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Themedian survival of patients with gliomas is relatively short. To investigate the epigenetic
mechanisms associated with poor survival, we analyzed publicly available datasets from
patients with glioma. This analysis revealed 12 prognosis-related m6A regulatory genes
that may be responsible for poor prognosis. These genes may be involved in genomic
changes inherent to oxidative phosphorylation, adipogenesis, hedgehog signaling, and
Myc signaling.We reconstructed a risk model with univariate andmultivariate Cox analyses
and identified older age and the m6A risk score as independent risk factors for predicting
the prognosis of glioma patients, which is associated with glioma immune infiltration. In
conclusion, m6A regulatory genes may serve as both reliable biomarkers and potential
targets to increase the chance of survival of patients with glioma.
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INTRODUCTION

Gliomas are the most common and malignant brain tumors. Despite the progress made in the
diagnosis and treatment of brain tumors, the overall survival rate for glioma is quite low (Wijethilake
et al., 2021). Less than 10% of patients responds to standard therapy and lives longer than 2 years
(Olgun et al., 2021). Additionally, the prognosis of individual patients with glioma is difficult to
predict because few clinical biomarkers or parameters are available to reflect disease progression and
neurological outcomes. Although a series of functional gene sets have been identified, the exact roles
of these clusters remain to be elucidated (He et al., 2020; Wei et al., 2020; Zhang et al., 2021). Thus, a
better understanding of the molecular mechanisms of glioma, including its genetic background and
prognosis-related factors, is essential for the diagnosis and treatment of this malignant disease.

Epigenetic modifications of DNA and RNA play a critical role in brain function (Dong and Cui,
2019, 2020; Deng et al., 2020). Among these, N6-methyladenosine (m6A)methylation is of particular
interest as it occurs in more than one hundred thousand coding and non-coding RNAs(Chen et al.,
2019; Haixu Wang et al., 2021; Liu and Su, 2021). However, the exact role of m6A-related genes and
their expression profiles in gliomas remain elusive (Cui et al., 2017). Next-generation sequencing has
allowed to obtain the genetic profile in mRNA and m6A genes present in The Cancer Genome
Atlas—TCGA (Lauber et al., 2018; Sharma et al., 2019; Deng et al., 2021). However, few
bioinformatics studies have investigated the correlation between coding and non-coding RNAs
and m6A marker genes.

In this study, we first profiled m6A-related genes in glioma and constructed a risk prediction
model based on these genes to investigate the functional enrichment and outcome prediction ability.
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Moreover, we investigated the relationship between high- and
low-risk scores of genomic changes and immune infiltration in
glioma patients.

MATERIALS AND METHODS

Data Download
The expression profiling data (FPKM) of patients with
glioblastoma multiforme (GBM) and lower-grade glioma
(LGG) were downloaded from TCGA GDC official website
(https://portal.gdc.cancer.gov/), and the FPKM was then
converted to the TPM value. The clinical data included age,
sex, and survival prognosis, and after deleting the missing
information, 638 tumor tissues and five normal tissues were
obtained. The copy number variation (CNV) of glioma
patients was also downloaded, and the RCircos package
(Zhang et al., 2013) was used to map the genetic copy number
variation in 23 pairs of chromosomes. After selecting “Masked
Somatic Mutation” as the somatic mutation data, we used the
maftools package (Mayakonda et al., 2018) to visualize somatic
mutations and obtain the tumor mutation burden (TMB) of each
patient. In addition, the sequencing results of 970 glioma patients
were downloaded from the CGGA database, and the sequencing
results of 2,642 normal brain tissues were downloaded from the
GTEx database and converted into TPM values. Finally, 2,647
normal brain tissues and 1,608 glioma tissues were sequenced.

Construction of a Risk Model Based on
m6A-Related Genes
To analyze the expression of m6A-related genes in glioma, we
first analyzed the differential expression of m6A-related genes
between glioma and normal tissues, the correlation of gene
expression, and its influence on the prognosis of patients with
glioma. Subsequently, using the expression profiling of both
TCGA-glioma data and CGGA-glioma data, the m6A-related
genes were incorporated into the risk model, and the least
absolute shrinkage and selection operator (LASSO) algorithm
was used to perform dimensionality reduction analysis and obtain
prognosis-related genes. The normalized gene expression value
weighted by the penalty coefficient obtained by LASSO Cox
analysis established a risk score formula, and the median value
of the risk score was used to divide the patients into high- and
low-risk groups.

riskScore � ∑
i

Coefficient (hub genei) pmRNAExpression (hub genei)

Functional Enrichment Analysis and Gene
Set Enrichment Analysis (GSEA)
Gene ontology (GO) analysis is a common method for large-scale
functional enrichment research, including biological processes
(BP), molecular functions (MF), and cellular components (CC).
The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a
widely used database that stores information on genomes,

biological pathways, diseases, and drugs. The R clusterProfiler
package (Wu et al., 2021) was used to perform GO annotation
and KEGG pathway enrichment analysis for the signature genes.
The critical value of FDR <0.05 is considered statistically
significant.

To study the differences in biological processes based on the
gene expression profiling data of glioma patients, we performed
gene set enrichment analysis (GSEA). GSEA calculates the
statistical difference between two biological states in a specific
gene set (Canzler and Hackermüller, 2020) and is usually used to
estimate the changes in pathway and biological process activity in
the dataset. The “h.all.v7.2. symbols.gmt” gene set was
downloaded from the MSigDB database (Liberzon et al., 2015)
for the analysis. Statistical significance was set at an adjusted
p-value of less than 0.05.

Assessment of the Biological
Characteristics of Patients Between Risk
Groups
We used the GSVA method (Ferreira et al., 2021) to analyze the
correlation between different groups and biological processes.
Mariathasan et al. (2018) constructed a set of genes to store
those related to certain biological processes, including 1) immune
checkpoints, 2) antigen processing, 3) CD8+ T cell characteristics, 4)
epithelial–mesenchymal transition (EMT) markers, including
EMT1, EMT2, and EMT3, 5) angiogenesis characteristics, 6) pan-
fibroblast TGF-β response characteristics (Pan-FTBRS), 7) WNT
characteristics, 8) DNA damage repair, 9) mismatch repair, (10)
nucleotide excision repair, 11) DNA replication, and 12) antigen
processing and presentation. The gene sets were downloaded
according to different biological characteristics to calculate the
enrichment scores corresponding to the patients and compare the
differences between the two groups.

Analysis of m6A-Related Clusters in DEGs
The R limma package (Ritchie et al., 2015) was used to analyze the
differentially expressed genes (DEGs) between the high-and low-
risk glioma patient groups to determine the genes associated with
the m6A risk model. The DEGs were defined as those with an
absolute value of log(fold change) > 1.5 and an FDR <0.01. The
tumor was divided into different groups based on the Euclidean
distance, and named as genecluster using the hierarchical
clustering method, where the R ConsensuClusterPlus package
(Wilkerson and Hayes, 2010) was used to determine the number
of clusters in the dataset, and repeated 1,000 times to ensure the
stability of classification. At the same time, based on the
expression profile of specific genes, they were divided into two
groups: signature genes A and B.

Dimensionality Reduction and Calculation
of the m6A Score
First, according to the DEG value, unsupervised clustering
classified the patients in TCGA. According to the Boruta
algorithm, the m6A Signature-A and B gene clusters are
reduced in dimensionality, and PC1 is extracted as a score
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using the PCA algorithm. Finally, we applied a method similar to
that of the gene expression grade index to define the ICI score of
each patient:

m6A score � ∑
i

PC1A −∑
i

PC1B

Identification and Correlation Analysis of
Tumor Immune Infiltrating Cells
To further quantify the proportion of different immune cells in
the glioma sample, we used a single-sample GSEA algorithm to
distinguish human immune cell phenotypes in the tumor
immune microenvironment (TME) with high sensitivity and
specificity. The ssGSEA algorithm was used to quantify the
relative content of tumor-infiltrating immune cells in patients
with glioma (Minjie Wang et al., 2021). The algorithm identified
28 genes for marking different tumor-infiltrating immune cell
types through the research of Bindea et al. (2013). The gene set
contained various human immune cell subtypes, including CD8+

T cells, dendritic cells, macrophages, and regulatory T cells. The
enrichment score calculated by ssGSEA analysis with the R GSVA
package (Minjie Wang et al., 2021) can be used to represent the
infiltration level of each immune cell type in each sample.

The ESTIMATE package (Yoshihara et al., 2013) is used to
evaluate the immune activity of the tumors. ESTIMATE analysis
quantifies the immune activity (immune infiltration level) in the
tumor sample based on its gene expression profile and obtains an
immune score for each tumor sample. This can be used to
compare the differences in immune infiltration between the
high- and low-risk groups of GLIOMA patients.

Copy Number Variation Analysis
To analyze the copy number changes in different risk score
groups of TCGA-glioma patients, we used R’s TCGAbiolinks
package to download the masked copy number segment data of
patients. GISTIC 2.0 analysis was performed on the downloaded
CNV fragments using GenePattern5. During the GISTIC 2.0
analysis, the default settings were used, except for a few
parameters (for example, the confidence level was 0.99; the X

FIGURE 1 | Overall m6A-related gene expression in glioma patients. (A) PCA shows that there are certain differences in the overall levels of m6A-related genes in
glioma and normal brain tissue in the The Cancer Genome Atlas (TCGA), CGGA, and GTEx datasets; (B)Most m6A-related genes were expressed differently in glioma
tissue compared with the normal brain tissue; (C)m6A-related gene mutation map in TCGA-glioma patients. The samples are sorted according to the burden of somatic
non-synonymous mutations, and the genes are sorted by mutation frequency. Different colors indicate different mutation types; the upper section of the legend
shows mutation load; (D) Differential copy number variation of m6A-related genes on 23 chromosomes in TCGA glioma data.
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FIGURE 2 |Construction of the m6A risk scoring model. (A)Correlation analysis of m6A-related gene expression in glioma; (B) Expression and interaction of m6A-
related genes in glioma patients. The size of each cell represents the impact of each gene on the patient’s survival status, and the log-rank test was used for analysis. Half
of the color of the circle represents the grouping of m6A-related genes, and the other half represents the impact on the prognosis. Among them, m6A-related gene
groups: Erasers, red; Readers, orange; Writers, gray. At the same time, purple represents risk factors in the impact on prognosis, and the green represents
protective factors. The lines connecting m6A-related genes represent the interactions between genes. The thickness of the line represents the correlation strength
estimated by Spearman correlation analysis, red the negative correlations, and blue the positive; (C,D) LASSOCox analysis identified 15 genesmost relevant to the OS in
the TCGA dataset; (E) The risk score distribution of glioma patients, the patient’s survival status and the heat map of characteristic gene expression; (F) Kaplan–Meier
curve to assess risk score impact on the overall survival rate of glioma patients; (G) Differential expression of m6A-related genes at high and low m6A risks.
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chromosome was not excluded before the analysis). Finally, we
used R’s Maftools package to visualize the analysis results.

Anti-cancer Drug Sensitivity Analysis
The Genomics of Drug Sensitivity in Cancer (GDSC; https://
www.cancerrxgene.org/) is a public database for molecular cancer
therapy andmutation exploration (Yang et al., 2013).We used R’s
pRRophetic package (Geeleher et al., 2014) to download cell line
gene mutation data and IC50 values of different anti-cancer drugs.

We then analyzed the correlation between patients with high- and
low-risk scores and the sensitivity to different anti-cancer drugs.

Building a Clinical Prediction Model Based
on the m6A Risk Model
Univariate and multivariate Cox analyses were used to analyze the
risk score combined with the patient’s clinicopathological
characteristics to predict the overall survival (OS) to prove that

FIGURE 3 | The influence of m6A risk model on different biological characteristics. (A) Based on the gene expression of glioma patients, we performed GSVA on
high- and low-risk groups, and used heat maps to show related pathways with significant differential enrichment; (B) Different pathway (immune-related features,
mismatches and clinical characteristics) enrichment in the high and low risk score groups, where the thick line represents themedian value, and the bottom and top of the
box are the 25th and 75th percentiles (interquartile range) (*p < 0.05, **p < 0.01, ***p < 0.001).
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the risk score combined with clinicopathological characteristics can
evaluate the prognosis for the individual patient. Subsequently, the
risk scoringmodel combined with clinicopathological characteristics
was selected to construct a clinical prediction nomogram. Harrell’s
consistency index (C-index) was measured to quantify the
discrimination performance. A calibration curve was generated to
evaluate the performance of the nomogram by comparing its
predicted value with the actual survival rate.

Immunohistochemical Gene Validation
To validate m6A gene expression, we performed
immunohistochemistry (IHC) on surgical human glioma
samples. Using available antibodies, we selected three genes of
interest: IGF2BP3 (14642-1-AP, Proteintech, China), RBM15B
(22249-1-AP, Proteintech, China), and RBM15 (10587-1-AP,
Proteintech, China). The comparison was performed between
the glioma sample and the para-tumor area, performed under the

FIGURE 4 | Construction and functional annotation of an m6A gene feature model of patients with glioma. (A) Based on the expression characteristics of
differentially expressed genes between high and low m6A risk score groups, unsupervised analysis and hierarchical clustering were performed, and patients were
divided into three categories, called genecluster-A, -B, and -C; (B) tSNE analysis showed differential gene expression in genecluster-A, -B, and -C; (C)Heat map shows
the expression levels of characteristic genes among the three Geneclusters; (D) Survival analysis shows the different prognosis among genecluster groups, among
which the prognosis of patients in the genecluster-A group is the worst; (E) The Kyoto Encyclopedia of Genes andGenomes (KEGG) analysis shows that Signature gene-
A is closely related to pathways such as synaptic vesicle cycle, insulin secretion, nicotine addiction, and GABAergic synapses; (F) KEGG analysis shows that Signature
gene-B is closely related to the relaxin signaling pathway, AGE-RAGE signaling pathway in diabetic complications, ECM-receptor interaction, and protein digestion and
absorption pathways.
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approval of local medical ethics (No.2020SQ119) in Shanghai
General Hospital, affiliated to Shanghai Jiaotong University.

Statistical Analysis
All data processing and analyses were performed using the R
software (version 3.6.2). To compare two groups of continuous
variables, the statistical significance of normally distributed
variables was estimated using the independent Student’s t-test,
and the differences between non-normally distributed variables
were analyzed using the Mann–Whitney U test (i.e., Wilcoxon
rank sum test). Chi-square or Fisher’s exact tests were used to
compare and analyze the statistical differences between the two
groups of categorical variables. Pearson correlation analysis
calculated the correlation coefficients between different gene
sets. The survival package in R was used for survival analysis.
The Kaplan–Meier survival curve was used to show the survival
difference. The log-rank test was employed to determine the
significance of different survival times between the two groups.
Univariate and multivariate Cox analyses were used to determine
independent prognostic factors. All statistical p-values were two-
sided, and statistical significance was set at p < 0.05.

RESULTS

The Expression and Mutation Profile of
m6A-Related Genes in Glioma Patients
To analyze the overall expression of m6A-related genes in
patients with glioma, we analyzed genomic mutations and
mRNA expression, including gene expression levels, single

nucleotide polymorphisms, and copy number variations. First,
we conducted a comprehensive analysis of the expression in
gliomas and normal brain tissues in TCGA, CGGA, and GTEx
databases and used the de-batch method. PCA results showed
that the characteristics of m6A-related genes differed between
glioma and normal brain tissues (Figure 1A). Subsequently, the
differential analysis showed that, between glioma and normal
brain tissue, a variety of m6A-related genes were differentially
expressed, including METTL14, METTL16, ZC3H13, YTHDC1,
YTHDC2, YTHDF2 (Zhang et al., 2017; Dixit et al., 2021; Fang
et al., 2021)etc. (Figure 1B).

The results of single nucleotide polymorphism (SNP) analysis
showed that among GBM samples, 12 had single nucleotide
mutations in m6A-related genes, among which the mutation
rate of the ZC3HI3 gene was the highest. In contrast, in the LGG
samples, 16 had single nucleotide mutations in m6A-related
genes, and the mutation rate of METTL3 was the highest
(Figure 1C). Moreover, studies on the frequency of CNV
changes have shown that m6A-related gene changes in CNV
levels in glioma patients are common, and most of them are
concentrated on copy number loss (Figure 1D).

Construction of the m6A Expression Risk
Model and Prognostic Analysis
The heat map resulting from Pearson’s analysis revealed a
positive correlation between m6A-related gene expression and
glioma tissue (TCGA dataset) (Figure 2A). The detailed number
of each coefficient is displayed in Supplementary data. We further
analyzed the influence of m6A-related genes on the prognosis of

TABLE 1 | KEGG analysis for m6A Signature gene-A.

Pathway ID Pathway description Count in gene Set p Value

hsa04721 Synaptic vesicle cycle 13 2.80E-11
hsa04911 Insulin secretion 10 2.14E-07
hsa05033 Nicotine addiction 7 9.16E-07
hsa04727 GABAergic synapse 9 2.94E-06
hsa04080 Neuroactive ligand-receptor interaction 16 1.32E-05
hsa04724 Glutamatergic synapse 8 0.000151
hsa05032 Morphine addiction 7 0.000225
hsa04723 Retrograde endocannabinoid signaling 8 0.000884
hsa04929 GnRH secretion 5 0.001713

TABLE 2 | KEGG analysis for m6A Signature gene-B.

Pathway ID Pathway description Count in gene Set p-Value

hsa04926 Relaxin signaling pathway 8 2.00E-09
hsa04933 AGE-RAGE signaling pathway in diabetic complications 7 1.04E-08
hsa04512 ECM-receptor interaction 6 1.61E-07
hsa04974 Protein digestion and absorption 6 4.12E-07
hsa04510 Focal adhesion 7 1.28E-06
hsa05146 Amoebiasis 5 1.02E-05
hsa05165 Human papillomavirus infection 7 3.42E-05
hsa04151 PI3K-Akt signaling pathway 7 5.27E-05
hsa05415 Diabetic cardiomyopathy 4 0.002762
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patients with glioma in TCGA and CGGA databases. The gene
network depicts the interaction of m6A-related genes in glioma
and their impact on the overall survival of glioma patients
(Figure 2B).

Subsequently, we integrated the expression of m6A-related
genes to construct a risk-scoring system to quantify the impact
of m6A-related genes on the prognosis of each glioma patient.
First, m6A-related genes were included in the LASSO Cox
analysis, and 15 genes with the best prognostic value were
obtained (Figures 2C,D). Based on the penalty coefficients of
important characteristic genes calculated by LASSO Cox
analysis, the gene expression and the corresponding
coefficients were multiplied, and the final risk score of each
sample was calculated. The distribution of risk scores, survival
status, and expression patterns of the feature genes is shown in
Figure 2E. Kaplan-Meier analysis showed that the overall

survival (OS) of patients with high-risk scores was relatively
poor (log-rank p < 0.001; Figure 2F). At the same time, the
differential analysis results showed significant differences in the
expression of m6A-related genes between the high- and low-risk
models (Figure 2G).

Based on the median value of the m6A risk score of glioma
patients, we placed the patients into the high- or low-risk group
and assessed the changes in biological function between the two
groups. The GSVA method was used to determine the
enrichment scores of these patients, and heat maps were used
to show the relevant signaling pathways and analyze their
variations in the two groups (Figure 3A). In addition, the
results showed that there were significant differences in the
enrichment of certain related biological pathways, such as
CD8+ T cell effectors, immune checkpoints, EMT pathways,
angiogenesis, and others (p < 0.05; Figure 3B).

FIGURE 5 | Construction of a prognostic-related m6A characteristic model and regulation of biological processes. (A) The sankey diagram shows the correlation
between gene clusters, prognostic-related m6A features (m6Agroup), and patient prognostic status (OS); (B) Survival analysis shows that the prognostic-related m6A
feature model can better predict the overall survival rate of glioma patients (Log-rank p < 0.001); (C–H) gene-set enrichment analysis (GSEA) of high- and low-risk
patients, the representative gene set downloaded from the MSigDB database, with 1,000 repetitions for each run; GSEA results show that enriched genes of
glioma patients in the low m6A group are closely related to hallmark oxidative phosphorylation, adipogenesis, hedgehog signaling and MYC Target V1.
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Construction of Genetic Characteristics of
Glioma Patients Based on the m6A Risk
Model
The limma package was used to analyze DEGs between different
risk models, and 443 genes were obtained to determine the
potential biological characteristics of different m6A-related
phenotypes. Subsequently, based on the expression of DEGs,
unsupervised clustering was used to divide glioma patients into
three subtypes: genecluster-A, -B, and -C (Figure 4A). At the
same time, tSNE analysis showed certain differences in gene
expression levels between genes A, B, and C (Figure 4B). The heat
map shows the gene expression characteristics of the three
genotypes (Figure 4C). Meanwhile, the survival analysis
results showed that there were significant differences in the
prognosis of patients with the three different genotypes,
among which the patients in the Genecluster-A group had the
worst prognosis (log-rank p < 0.001; Figure 4D).

According to the expression and correlation of DEGs in these
groups, the genes were divided into m6A signature-A and m6A
signature-B. There were 268 m6A signature-A and 51 m6A
signature-B gene sets. To explore the differences in biological
functions between the two groups, we conducted a functional
enrichment analysis. KEGG enrichment analysis showed that
signature genes A and B showed different, unique biological
processes (Tables 1, 2). m6A gene-A is involved in the
synaptic vesicle cycle, insulin secretion, nicotine addiction, and
GABAergic synapse pathways (Figure 4E), while the gene set
overexpressing signature gene-B mainly manifests as the relaxin
signaling pathway, AGE-RAGE signaling pathway in diabetic
complications, ECM-receptor interaction, and protein digestion
and absorption pathways (Figure 4F).

Construction of a Prognostic-Related m6A
Feature Model Based on m6A Gene
Signature
We constructed a new prognostic-related risk-scoring system to
better predict the impact of m6A features on patient prognosis.
According to the expression of m6A signature genes A and B in
glioma patients, principal component analysis was used to
calculate the corresponding PCA1 of each patient, and the
corresponding m6A score was obtained by subtraction and
named m6A group. Similarly, based on the median score of
the prognostic models, patients were divided into high- and low-
risk groups. The Sankey diagram shows the correspondence
between the gene cluster corresponding to each glioma patient,
prognostic model of the m6A group, and patient survival status
(Figure 5A). At the same time, the results of the survival analysis
showed that the prognostic score model could predict well the OS
of glioma patients (log-rank p < 0.001; Figure 5B).

Subsequently, we analyzed the biological effects of the high
and low m6A groups. GSEA showed that hallmark oxidative
phosphorylation, adipogenesis, hedgehog signaling and MYC
target V1 were significantly enriched in glioma patients in the
low m6A group (Table 3; Figures 5C–H).

The m6A Risk Score and the Genome
Changes in Glioma Patients
Subsequently, we evaluated the effect of the m6A risk score on the
genetic variation in glioma patients, including SNPs and copy
number variations (CNVs). The single nucleotide mutation
analysis of driver genes in common tumorigenesis showed that
their SNP levels differed between the high and low groups (Figures

TABLE 3 | GSEA results.

Name Size Enrichment score NES p-Value Leading edge

HALLMARK_OXIDATIVE_PHOSPHORYLATION 180 −0.43632 −1.5241 8.13E-07 tags = 71%
list = 41%
signal = 42%

HALLMARK_ADIPOGENESIS 186 −0.4171 −1.45876 6.53E-06 tags = 59%
list = 38%
signal = 37%

HALLMARK_HEDGEHOG_SIGNALING 34 −0.57873 −1.76828 5.87E-05 tags = 47%
list = 13%
signal = 41%

HALLMARK_MYC_TARGETS_V1 192 −0.39081 −1.36787 0.000129 tags = 78%
list = 50%
signal = 39%

HALLMARK_PROTEIN_SECRETION 95 −0.44101 −1.48158 0.000155 tags = 60%
list = 32%
signal = 41%

HALLMARK_FATTY_ACID_METABOLISM 146 −0.40521 −1.39875 0.000255 tags = 47%
list = 27%
signal = 34%

HALLMARK_MITOTIC_SPINDLE 197 −0.3749 −1.31414 0.000717 tags = 56%
list = 42%
signal = 33%

HALLMARK_PANCREAS_BETA_CELLS 32 −0.54569 −1.65505 0.000911 tags = 41%
list = 13%
signal = 35%

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8737649

Zhang et al. m6A Methylation Modification in Glioma

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


6A,B). At the same time, the overall analysis showed that there was
no significant difference in the tumor mutation burden (TMB)
between the high and low m6A groups of GBM patients (p = 0.73;
Figure 6C), while there was a significant difference in the LGG
patient group (p < 0.001; Figure 6D). Moreover, research on the
frequency of CNV changes showed that in patients in the high m6A
group, the CNV changes were mainly in the deletion of gene copy
numbers. In contrast, in patients in the low m6A group, they
reflected gene amplification (Figure 6E).

The m6A Risk Score and the Immune
Characteristics of Glioma Patients
Next, we evaluated the effect of the m6A risk score on the overall
immune characteristics and the different levels of immune cell

infiltration in glioma patients. The results showed that
compared with the low-risk group, the immune-related and
stromal-related scores of patients in the high-risk group were
significantly increased (p < 0.001, Figure 7A). At the same time,
we further used the ssGSEA algorithm to evaluate the
infiltration level of 28 different immune cells (Figure 7B).
Differential analysis showed that the infiltration levels of
multiple immune subgroups were significantly different
between the high- and low-risk groups (Figure 7C),
including CD8+T cells, activated memory CD4 +T cells,
follicular helper T cells, and M1 macrophages. Further
analysis showed that the expression levels of multiple HLA
family genes and immunotherapy-related targets were
significantly different between the high and low m6A groups
(Figures 7D,E).

FIGURE 6 | The influence of different m6A risk groups on the genetic variation of GLIOMA patients. (A–B)Mutation maps of common tumorigenesis driver genes in
glioblastoma multiforme (GBM) and lower-grade glioma (LGG) patients grouped by high and low m6A groups. The mutation information of each gene in each sample is
displayed in the waterfall chart with the total percentage of mutation, and various colors indicate different mutation types; the upper section of the legend shows the
mutation load; (C)Compared with the patients in the lowm6A group, there was no significant difference in the tumor mutation level in GBM patients in the high m6A
group (p = 0.72); (D) Compared with patients in the low m6A group, the tumor mutation level in LGG patients in the high m6A group was significantly higher (p < 0.001);
(E) the copy number variation of glioma patients in the high and lowm6A groups was different: red indicates an increased copy number, while blue indicates a significant
loss in copy number.
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Analysis of Glioma Patient Sensitivity to
Different Small Molecule Drugs Based on
the m6A Risk Score
To analyze glioma patient sensitivity to small molecule drugs
based on the m6A risk score, we downloaded the cell line gene
mutation data and IC50 values of different anti-cancer drugs from
the GDSC database. Based on the responsiveness of the cell lines
to 138 different chemotherapeutics and small molecule anti-
cancer drugs, the IC50 values of glioma patients for different
drugs were predicted. The results showed significant differences
between patients with high and low m6A risk scores (p < 0.001;
Figure 8), especially Nutlin.3a (p53 activator) (Awan et al., 2021),
EHT. 1864 (Rac GTPase inhibitor), (Onesto et al., 2008), and
BIRB. 0,796 (pan p38MAPK inhibitor) (Tang et al., 2018).

Construction of a Clinical Prediction Model
Based on the m6A Risk Score
Subsequently, we assessed the impact of the m6A risk score on the
prognosis of patients with glioma. Univariate and multivariate
Cox analyses showed that the m6A risk score was an independent
risk factor for glioma patient prognosis prediction (Table 4;
Figure 9A). The m6A group was combined with different
clinicopathological characteristics to construct a nomogram to
predict the OS of the patient (Figure 9B). We used the C-Index to
calculate the discriminative ability of the nomogram, which
showed a high degree of discrimination (0.717 (0.701–0.733)).
Moreover, the calibration curve shows that by comparing the
one-, two-, and three-year OS estimates, the actual values
observed in patients are in agreement (Figures 9C–E).

FIGURE 7 | Correlation of the m6A risk score with different immune cell infiltration. (A) Compared with the low expression group, the immune-related scores and
stromal-related scores of patients in the high-risk group were significantly increased (p < 0.001); (B) The overall immune infiltration level of glioma patients was analyzed
based on the ssGSEA algorithm; (C)Correlation analysis shows that there are significant differences in the expression of multiple immune subtypes in patients in the high
and lowm6A groups; (D) There are differences in the expression of multiple HLA family genes between the high and lowm6A groups; (E) There are also differences
in the expression levels of immune therapy-related target genes between the high and low m6A groups.
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Validation of m6A Gene Expression in
Glioma
To validate the expression of m6A genes in glioma, we performed
IHC of patient samples. We found that the expression of
IGF2BP3 and RBM15B (Figure 10A,B) was increased in the
glioma area compared to that in the para-tumor area. In contrast,
the expression of RBM15 was obviously reduced in the tumor
area (Figure 10C). These findings are consistent with the LASSO
Cox model (Table 5).

DISCUSSION

Glioma is one of the most malignant brain tumors. Currently, no
target and treatment strategy is available besides traditional
tumor resection, chemotherapy, and radiotherapy to improve
the survival status, which might be due to the unclear molecular
mechanism (Meyer et al., 2021). To fully understand this, we

focused on the most relevant RNA modification, m6A
methylation. Our aim was to explore prognosis-related genes
and identify m6A-related genes based on the co-expression
network. We identified the most prognosis-related m6A genes
and classified these glioma patients into m6A high- and m6A
low-risk groups using the LASSO regression model. In addition,
we identified the representative m6A genes with IHC. We found
that the protein expression of IGF2BP3 and RBM15B was
increased in the glioma tissue, while the expression of RBM15
was decreased compared to that in the para-tumor area.

To investigate the influence of the m6A risk model on different
biological characteristics, we performed GSVA analysis on high-
and low-risk groups, used heat maps to show related pathways
with significant differential enrichment, and found different
pathways, including immune-related features and mismatches.
To further clarify the molecular pathology of glioma, we first
applied the GO, KEGG, and GSEA methods to assess functional
enrichment. From GO and KEGG, we found that the pathways

FIGURE 8 | Shows the sensitivity of the m6A risk score to different chemotherapeutics and small-molecule anti-cancer drugs based on the Genomics of Drug
Sensitivity in Cancer database.

TABLE 4 | OS prediction for m6A groups with univariate and multivariate Cox.

Univariate Cox analysis Multivariate Cox analysis

HR HR.95L HR.95H p-Value HR HR.95L HR.95H p-Value

Age (>60 vs ≤60) 2.69 2.26 3.19 1.31E-29 2.14 1.80 2.54 7.12E-18
Gender (Male vs Female) 1.08 0.94 1.24 0.292,437 1.01 0.88 1.16 0.90659
Risk score (High vs Low) 4.29 3.68 5.00 8.30E-78 4.06 3.48 4.73 8.95E-71
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FIGURE 9 | The predictive ability of the m6A risk score on glioma patient prognosis. (A) Multivariate Cox regression analysis of risk score combined with
clinicopathological characteristics of HR and p-values; analysis showed that the m6A group score is an independent risk factor for the prognosis of glioma patients; (B)
The m6A group score combined with clinicopathological characteristics was selected to construct a clinical prediction model; (C–E) The calibration curve of the
nomogram; the x-axis is the survival predicted by the nomogram, while the y-axis is the survival actually observed. The curve shows that the model has a good
predictive value for one-, two-, and 3-year predictions.

FIGURE 10 | The immunohistochemistry images for m6A genes. (A) The immunohistochemistry (IHC) images for IGF2BP3 in para-tumoral and glioma tissue; (B)
The IHC images for RBM15B in para-tumoral and glioma tissue; (C) The IHC images for RBM15 in para-tumoral and glioma tissue.
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most enriched in DEGs are the synaptic vesicle cycle, insulin
secretion, nicotine addiction, GABAergic synapses, relaxin
signaling pathway, AGE-RAGE signaling pathway in diabetic
complications, ECM-receptor interaction, and protein digestion
and absorption. In addition, we used GSEA to evaluate the related
biological functions in glioma and found that the most enriched
pathways were related to hallmark oxidative phosphorylation,
adipogenesis, hedgehog signaling and MYC target V in the low
m6A group. The low m6A group had a relatively better survival
probability. Therefore, these pathways, especially those of
oxidative phosphorylation, adipogenesis, and hedgehog and
Myc signaling, may represent novel targets for glioma. Wang
et al. recently demonstrated that pharmacologically inhibiting
oxidative phosphorylation with NG52 (an inhibitor of
phosphoglycerate kinase 1) reduces glioma proliferation both
in vitro and in vivo. NG52 can reduce the production of ATP and
ROS in tumor cells and reverse the Warburg effect (Wen-Liang
Wang et al., 2021). Cheng et al. found that the knockdown of
adipocyte enhancer binding protein 1 (AEBP1) reduces the
proliferation, invasion, and apoptosis of human glioma cells.
They found that AEBP1 expression is increased in human
glioma cell lines and that AEBP1 knockdown reduces the
expression of NF-κB (Cheng et al., 2020). Although hedgehog
signaling is implicated in cancer and viral infections, its exact role
in glioma remains unclear. A recent in vitro study showed that
naringenin could attenuate glioblastoma cell viability and
migration by suppressing the hedgehog signaling pathway
(Sargazi et al., 2021); however, to date, no in vivo studies have
been carried out. Therefore, it would be beneficial to investigate
the role of these new targets in the treatment of gliomas in
preclinical and clinical studies.

As m6A methylation is a widely present epigenetic
modification, we next tried to identify the influence of the
m6A risk score on the genomic changes in glioma and found
that the SNP levels of driver genes were different between the high
and low m6A groups. The CNVs in the two groups were also
found to be different. In patients in the highm6A group, the CNV
changes were mainly due to the gene copy number deletion, while
in patients in the low m6A group these changes were mainly

reflected by gene amplification. This indicates that m6A
methylation might change CNV in gliomas. However, no
study has investigated the relationship between m6A
methylation and CNV in gliomas, and this needs to be
addressed in future studies.

We further developed a nomogram to predict the survival of
patients with glioma based on a series of molecular markers and
clinical features. Using univariate and multivariate Cox analyses,
we found that older age and m6A risk score were independent
risk factors for predicting the prognosis of patients with glioma. A
previous study found that age was an independent risk factor for
GBM, and aging resulted in a poorer prognosis (Wei et al., 2020).
Our results are consistent with those of previous studies. The
observed OS at one, two, and 3 years was consistent with the
predicted values based on the calibration plot. Therefore, our
nomogram could be a good model for clinical practice.

Currently, immune infiltration in brain cancer, especially
gliomas, is important in determining treatment strategies.
Therefore, we analyzed the correlation between m6A risk
scores and different immune cell infiltrations. The results
showed that, compared with the low-risk group, the immune-
related and stromal-related scores of patients in the high-risk
group were significantly increased. We used the ssGSEA
algorithm to evaluate the infiltration levels of 28 different
immune cells. Differential analysis showed that the infiltration
levels of multiple immune subgroups, including CD8+T cells,
activated memory CD4 +T cells, follicular helper T cells, and M1
macrophages, were significantly different between the high- and
low-risk groups. After setting a statistical threshold, we found that
the expression of both HLA family members and immune
therapy-related genes was different in the high and low m6A
groups. The low m6A group had a higher expression of CD274,
CTLA4, HAVCR2, TBX2, and TNF. The high m6A group
showed higher expression levels of IDO1, PDCD1, CXCL10,
CXCL9, GZMA, and PRF1. This indicates that m6A-related
genes might be involved in the immune therapy response in
glioma, and this needs to be verified in future studies.

However, some limitations of our study must be addressed.
First, to comprehensively clarify the molecular mechanisms
underlying the occurrence and development of m6A genes,
microarray samples from patients with different stages of
glioma are needed. Second, immune infiltration associated
with m6A genes remains uncharacterized, and additional
investigation between tumor cells and immune cells is
necessary to elucidate the biological functions of m6A genes in
the glioma immune microenvironment. Third, IDH mutation
IDH mutations are among the single most important prognostic
factor in gliomas and glioblastomas. The MGMT promoter
methylation is also involved in the prognosis in glioma
patients, and which is also an important indication for specific
therapies. However, we were focusing on the m6A RNA
methylation in the current study, other DNA methylation.
Nevertheless, it would be very interesting to explore the
potential link between DNA methylation and m6A RNA
methylation in the current study, other DNA methylation and
IDH mutation status was not investigated further in our study.
Although both belong to the epigenetic modification, up to now,

TABLE 5 | The Co-efficiency (Coef) for m6A genes.

Gene Coef

METTL14 0.108402272217382
METTL16 −0.222287570768418
RBM15 0.0522104523971671
RBM15B −0.0030452799684085
YTHDC1 0.0454991814409694
YTHDC2 0.0519627407645707
YTHDF2 0.454471539256783
HNRNPC −0.0875308944826499
LRPPRC −0.546531478124607
HNRNPA2B1 0.0343128123862081
IGFBP1 −0.128788977174298
IGFBP2 0.366833311923007
IGFBP3 0.0201841096489989
RBMX −0.0536062665564633
ALKBH5 −0.0905278141704579
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almost few studies have addressed this. The expression profiles
used in our study were obtained from TCGA and CGGA data,
which may have led to a batch bias between different datasets.
Future external validation of our current findings is needed to
verify their clinical application.

In summary, m6A regulatory genes may be reliable
biomarkers for glioma patient survival, and the expression of
these genes is related to genomic changes. This study may be
beneficial for correlating glioma immune cell infiltration and
molecular profiling. However, further studies are needed to verify
the pathological mechanisms and target these m6A regulatory
genes in the clinic as prognostic biomarkers for drug response in
patients with glioma.
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