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The major histocompatibility complex (MHC) is a large locus on vertebrate DNA that
contains a tightly linked set of polymorphic genes encoding cell surface proteins essential
for the adaptive immune system. The groups of proteins encoded in the MHC play an
important role in the adaptive immune system. Therefore, the accurate identification of the
MHC is necessary to understand its role in the adaptive immune system. An effective
predictor called PredMHC is established in this study to identify the MHC from protein
sequences. Firstly, PredMHC encoded a protein sequence with mixed features including
188D, APAAC, KSCTriad, CKSAAGP, and PAAC. Secondly, three classifiers including
SGD, SMO, and random forest were trained on the mixed features of the protein
sequence. Finally, the prediction result was obtained by the voting of the three
classifiers. The experimental results of the 10-fold cross-validation test in the training
dataset showed that PredMHC can obtain 91.69% accuracy. Experimental results on
comparison with other features, classifiers, and existing methods showed the
effectiveness of PredMHC in predicting the MHC.
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INTRODUCTION

As a large locus on vertebrate DNA, the major histocompatibility complex (MHC) contains a tightly
linked set of polymorphic genes encoding cell surface proteins that are essential for immune
surveillance. These cell surface proteins are called MHC molecules (Kubiniok et al., 2022). MHC
molecules are classified into MHC class I, MHC class II, and MHC class III according to variation in
molecular structure, function, and distribution (Marcoux et al., 2021). MHC class I molecules are
expressed in all nucleated cells and platelets—essentially all cells except red blood cells, which display
antigens to signal cytotoxic T lymphocytes, including clusters of differentiation (CD8+) (McShan
et al., 2021). MHC class II molecules are expressed in antigen-presenting cells, such as B cells,
dendritic cells, and macrophages, where they normally bind to CD4+ receptors on helper T cells to
clear foreign antigens. MHC class III genes are interleaved with class I and class II genes on the short
arm of chromosome 6, but their proteins play different physiological roles.

MHC molecules are cell surface glycoproteins with a three-dimensional structure and are of vital
importance to infection, autoimmunity, transplantation, and tumor immunotherapy. MHC-binding
prediction plays an important role in identifying potential novel therapeutic strategies. Mahoney
et al. (2021) pointed out that MHC phosphopeptides can be considered potential
immunotherapeutic targets for cancer and other chronic diseases. Therefore, many scholars
carried out a lot of research work on MHC-binding prediction. The first computational method
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(Altuvia et al., 1995) to uncover the MHC-binding peptide was
developed by Altuvia et al., which is based on protein structure
and is further improved to distinguish candidate peptides that
bind to hydrophobic binding pockets of the MHC molecules
(Altuvia et al., 1997). The SVRMHC (Liu et al., 2006) is an MHC-
binding peptide model which encoded peptides with
physicochemical properties and trained support vector
machines to construct a prediction model on mice. NetMHC-
3.0 (Lundegaard et al., 2008) is a web server with high
performance for predicting peptide binders based on artificial
neural networks. Boehm et al. proposed a method named
ForestMHC (Boehm et al., 2019) to identify immunogenic
peptides. ForestMHC encoded a peptide sequence with
physicochemical properties and trained a random forest
classifier to construct an identification model. Saxena et al.
(2020) predicted the binding potential of peptides to the
MHC, which is critical for designing peptide-based
therapeutics, using a deep learning model named OnionMHC.
In consideration of the importance of structural information, the
OnionMHC represents peptides with its sequence and structure-
based features for peptide-HLA-A*02:01 binding predictions. (Lv
et al., 2020) Jiang et al. (2021) gave a comprehensive review of the
state-of-the-art literature on MHC-binding peptide prediction
and an in-depth evaluation of feature representation methods,
prediction models, and model training strategies on benchmark
datasets. Based on the limitation of only handling peptide
sequences with fixed length, Jiang et al. proposed a novel
variable-length MHC-binding prediction model named
BVLSTM-MHC. Experimental results on an independent
validation dataset showed that BVLSTM-MHC has better
performance than the ten mainstream prediction tools.

Scientists are devoted to discover MHC molecules in various
vertebrate genomes. Hopkins et al. (1986) described a rat
monoclonal antibody which can recognize MHC class II
antigens in sheep and seems to recognize determinants which
are nonpolymorphic. Moreover, based on the antibody, the
distribution of sheep class II molecules is investigated, and the
class II- expression variations by cells in efferent lymph and
peripheral is also investigated. Westbrook et al. (2015) combined
the SMRT sequencing technology and CCS and introduced and
validated the technology of SMRT-CCS on identifying class I
transcripts in Mauritian-origin cynomolgus macaques.
Furthermore, SMRT-CCS was applied to characterize 60 new
full-length class I transcriptional sequences expressed in the
Chinese cynomolgus monkey population. By using
pyrosequencing with high-resolution and Sanger sequencing
technology, Shiina et al. (2015) genotyped 127 unrelated
animals and identified 112 different alleles. Moreover, the
International Society for Animal Genetics (ISAG) standardized
the nomenclature and established the IPD-MHC database which
is used to scientifically manage the MHC allele sequences and
genes from nonhuman organisms (Giuseppe et al., 2017; Maccari
et al., 2018; Ali et al., 2021; Burton et al., 2021; Karcioglu and
Bulut, 2021; Roy et al., 2021; Safaei et al., 2021; Wang et al., 2021).

At early stages, the research studies related to the MHC are
developed based on mice experiments. With the availability of a
large amount of data and development of machine learning,

developing a machine learning–based model to research the
MHC was feasible. Li et al. (2019) proposed an identification
method of the MHC based on an extreme learning machine
algorithm. Although high accuracy has been achieved, there are
still many aspects worthy of further investigation (Lv et al., 2019;
Lv et al., 2021a; Lv et al., 2021b). In this study, we aim to propose a
new MHC predictor, PredMHC, to further improve prediction
performance.

MATERIALS AND METHODS

Framework of PredMHC
In this study, we introduced a novel MHC predictor named
PredMHC, the framework of which is shown in Figure 1. First,
PredMHC encoded a protein sequence with mixed features
including 188D, APAAC, KSCTriad, CKSAAGP, and PAAC.
Second, three classifiers including SGD, SMO, and random
forest were trained on the mixed features of protein sequence.
Finally, the prediction result was obtained by the voting of the
three classifiers.We will introduce the datasets, feature extraction,
and classifiers in detail in the following section.

Dataset
The dataset constructed by Li et al. (2019) is used in this study. A
web server called ELM-MHC was developed by Li et al., from
which the dataset can be downloaded. The reason that we used
the same dataset as ELM-MHC is as follows. First, the dataset is
constructed by searching for MHC sequences on the Uniprot
database, and it is reliable. Second, the dataset is used cd-hit to de-
duplication processing. The protein sequences are clustered based
on the parameter setting, and the sequence with the maximum
length in every cluster is used as a representative sequence. The
redundant and homology-biased sequences are removed in this
dataset. Finally, the most important inference was that we can
fairly compare with the existing method by using the same
dataset. The final dataset contained 13,488 protein sequences,
which consists of 6,712 MHC protein sequences (positive
examples) and 6,776 nonMHC protein sequences (negative
examples). All protein sequences were divided into two
groups: 10,790 sequences as a set of 10-fold cross-validation
and 2,698 sequences as a set of independent validation. The
training dataset (Train-10790) comprised 5,370 MHC protein
sequences and 5,420 nonMHC protein sequences, all randomly
selected from the set of positive and negative examples,
respectively. They were then further randomly divided into
five sets for the input of 10-fold cross-validation. The
independent testing dataset (Test-2698) contained 1,342
positive and 1,356 negative examples.

Feature Extraction
To classify a protein sequence into different categories using the
machine learning method, the first step is to encode the protein
sequence with features. A feature that can effectively discriminate
positive examples from negative examples can greatly improve
the prediction performance of the model. In this study, we try to
encode protein sequences with mixed features including 188D,
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APAAC, KSCTriad, CKSAAGP, and PAAC. The mixed features
can represent a protein sequence from different prospectives;
thus, it can better distinguish different protein sequences.

SVMProt-188D
SVMProt-188D is a feature extraction method based on the
amino acid composition and physicochemical properties
(Dubchak et al., 1995; Saxena et al., 2021). It encodes each
protein sequence as a 188-dimensional feature vector. The first
20 features are the frequencies of the 20 amino acids (A, C, D, E,
F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, and Y in alphabetical
order) occurring in the sequence. The formula is defined as

(V1, V2, ..., V20) � Ni

L
,

where Ni denotes the number of the ith amino acid in the protein
sequence and L denotes the length of a sequence. Obviously,∑Vi � 1.

The latter dimensions are correlated with eight
physicochemical properties, namely, hydrophobicity,
normalized Van der Waals volume, polarity, polarizability,
charge, surface tension, secondary structure, and solvent
accessibility. Each physicochemical property consists of 21
numbers. In detail, each property consists of three descriptors,
composition (C), transition (T), and distribution (D). C indicates
the proportion of amino acids with specific physicochemical
properties to all amino acids, and the dimension of C is 3; T
represents the percentage frequency of amino acids with a specific
property behind amino acids with another property, and its
dimension is 3; and D represents the proportions of the chain
length of 0, 25, 50, 75, and 100% amino acids with a specific

property, and its dimension is 8. Therefore, after analyzing the
composition and eight physicochemical properties of amino
acids, we can obtain a total of 20+(3 + 5+8)×8 = 188 features.

Amphiphilic Pseudo Amino Acid Composition
The concept of amphiphilic pseudo amino acid composition
(APAAC), originally proposed by Chou (Chou, 2005; Lv et al.,
2021a; Awais et al., 2021; Naseer et al., 2021; Yan et al., 2021), is
an effective protein descriptor and has been applied for diverse
protein sequence analysis. APAAC is different from traditional
AAC. It can incorporate a partial sequence-order effect by using
the hydrophobicity and hydrophilicity of the constituent amino
acids in a protein. For the convenience of the readers, we will
briefly introduce the concept of APAAC. Let R1R2R3...RL be a
protein sequence with length L, where R1 denotes the residue at
position 1, R2 denotes the residue at positon 2, and so forth.
According to the definition of APAAC, a protein can be denoted as
a vector P with dimension (20+2λ). Vector P is defined as follows.

P � [P1, . . . , P20,P20+1, . . . ,P20+λ, . . . ,P20+2λ], (1)
where P1, P2, . . . , P20 in Eq. 1 represent the classic AAC and the
next 2λ discrete numbers describe the sequence correlation factor.

K-Spaced Conjoint Triad
The k-spaced conjoint triad (KSCTriad) (Chao et al., 2018; Zhen
et al., 2020) is an effective protein descriptor and has been
comprehensively applied for diverse biological sequence
analyses. Different from the conjoint triad descriptor,
KSCTriad not only calculates the number of three continuous
amino acid units but also incorporates the continuous amino acid
units that are separated by any k-residues.

FIGURE 1 | Framework of PredMHC.
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Composition of K-Spaced Amino Acid Group Pairs
The composition of k-spaced amino acid pairs (CKSAAP) (Chen
et al., 2010; Ahmad et al., 2021; Akbar et al., 2021; Al-Qazzaz
et al., 2021; Alar and Fernandez, 2021; Alim et al., 2021; Buriro
et al., 2021) method describes the order-related information of
the protein sequence, which takes the occurrence frequency of
two amino acids separated by k-residues in the sequence as a
feature element. The protein contains 20 amino acids; thus, a 400-
dimensional feature vector can be obtained for each interval. The
composition of k-spaced amino acid group pairs (CKSAAGP) is a
variation of the CKSAAP method. The 20 amino acids can be
classified into five groups based on the chemical properties of
their side chains: the aliphatic group, aromatic group, positive
charged group, negative charged group, and uncharged group.
The CKSAAGP method is based on the frequency of the two
groups separated by a k-spaced amino acid.

Pseudo-Amino Acid Composition
The conventional amino acid composition is defined in a 20-D
space, and each dimension represents the frequency of the
occurrence of one of the 20 native amino acids. Different from
the conventional amino acid protein composition, the pseudo-
amino acid composition (Chou, 2001; Awais et al., 2021), which is
a vector with 20+λ discrete components, will contain much more
sequence-order and sequence-length information. According to
the concept of pseudo-amino acid composition, the feature is
given by

P �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1

..

.

p20

p20+1
..
.

p20+λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the first 20 components are the occurrence frequencies of
the 20 amino acids in the protein which is the same as in the
conventional amino acid composition, while the additional
components p20+1 . . . p20+λ are the sequence-order correlation
factors of the different ranks.

Classifier
To obtain better classification results, we adopted the voting of
three base classifiers as the final classification result. The three
classifiers were, respectively, random forest, SMO, and SGD. The
three classifiers are popular and have been successfully used in
bioinformatics many times.

Random forest is an ensemble classifier based on the decision
tree algorithm proposed by Breiman in 2001 (Breiman, 2001).
To solve regression or classification tasks, random forests
construct many decision trees by extracting subsets from all
the samples through the bootstrap technique and obtain the
prediction result by voting on these decision trees. Random
forests are widely used in bioinformatics because of their low
computational overhead and ability of handling
unbalanced data.

The support vector machine (SVM) (Hearst et al., 1998) is a
well-known machine learning algorithm that completes various
classification tasks by constructing a separating hyperplane in the
high-dimensional space. However, the training speed of support
vector machines is heavily influenced by data size. To solve this
problem, the sequential minimum optimization (SMO) (Platt,
1999) algorithm was proposed, which decomposes large
quadratic programming problems (OPs) of an original SVM
into a series of the smallest possible QP problems. Moreover,
the solution process of SMO needs no additional matrix storage,
thus saving both time and space costs.

The goal of the stochastic gradient descent (SGD) algorithm is
to find a path that leads to optimal result. When using this
algorithm, the parameter values are first initialized, and then
these values are continuously changed until the target function
converges. The SGD algorithm is widely used to process large-
scale sparse data, such as text classification tasks.

Measurement
To evaluate the performance of the proposed method, we
introduced four indicators commonly used in bioinformatics:
sensitivity (SE), specificity (SP), accuracy (ACC), and Matthew’s
correlation coefficient (MCC). The formulae of these indicators
are as follows (Zhang et al., 2021a; Lv et al., 2021b; Zhang et al.,
2021b; Zhang et al., 2021c; Zhang et al., 2021d; Zhang et al.,
2021e; Zhao et al., 2021; Zhu et al., 2021; Zou et al., 2021; Zhao
et al., 2022).

SE � TP

TP + FN
,

SP � TN

TN + FP
,

ACC � TN + TP

TN + FP + TP + FN
,

MCC � (TP × TN) − (FP × FN)																																												(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)√ ,

where TP is an abbreviation for true positives, representing the
number of MHC proteins predicted in positive examples; FP is an
abbreviation for false positives, representing the number of MHC
proteins predicted in negative examples; TN is an abbreviation for
true negatives, representing nonMHC proteins predicted in
negative examples; and FN is an abbreviation for false negatives
and indicates the number of predicted nonMHC proteins in
positive examples. SE and SP represent the predictive accuracy
of the model in positive and negative samples, respectively. Both
ACC and MCC represent the overall performance of the model.
For all the aforementioned metrics , the higher the score they get
the better the performance of the model.

RESULT AND DISCUSSION

Cross-Validation Results of Train-10790
In many experiments, we tried a variety of methods to extract
highly recognizable features from protein sequences in the
training set and used several algorithms to train the model to
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achieve optimal accuracy. The experimental comparison results
of different features are explained in Performance of Different
Features on Cross-Validation, and the experimental comparison
results of different classifiers are explained in Performance of
Different Classifiers on Cross-Validation.

Performance of Different Features on Cross-Validation
Using the voting of random forest, SMO, and SGD as the
classification model, we first tried 188D, APAAC, KSCTriad,
CKSAAGP, PAAC, and their combinations. Table 1 shows the
performance of the five single features and several combinations
of features with good performance in the 10-fold cross-validation.
As shown in Table 1, according to the indexes MCC and ACC,
the mixed features proposed in this study have the highest score;
thus, our method has better overall performance. According to
the indicator of SE, the feature of APAAC has the highest score,
whereas its value of ACC, MCC, and SP is lower; it verifies that
the feature of APAAC was bias to classify a protein into the MHC
protein. Similar to APAAC, PAAC also has higher value on the
indicator SE and lower value on other indicators. Therefore, from
the overall perspective, our method obviously performs better
than all other methods.

Performance of Different Classifiers on
Cross-Validation
To verify the performance of our used classifier, we compared the
classifier used in this study with other classifiers. Table 2 shows
the experimental results. As shown in Table 2, the voting of SGD,
SMO, and random forest used in our identification system has

better performance than other single classifiers. As shown in
Table 2, our classification model has 0.9169% accuracy and
0.8370 MCC, which are higher than those of other classifiers.
It verified that our classification model has better overall
performance. According to the number of winning incidences,
our classification wins on three indicators and has the highest
number of wins. It is shown in Table 2 that the SE of our
classification model was slightly lower than that of random forest.
However, the values of ACC, MCC, and SP of our classification
model are obviously higher than those of random forest.
Therefore, from the overall perspective, our classification
model obviously performs better than all other classifiers.

Independent-Validation Results of
Test-2698
To evaluate the generalization performance of the proposed
model, we tested its performance on the Test-2698 dataset. In
detail, we trained the model proposed in this study on the
Train-10790 dataset and then computed its performance on
the test-2698 dataset. The experimental results are shown in
Tables 3, 4. As shown in Tables 3, 4, the feature extraction
method and classifier used in this study have better
performance than the other feature extraction methods and
classifiers, respectively.

Comparison With Other Predictors
To evaluate the performance of the classifier PredMHC, we
compared it with ELM-MHC on the same dataset including
Train-10790 and Test-2698. The comparison results on the
10-fold cross-validation are shown in Table 5. As we can see
from Table 5, PredMHC has higher score than ELM-MHC on
the indicators ACC, MCC, and SP. According to the number of
winning incidence, PredMHC has better performance than
ELM-MHC. According to ACC and MCC, PredMHC has
better overall performance than ELM-MHC. Therefore,
PredMHC is superior to the existing methods in the
prediction of MHC protein.

TABLE1 | Result of different features on Train-10790.

Feaures ACC MCC SE SP

(1)-188D 0.8953 0.7927 0.8596 0.9310
(2)-APAAC 0.8329 0.6824 0.9494 0.7108
(3)-KSCTriad 0.8764 0.7580 0.8177 0.9350
(4)-CKSAAGP 0.8682 0.7469 0.7826 0.9529
(5)-PAAC 0.8283 0.6739 0.9485 0.7018
188D + APAAC 0.9003 0.8019 0.8735 0.9276
APAAC + KSCTriad 0.8872 0.7782 0.8386 0.9360
KSCTriad + CKSAAGP 0.8993 0.8039 0.8404 0.9576
CKSAAGP + PAAC 0.8848 0.7728 0.8376 0.9316
188D + APAAC + KSCTriad 0.9121 0.8268 0.8734 0.9511
APAAC + KSCTriad + CKSAAGP 0.9054 0.8155 0.8518 0.9589
KSCTriad + CKSAAGP + PAAC 0.9041 0.8127 0.8516 0.9565
188D + APAAC + KSCTriad + CKSAAGP 0.9157 0.8351 0.8701 0.9618
APAAC + KSCTriad + CKSAAGP + PAAC 0.9065 0.8178 0.8522 0.9608
Our mixed feature 0.9169 0.8370 0.8761 0.9587

TABLE 2 | Result of different classifiers on Train-10790.

Classifiers ACC MCC SE SP

SGD 0.8794 0.7600 0.8504 0.9081
SMO 0.9038 0.8106 0.8594 0.9478
Random forest 0.8850 0.7699 0.8830 0.8869
Our classification model 0.9169 0.8370 0.8761 0.9587
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CONCLUSION

In this study, we proposed an efficient, reliable, and simple
experimental model for predicting the MHC protein based on
mixed features. After a large number of comparative
experiments, we selected the mixed features of 188D,
APAAC, KSCTriad, CKSAAGP, and PAAC, which showed
global performance on the 10-fold cross-validation training
dataset and independent test dataset. We then used the
voting of SGD, SMO, and random forest to build a
prediction model which also achieved the best performance
on both training and test datasets. In terms of important
indicators, our model obtained an MCC of 0.8370 and ACC
of 0.9169 in the 10-fold cross-validation based on the Train-
10790 dataset and MCC of 0.8502 and ACC of 0.9246 in the

independent validation based on the Test-2698 dataset. In
conclusion, we believe that our novel model provides an
efficient and reliable method to screen MHCs from a large
number of protein sequences. In the future, we will pay more
attention to deep learning classifiers and evolution strategies
(Tahoces et al., 2021; Tandel et al., 2021; Tavolara et al., 2021;
Togacar, 2021; Tsiknakis et al., 2021; Turki and Taguchi, 2021;
Usman et al., 2021; Vafaeezadeh et al., 2021; Wang et al., 2021;
Watanabe et al., 2021; Yap et al., 2021; Yildirim et al., 2021).
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