5 and sHLA-G in AML (n = 19). For the correlation analysis, the Spearman’s correlation coefficient was used.
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binding sites for the hsa-miR-5096 is the CRE site at the HLA-G
promoter, which induces gene transcription in response to cAMP
(Gobin et al., 2002). The hsa-miR-5096 was reported as a
potential tumor suppressor miRNA capable of inhibiting the
proliferation, migration, and invasion of breast cancer cells
in vitro by targeting the SLC7A11 gene, which is related to
ferroptosis resistance (Yadav et al., 2021). On the other hand,
Thuringer et al. (2017) demonstrated an oncogene role for hsa-
miR-5096 whose high expression contributed to increased
invasiveness of glioblastoma cells by decreasing Kir4.1 protein
levels, a K+ channel involved in the ionic homeostasis in the brain
(Thuringer et al., 2017). The hsa-miR-5096 seems to target
different genes in distinct cell types and microenvironments

with a different action mechanism, which may occur also in
leukemia. Similarly, the cell heterogeneity could partially explain
the difference between miRNA sequencing results and qPCR
experiments. In addition, it should be considered that the sHLA-
G protein levels depend on the resultant effect of the negative and
positive regulators of the HLA-G expression, the own expression
of which is regulated by hsa-miR-5096 and hsa-miR-4516.

In B-ALL, we observed a moderate correlation between the
HLA-G expression and one of its negative regulators, the RREB-1,
and apparently, the RREB1 expression correlated with hsa-miR-
4488 levels in the bone marrow. The RREB-1 protein is a well-
known repressor ofHLA-G expression, interacting with theHLA-
G gene at three different sites in the promoter region (Flajollet

FIGURE 7 | Correlation coefficient analysis between miRNAs expression and sHLA-G levels in the bone marrow from patients with untreated leukemia. (A)
Correlation between hsa-miR-4516 and sHLA-G in B-ALL (n = 23); (B) correlation between hsa-miR-486-5p and sHLA-G in B-ALL (n = 23); (C) correlation between hsa-
miR-4488 and sHLA-G in B-ALL (n = 23); (D) correlation between hsa-miR-5096 and sHLA-G in B-ALL (n = 23); (E) correlation between hsa-miR-4516 and sHLA-G in
T-ALL (n = 11); (F) correlation between hsa-miR-486-5p and sHLA-G in T-ALL (n = 11); (G) correlation between hsa-miR-4488 and sHLA-G in T-ALL (n = 11); (H)
correlation between hsa-miR-5096 and sHLA-G in T-ALL (n = 11); (I) correlation between hsa-miR-4516 and sHLA-G in AML (n = 18); (J) correlation between hsa-miR-
486-5p and sHLA-G in AML (n = 18); (K) correlation between hsa-miR-4488 and sHLA-G in AML (n = 18); and (L) correlation between hsa-miR-5096 and sHLA-G in
AML (n = 18). For the correlation analysis, the Spearman’s correlation coefficient was used.
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et al., 2009). In addition, it is important to note that RREB-1 acts
in a complex with other proteins, HDAC1, CtBP1/2, REST,
EHMT1, ZEB1/2, and ZnF217, which are involved in
chromatin remodeling and transcription machinery assembly
(Delcuve et al., 2012; Barroilhet et al., 2013; Ray et al., 2014;
Vitkevičienė et al., 2019) and are also targets for these
differentially expressed miRNAs. However, the role of hsa-
miR-4488 at the RRE site is unclear, since hsa-miR-4488
regulates the expression of RREB1, which induces the
downregulation of HLA-G expression by binding to the RRE
site. Further studies evaluating the role of miRNA/RREB1/HLA-G
interaction may clarify whether hsa-miR-4488 competes with the
RREB-1 factor for the RRE site at the HLA-G promoter. Hsa-
miR-4488 has been reported with aberrant expression in other
cancers, such as colorectal cancer (Zhang et al., 2014) and
melanoma (Fattore et al., 2019), and its increased expression
has been associated with drug resistance in melanoma cell lines
(Fattore et al., 2019). To associate the high hsa-miR-4488 levels in
the bone marrow with chemotherapy resistance in T-ALL, a
larger casuistic would be necessary.

In AML, the hsa-miR-4488, hsa-miR-486-5p, and hsa-miR-5096
levels in the bone marrow were higher than were in ALL, hsa-miR-
4488 and hsa-miR-4516 expressions correlated with HLA-G5
expression (p = 0.0008 and p = 0.0258, respectively), and the
increased HLA-G5 expression correlated with low sHLA-G levels,
but no miRNA expression correlated with the sHLA-G levels.

Previous studies of extracellular vesicles from breast cancer
cells reported that hsa-miR-4488 was negatively correlated to the
mitochondrial calcium uniporter and that was related to the
suppression of angiogenesis of vascular endothelial cells by acting
on CX3CL1. Its absence or absent expression appeared to increase
angiogenesis and favor metastasis in breast cancer cells (Zheng
et al., 2020). This study was the first to report the effect of hsa-
miR-4488 in hematological cancer, with a significantly less hsa-
miR-4488 level in AML and a much lesser one in ALL when
compared to the non-leukemic bone marrow. The hsa-miR-4488
mechanism of action in physiologic and pathologic bone marrow
remains unknown.

Besides the high levels of hsa-miR-486-5p in AML when
compared to ALL, there was no significant difference
between the AML levels and non-leukemic bone marrow
levels. The higher miRNA level in non-leukemic bone
marrow corroborates the function of hsa-miR-486-5p in
the induction of growth and survival of
megakaryocyte–erythroid progenitors (Wang et al., 2015).
The hsa-miR-486-5p level was reported to be downregulated
in the peripheral blood leukocytes in untreated chronic
myeloid leukemia (CML) adult patients, which was
upregulated after imatinib treatment (Ninawe et al., 2021).
Another study showed that high miR-486-5p levels induced
apoptosis and caspase-3 activity in leukemic cells by
upregulating the FOXO1 mRNA expression (Liu et al.,
2019). On the contrary, another study suggested that hsa-
miR-486-5p might be involved in the growth and survival of
leukemic cells in AML secondary to Down syndrome, which
generally compromises the megakaryocyte–erythroid
precursors (Wang et al., 2015). Our casuistries were of
children with leukemia, and cases of CML are rare;
therefore, the mechanism of action of hsa-miR-486-5p in
ALL remains unclear. Is it associated with the reduced
number of megakaryocyte–erythroid progenitors observed?

Nine of 10 hsa-miRNAs revealed in this study, namely,
hsa-miR-1248, hsa-miR-205-5p, hsa-miR-3196, hsa-miR-
4488, hsa-miR-4516, hsa-miR-451a, hsa-miR-4532, hsa-
miR-486-5p, and hsa-miR-5096, exhibited the ability to
interact with at least one gene (CREB1, CREBBP, JUN,
ATF2, IRF1, HIF1A, and IL10) coding for a protein
involved in the induction of HLA-G expression. Moreover,
the CREB1, CREBBP, C-Jun, ATF-2, IRF-1, and HIF-1A are
well-known proteins that bind to specific promoter sites of
the HLA-G gene activating its transcription (Gobin et al.,
2002; Mouillot et al., 2007; Castelli et al., 2014; Garziera et al.,
2017). Soluble mediators, such as IL-10, IFN-β, and IFN-γ
cytokines and progesterone hormone, are capable of inducing
HLA-G expression via intracellular signaling pathway;
therefore, a possible interaction between miRNAs

FIGURE 8 | Relationship between sHLA-G with miRNAs expression in leukemic bone marrow. (A) Relationship between sHLA-G and miRNAs expression in
B-ALL: low miR-4516, n = 12; high miR-4516, n = 11; low miR-486-5p, n = 11, high miR-486-5p, n = 12; low miR-4488, n = 11, high miR-4488, n = 12; low miR-5096,
n = 11, high miR-5096, n = 12; (B) relationship between sHLA-G and miRNAs expression in T-ALL: low miR-4516, n = 5, high miR-4516, n = 6; low miR-486-5p, n = 6,
high miR-486-5p, n = 5; low miR-4488, n = 6, high miR-4488, n = 5; low miR-5096, n = 5, high miR-5096, n = 6; (C) relationship between sHLA-G and miRNAs
expression in AML: low miR-4516, n = 9, high miR-4516, n = 9; low miR-486-5p, n = 9, high miR-486-5p, n = 9; low miR-4488, n = 10, high miR-4488, n = 8; low miR-
5096, n = 9, high miR-5096, n = 9. For comparison of two groups, the Mann–Whitney test was used.
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mentioned above in these mediators’ genes can also decrease
the HLA-G expression (Moreau et al., 1999; Chu et al., 1999;
Lefebvre et al., 1999; Yie et al., 2006).

The resulting effect of all variables directly or indirectly involved
in the HLA-G expression in physiological and pathological bone
marrow is not yet known. Our study added new information on the
regulation of HLA-G levels in leukemia. We identified four new
miRNA molecules associated with the HLA-G expression
regulation and its predicted target genes. We showed that some
miRNA and target gene levels correlated with the HLA-G mRNA
and protein levels in the tumor microenvironment. We also
showed that the miRNA expression and regulation differed
according to the leukemia type.

Future studies in a more extensive series of patients could
support the hypothesis that miRNAs’ regulation of sHLA-G
expression may play a role in the prognosis of acute
leukemias, indicating the potential translation of these results
in clinical practice, possibly as a new prognosis marker and target
for immunotherapy.
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