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Non-obstructive azoospermia (NOA) is one of the most important causes of male infertility.
Although many congenital factors have been identified, the aetiology in the majority of
idiopathic NOA (iNOA) cases remains unknown. Herein, using single-cell RNA-Seq data
sets (GSE149512) from the Gene Expression Omnibus (GEO) database, we constructed
transcriptional regulatory networks (TRNs) to explain themutual regulatory relationship and
the causal relationship between transcription factors (TFs). We defined 10 testicular cell
types by their marker genes and found that the proportion of Leydig cells (LCs) and
macrophages (tMΦ) was significantly increased in iNOA testis. We identified specific TFs
including LHX9, KLF8, KLF4, ARID5B and RXRG in iNOA LCs. In addition, we found
specific TFs in iNOA tMΦ such as POU2F2, SPIB IRF5, CEBPA, ELK4 and KLF6. All these
identified TFs are strongly engaged in cellular fate, function and homeostasis of the
microenvironment. Changes in the activity of the above-mentioned TFs might affect the
function of LCs and tMΦ and ultimately cause spermatogenesis failure. This study illustrate
that these TFs play important regulatory roles in the occurrence and development of NOA.
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INTRODUCTION

Male infertility accounts for almost half of all infertility cases and is considered a common,
multifactorial pathological condition resulting from a combination of genetic, environmental
and lifestyle factors (Kuroda et al., 2020; Sharma et al., 2021). The genetic landscape of male
infertility has not been well defined likely due to technical challenges. A substantial proportion of
male infertility is accompanied by azoospermia, usually manifested as non-obstructive azoospermia
(NOA), which affects about 1% of men in the general population (Tournaye et al., 2017; Zhao et al.,
2020; Salas-Huetos et al., 2021). NOA is defined as the complete absence of spermatozoa during
ejaculation as a result of failed spermatogenesis. Currently, NOA remains the most challenging and
clinically severe form of male infertility and it is primarily associated with genetic abnormalities
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(Kuroda et al., 2020; Han et al., 2021). A relatively small
proportion of NOA is caused by congenital factors such as
Klinefelter syndrome (KS) and microdeletions in the
azoospermia factor (AZF) region of the Y chromosome
(Kuroda et al., 2020; Sharma et al., 2021). However, a majority
of the remaining NOA cases have idiopathic (unknown) causes
and are diagnosed as idiopathic NOA (iNOA), which accounts
for more than 70% of cases (Dabaja and Schlegel, 2013; Zhao
et al., 2020; Salas-Huetos et al., 2021). Although there have been
some advances in understanding the aetiology and pathogenesis
of NOA (including inherent testicular injury or gonadotropin
deficiency), the transcriptional regulatory network (TTRN) in
spermatogenesis as well as NOA remains not fully clear.

Spermatogenesis is regulated by cross-talk between somatic
cells and germ cells in the testis (Meinhardt et al., 2018; Winge
et al., 2018; Zhou et al., 2019; Zhao et al., 2020; Hashimoto et al.,
2021). Testicular somatic cells, including Leydig cells (LCs) and
macrophages, interact with each other to create a supportive
microenvironment for germ cell development and self-renewal of
spermatogonial stem cells (SSCs), both of which are indispensable
for spermatogenesis and male fertility (DeFalco et al., 2015;
Teerds and Huhtaniemi, 2015; Mossadegh-Keller et al., 2017;
Jauregui et al., 2018; Meinhardt et al., 2018; Winge et al., 2018;
Zhou et al., 2019; Lokka et al., 2020; Figueiredo et al., 2021;
Hashimoto et al., 2021). In particular, LCs and testicular
macrophages (tMΦ) are both located in the testicular
interstitial compartment and are functionally related (DeFalco
et al., 2015; Mossadegh-Keller et al., 2017; Lokka et al., 2020;
Hashimoto et al., 2021). LCs are the primary cells responsible for
synthesising and releasing androgens, and these hormones
regulate both spermatogenesis and the development of male-
specific secondary sex characteristics. tMΦ not only sustain an
immune-privileged microenvironment but also engage in
collaborative interactions with LCs (Meinhardt et al., 2018;
Mossadegh-Keller and Sieweke, 2018; Figueiredo et al., 2021).
Increasing evidence indicates that alteration in somatic cell
function or the somatic microenvironment could hinder
spermatogenesis and lead to NOA (Zhao et al., 2020; Zheng
et al., 2021b; Hauptman et al., 2021; Zhu et al., 2021).
Nevertheless, the mechanism by which somatic cells contribute
to spermatogenesis, particularly the somatic cells in the testicular
iNOA microenvironment, is still poorly understood.

More recently, it has emerged that, even after cell development
and differentiation, the maintenance of adult somatic cell identity
and function relies on the continuous activity of transcription
factors (TFs) (Shan et al., 2017). Some TFs could affect not only
cell function through expression, but could also regulate cell
differentiation (Ieda et al., 2010; Riddell et al., 2014; Han et al.,
2018). An increasing number of TFs in testicular somatic cells
have been found to regulate a variety of fundamental cell
functions during spermatogenesis and testis development
(Meroni et al., 2019; Zhou et al., 2019; Jia et al., 2020; Uchida
et al., 2020; Wang et al., 2020; Sarkar et al., 2021). However, it
remains largely unclear how TFs in LCs and tMΦ play an active
role in the development of NOA. In this study, we used the
complete atlas of human testicular single cell data to construct
transcriptional regulatory networks (TRNs) in the iNOA testis

(Zhao et al., 2020). For this endeavour, we used single-cell
transcriptome data in conjunction with the gene regulatory
network approach. We initially defined TFs influencing the
testicular somatic TRNs, revealing that LCs and tMΦ have
specific TRNs in the NOA testis.

MATERIALS AND METHODS

As our study was based on a conjoint analysis of existing data and
no additional patients were included. Hence, ethical approval was
not required.

Datasets
We downloaded a human testicular single cell RNA-Seq data set
(GSE149512) from the Gene Expression Omnibus (GEO). We
selected three normal adults (GSM4504189, GSM4504187 and
GSM4504184) and three patients with iNOA (GSM4504195,
GSM4504196 and GSM4504197). The quality control (QC) of
single-cell RNA-Seq data was performed by using the scater
package in R (McCarthy et al., 2017). Genes expressed in at
least 2 cells were retained. Mitochondrial (MT) genes were set as
the internal reference. For cells with total counts <25,000 or total
genes >6,000, the percentage of MT genes >40 were removed. The
scImpute package in R was used for imputation, and
normalisation was conducted by using the scran package in R
(Vieth et al., 2019). RNA-Seq data were normalised by using the
transcripts per kilobase million (TPM) method for further
analysis.

Dimensional Reduction and Clustering
We performed principal component analysis (PCA) together
with JackStraw and PCEIbow-Plot functions by using the
Seurat package (version 3.2.2) in R (version 4.0.2), to select
important principal components (PCs) (Lin et al., 2017; Butler
et al., 2018). Seurat’s Find All-Markers function was used to
identify specific genes for each cell subpopulation. The Run TSNE
function was then used for cell clustering and visual analysis of
t-distributed stochastic neighbour embedding (t-SNE). The
marker genes were thereafter annotated with the singleR
package and corrected with CellMarker according to their
characteristics (Aran et al., 2019; Zhang et al., 2019). Then,
heatmaps were made up of the first 50 marker genes in each
cell population, and Gene Ontology (GO) terms were selected to
represent the function of each cell type with p < 0.05 among top
30 terms.

Gene Set Variation Analysis
We performed GSVA to reveal the underlying changes in
signalling mechanisms using R (Hanzelmann et al., 2013).
The differentially expressed Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways were identified from the
data of the normal and iNOA groups. The gene set c2.
cp.kegg.v7.2. symbols.gmt was downloaded from the
Molecular Signatures Database (MSigDB) and set as the
reference gene list (Liberzon et al., 2015). After inputting
the gene expression profile matrix, the GSVA algorithm
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transformed the genes of the matrix into scores that
represented the activity of each KEGG pathway based on
the reference gene. Then, the differentially activated
pathways between the normal and iNOA groups were
determined by using the limma package in R with |log2fold
change| ≥ 2 and p < 0.05 (Ritchie et al., 2015).

Inference of Regulons and Activity
A number of methods have been developed to predict genetic
regulatory networks (GRNs) from single-cell gene expression
data. We adopted the SCENIC method as previously described
with slight modification (Fiers et al., 2018). The SCENIC analytic
process, comprised three steps. First, a gene co-expression

FIGURE 1 | Single-cell RNA sequencing (scRNA-Seq) analysis shows the testicular cell lineages in normal individuals and patients with idiopathic non-obstructive
azoospermia (iNOA). (A) t-Distributed random neighbour embedding (t-SNE) isolation (left) and combination (middle and right) of single testicular cells in the normal and
iNOA groups. Ten main cell types were defined, including endotheliocytes, T cells, mast cells, Leydig cells, Sertoli cells, peritubular myoid (PTM) cells, macrophages,
spermatogonia, spermatocytes and spermatids. (B) The t-SNE map shows the expression level distribution of marker genes in cell types, including FGFR3
(spermatogonia), SYCP3 (spermatocytes), TNP1 (spermatids), VWF (endotheliocytes), CD163 (macrophages), DLK (Leydig cells), MYH11 (PTM cells), SOX9 (Sertoli
cells), CCL5 (T cells) and TPSB2 (mast cells). (C) The mean cell number and relative proportion of testicular subsets from various sample sources.
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network was constructed through gene co-expression analysis.
Second, possible TF-target regulatory relationships were
established based on the gene co-expression network. In this
step, the direct regulatory relationship was established by using
motif analysis. Any direct downstream genes occurring for each
TF were profiled as regulons. In particular, SCENIC could only
support transcriptional positive regulation analysis. Third, based
on the results of step 2, a regulon activity score (RAS) was
calculated for each cell. As described in previous studies, the
Avg20 method was repeated three times to assess the variability of
random sampling. Thereafter, a t-test was used to assess whether
the Avg20 method performed better than using all individual cells
(Cao et al., 2017).

Functional Validation
As in a previous study, we used Search-Based Exploration of
Expression (SEEK) analysis to determine whether the predicted
regulons correlated with their cell type (Zhu et al., 2015). In brief,
we used the human version of SEEK to assess whether genes in
the regulons were co-expressed. Significantly co-expressed genes
in multiple data sets associated with a particular cell type scored
positive for high relevance of the function of the regulon to that
cell type.

Regulon Module Analysis and Quantifying
Cell Type Relationship
To identify regulon modules, we employed twomain steps (Aibar
et al., 2017). First, each pair of regulatory relationships was
analysed by calculating the Pearson correlation coefficient. To
systematically describe the regulatory relationships of TFs, we
compared the regulatory activity scores of each regulatory pair
based on the connection-specificity index (J. I. F. Bass et al.,
2013). For each pair of regulatory relationships, we defined a
regulatory specificity score (RSS) based on the Jensen–Shannon
scatterplot (Cabili et al., 2011). Next, we selected the specific
regulator with the highest RSS value and further examined its
functional characteristics. The activity score of each regulon
module in relation to a cell type was then defined as the
average of the activity scores of its regulon members in all
cells of that cell type. The highest ranked units were then
filtered for each module. We quantified the relationship
between different cell types based on the similarity of overall
regulon activity. A pair of cell types was linked if their Spearman
correlation coefficient was >0.8. Finally, we used the Markov
Clustering Algorithm (MCL) to identify related cell types (Van
Dongen and Abreu-Goodger, 2012).

GO, KEGG Enrichment Analysis and
Protein-Protein Interaction Networks
We conducted GO enrichment analysis and KEGG analysis on
the TF of each regulatory module example. GO analysis depicts
the unique biological significance based on differentially
expressed genes (DEGs) between groups. We used the KEGG
database to determine important pathways. The ‘p < 0.05’ and the
‘|log2 fold change| ≥ 2’ conditions were used as the cut-off criteria

for GO and KEGG enrichment analyses. The genes of each
module are then incorporated into a search tool (STRING)
(Jensen et al., 2009) that retrieves interacting genes/proteins.
In the multivariate analysis, the confidence levels were 0.4, 0.7
and 0.9. Then, we input the gene network file into Cytoscape to
draw PPIN diagrams.

RESULTS

Single-Cell Maps Define the Heterogeneity
of Normal and iNOA Testicular Cells
To investigate the heterogeneity of patients with iNOA, we used
the Seurat package to perform quality control and t-SNE analysis
on single-cell data from the GEO (GSE149512) data set. 32,048
cells, each with 500–8,000 genes, were reserved for subsequent
analysis. We divided the normal and iNOA groups into 10 cell
populations based on marker genes of each cell population
(Figures 1A,B, Supplementary Figure S1). The cellular
composition of the iNOA group was different compared qwith
the normal group. Almost no sperm cells were observed in the
iNOA group, while the proportion of LCs and tMΦ were
increased significantly in the iNOA group compared with the
normal group (Figure 1C).

Marker Gene GO Analysis
We identified unique characteristics of the iNOA group. For
example, normal LC GO terms include ‘Regulation of
multicellular organismal development’ and ‘Negative
Regulation of multicellular cells’ organismal process
(Figure 2A), while iNOA group LCs GO terms include
‘Extracellular matrix structural constituent’ and
‘Glycosaminoglycan binding’ (Figure 2B). The normal tMΦ
GO terms include ‘Myeloid leukocyte activation’, while iNOA
tMΦ GO terms include ‘Immune effector process’ (Figures
2A,B). These results indicate that the functions of LCs and
tMΦ are different between the normal and iNOA groups.

GSVA Analysis of Testicular Cells
A direct comparison of the iNOA and normal groups revealed
that ‘G2M checkpoint’, ‘MTORC1 signaling’ and ‘TGF beta
signaling’ as the top enriched signatures in iNOA LCs, are
associated with proliferation (Figure 3A). Moreover, the
GSVA scores of the ‘mitotic spindle’, ‘MTORC1 signaling’ and
‘TGF beta signaling’ were obviously increased in iNOA tMΦ, and
these pathways are also associated with proliferation (Figure 3B).
We found that the spermatogenesis pathways were obviously
downregulated in the iNOA group including LCs, tMΦ,
peritubular myoid (PTM) cells and Sertoli cells compared with
the normal group (Figures 3A,B, Supplementary Figure S2).

Analysis of Specific Regulation of Somatic
Cell Types
Our network analysis found that NR2F1, CREB3l1, HC1, GLI2
and KLF4 were specific TFs associated with LCs in normal human
(Supplementary Figure S3A). The t-SNE diagrams further
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FIGURE 2 | Gene Ontology (GO) enrichment analysis of marker genes in (A) the normal group and (B) the idiopathic non-obstructive azoospermia (iNOA) group.
Left: heatmap showing expression signatures of the top 50 specifically expressed genes in each cell type; the value for each gene is the row-scaled Z score. Right:
representative GO terms.
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demonstrated the highly specific activity of NR2F1 in LCs
(Supplementary Figure S3B, C). To test the validity of the
above analysis, SEEK analysis was used to identify GEO data
sets with significant co-expression of NR2F1. SEEK analysis did
not show significant co-expression of the regulatory gene NR2F1
(Supplementary Figure S3D, Fisher’s exact test, p = 0.0858).
CEBPA, MEF2A, IRF5, HIVEP2 and EOMES were found to be
specific TFs in normal tM φ (Supplementary Figure S3E).
CEBPA activity was highly specific in normal tMΦ
(Supplementary Figure S3F, G). SEEK analysis did not show
significant co-expression of the regulatory gene CEBPA
(Supplementary Figure S3H, Fisher’s exact test, p = 1). Other
specific regulation of cell types is shown in Supplementary
Figure S3I–P; Furthermore, our network analysis identified
LHX9, ARID5B, KLF8, RXRG and KLF4 as specific TFs
associated with iNOA LCs, and found that the activity of these
TFs was elevated in iNOA patients (Figure 4A). The t-SNE
diagram further demonstrated the highly specific activity of
LHX9 in iNOA LCs (Figures 4B,C). To test the validity of the
above analysis, we performed SEEK analysis to identify GEO data
sets with significant co-expression of LHX9 (Figure 4D, Fisher’s
exact test, p = 0.0345). We identified POU2F2, SPIB, IRF5,

CEBPA and CREM as specific TFs in iNOA tMΦ, and the
activity of these TFs was also elevated in iNOA patients
(Figure 4E). The activity of POU2F2 in iNOA tMΦ was
highly specific (Figures 4F,G). SEEK analysis did not show
significant co-expression of the regulatory gene POU2F2
(Figure 4H, Fisher’s exact test, p = 0.0608). For other specific
regulation of cell types, see Figure 4I–P; for specific regulation of
cell types in the normal group, see Supplementary Figure S3.

Organizing Regulons Into Combinatorial
Modules
Based on the identified connection specificity index (CSI) matrix
model (M1–M7), we mapped the average activity of each module
to t-SNE (Figure 5A). The iNOA testicular cells were then ranked
according to the regulatory specificity score (Figure 5B). Each
module occupies a different region, and all the highlighted
regions indicate the high transcriptional activity of different
modules (Figure 5A). As shown in Figure 6A, the M1 and
M5 modules showed high transcriptional activity mainly in
iNOA tMΦ, while the M2 and M4 modules showed high
transcriptional activity mainly in iNOA LCs. Figure 6A

FIGURE 3 | Gene set variation analysis (GSVA) of testicular somatic cells in the normal group and the idiopathic non-obstructive azoospermia (iNOA) group. (A)
Differences in pathway activities scored per cell by GSVA between normal and iNOA Leydig cells (n = 968 and 9,412 cells, respectively; six patients per group). (B)
Differences in pathway activities scored per cell by GSVA between normal and iNOA macrophages (n = 144 and 763 cells, respectively; six patients per group).
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FIGURE 4 | Analysis of cell type-specific regulation in testis of idiopathic non-obstructive azoospermia (iNOA) patients. (A–D) Leydig cells (LCs). (A) The regulation
of testicular cells was ranked according to the regulation specificity score. (B) LCs are marked by red dots on the t-distributed random neighbour embedding (t-SNE)
diagram. (C) The expression values of the genes with the highest regulatory activity score are displayed in the t-SNE diagram. (D) Search-Based Exploration of
Expression (SEEK) analysis was used to determine the co-expression of the highest regulatory genes in different Gene Expression Omnibus (GEO) data sets. The
x-axis represents the different data sets, and the y-axis represents the co-expression significance of the target gene in each data set. Data sets with a significant
correlation (p < 0.05) are highlighted with yellow dots. (E–H) The same as (A–D), but for testicular macrophages. (I–L) The same as (A–D), but for peritubular myoid
(PTM) cells. (M–P) The same as (A–D), but for Sertoli cells.
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FIGURE 5 | The activity of regulatory modules in testicular somatic cells of different idiopathic non-obstructive azoospermia (iNOA) types. (A) Identification of the
regulatory modules (M1–M7) according to the regulatory connection specificity index (CSI) matrix and amap of the average activity of eachmodule based on t-distributed
random neighbour embedding (t-SNE). (B) Ranking regulation in iNOA testicular cells based on the regulation specificity score. The y-axis represents the regulation
activity score. The x-axis represents the cell type.
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FIGURE 6 | Identification of combinatorial regulon modules. (A) Determination of the regulon modules based on the regulation connection specificity index (CSI)
matrix, along with associated cell types, corresponding binding motifs, and representative transcription factors (TFs). (B) Protein-protein interaction networks (PPINs) of
regulatory factors in each module.
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showed the determination of the regulation module based on the
regulation CSI matrix, along with associated cell types,
corresponding binding motifs, and representative transcription
factors. The PPINs of TFs in each module were shown in
Figure 6B. The M1 module contains MYB, POU2F2 and
PBX4 in iNOA tMΦ. In addition, in iNOA LCs the M2 and
M4 modules contain LHX9, KLF8, KLF4 and FOXC2. We
performed GO functional enrichment analysis on genes of the
M1, M2, M4 and M5 modules, as shown in Supplementary
Figure S4.

DISCUSSION

Spermatogenesis is a highly sophisticated process with well-
organised cellular and molecular events involving gene
networks regulated by TFs in testicular somatic cells
(Bettegowda and Wilkinson, 2010). Our results also support
the view that the somatic cellular microenvironment provides
favourable biochemical and biophysical components for
spermatogenesis. We focussed on LCs and tMΦ in the
testicular microenvironment, which are critical for sperm
production, and identified some important TFs in LCs and
tMΦ that could play an important role in NOA genesis.

Unlike obstructive azoospermia, the pathogenesis of iNOA
remains complex and multifactorial. To study the molecular
mechanism of iNOA pathogenesis, we analysed single-cell data
sets from the GEO database, and clarified the heterogeneity of
different cell types of the human testis in more detail by using
single-cell transcriptome sequencing analysis. We found that the
proportion of LCs and tMΦ in iNOA testis is higher than the
normal group. Furthermore, the function of LCs and tMΦ in the
iNOA testis is different from the normal group. We suggest that
changes in the proportions and functions of LCs and tMΦ could
alter the testicular microenvironment, contributing to
spermatogenesis failure and thereby leading to male infertility.

Testicular LCs are the major producers of circulating
testosterone, which is essential for testis development and
spermatogenesis. LC dysfunction can lead to testosterone
deficiency and impair male fertility (Zhou et al., 2019). The
function of LCs is correlated with the developmental stages of
LC lineage specification and differentiation, both as Sertoli cells
and tMΦ. LC development involves at least three steps: the
proliferation of LC precursors (also known as stem LCs), their
differentiation into immature LCs and their final maturation into
adult LCs (Peak et al., 2016). We suppose that LCs of patients
with iNOA remain at the stage of proliferation without
transitioning to the differentiation and maturation stages.
These immature and non-functional LCs are unable to (fully)
fulfil their steroidogenic function to maintain spermatogenesis
(O’Hara et al., 2015; Guan et al., 2019). The successive stages of
LC development are regulated by an array of lineage-specific TFs
(Winge et al., 2018). We identified specific TFs including LHX9,
KLF8, KLF4, ARID5B and RXRG in LCs of patients with iNOA.
Among these TFs, LHX9 is an important steroidogenesis-related
TF and indispensable for testis development (Hu et al., 2018).
KLF4 and KLF8 are Krüppel-like factors known to regulate

several biological processes, such as cell proliferation,
differentiation and metabolism (Chu et al., 2016; Kult et al.,
2021; Kumar et al., 2021). Similarly to KLF4, ARID5B also plays a
pivotal role in adipogenesis and lipid metabolism, which might be
closely related to cell differentiation and development (Hata et al.,
2013; Claussnitzer et al., 2015). RXRG is a rexinoid receptor that
participates in the regulation of cell differentiation (Gely-Pernot
et al., 2015; Cheng et al., 2018). All these identified TFs play
direct/indirect roles in cell development. However, the
occurrence of NOA caused by TFs has not been reported. This
is our new finding. We conducted GO analysis on LCs of normal
persons and iNOA patients, and found that LCs of iNOA patients
were inhibited in the ‘Regulation of Multicellular Development’
pathway. GSVA enrichment analysis showed that LCs of iNOA
patients were significantly enriched in the proliferation pathway,
indicating that the development of LCs in iNOA patients was
inhibited in the proliferation stage, but did not enter the stages of
differentiation and maturity. We infer that changes in the activity
of these TFs potentially affect the maturation and function of LCs
and impair the microenvironment of spermatogenesis,
dysfunctions that may eventually cause azoospermia in humans.

TMΦ are the principal immune cell population of the
mammalian testis, and together with LCs and Sertoli cells, they
maintain testicular immune privilege (Heinrich and DeFalco, 2020;
Rehman et al., 2021). tMΦ produce several growth and
differentiation factors for LC development (Heinrich and
DeFalco, 2020). In addition to testicular immunosuppression,
tMΦ also locally regulate LC steroidogenesis (Fang et al., 2021).
Previous studies have delineated the phenotype of tMΦ in the
normal testis, and tMΦ have been implicated in the development
of azoospermia (Hussein et al., 2005; Duan et al., 2011). We
identified specific TFs including POU2F2, SPIB, IRF5, CEBPA,
ELK4 and KLF6 in iNOA tMΦ. Among these identified TFs,
both POU2F2 and SPIB are essential for cell proliferation,
differentiation and functional maturation of immune cells
(Hodson et al., 2016; Klisuric et al., 2019). IRF5 has been shown
to act as a master switch that promotes proinflammatory cytokine
production from macrophages and thus contributes to the plasticity
of macrophage polarisation (Banga et al., 2020). CEBPA is required
for the regulation of cell proliferation and terminal differentiation
and participates in the control of immune and inflammatory
processes (Bristol et al., 2009; Minner et al., 2019). ELK4 has
been implicated in maintaining cellular homeostasis, but also in
macrophageM2 polarisation (Zheng et al., 2021a). Similarly to KLF4
and KLF8, KLF6 signalling engages in various cellular processes,
including cell differentiation and development. Moreover, KLF6
impedes macrophage polarisation to the M2 phenotype (Zhao
et al., 2021). These TFs in macrophages are newly discovered and
may affect NOA. GSVA enrichment analysis of tMΦ in normal
persons and iNOA patients showed that tMΦ of iNOA patients was
significantly enriched in the proliferation pathway, which also
indicated that thetMΦ of iNOA patients was overproliferated,
which was consistent with the previous research results of
Wenzhong Zheng (Zheng et al., 2021). The changes of TFs
activity found in iNOA tMΦ may regulate the development and
function of tMΦ and the differentiation of tM intoM2macrophages.
When macrophages are activated and elaborate inflammatory
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mediators, the function of LCs secretion of testosterone may be
impaired. (Hales, 2002), and thus fail to create an optimal immune
microenvironment for spermatogenesis.

In this study, the transcriptional regulatory network of iNOA
testicular cells was established to provide a new idea for
understanding the regulatory mechanism and functional
relationship of iNOA testicular cells. However, the roles and
mechanisms of these TFs in iNOA pathogenesis in different
testicular cell types need to be further investigated
experimentally.

CONCLUSION

With the recent application of single-cell sequencing technology
in the human testis, the understanding of testicular cell
heterogeneity has greatly improved. It is clear that we need
more in-depth investigation of the mechanism of cellular
heterogeneity during iNOA development. This study has
provided a new approach to dissect the regulatory mechanisms
and functional relationships by establishing the TRNs and PPINs
of TFs in iNOA LCs and tMΦ. Several of the identified TFs, such
as Krüppel-like factors, are predicted to regulate the
differentiation and function of both LCs and tMΦ. We
demonstrated that aberrant regulation of TFs identified in
iNOA LCs and tMΦ potentially affects the testicular
microenvironment and germ cell development. This study
should improve knowledge regarding TFs involved in the
regulatory landscape of LC and tMΦ development and the
crosstalk among cell types. However, additional experiments
are needed to investigate the function and mechanism of TFs
in different testicular cell types that are involved the pathogenesis
of NOA.
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