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With the technological advances in recent decades, determiningwhole genome sequencing of a
person has become feasible and affordable. As a result, large-scale individual genomic
sequences are produced and collected for genetic medical diagnoses and cancer drug
discovery, which, however, simultaneously poses serious challenges to the protection of
personal genomic privacy. It is highly urgent to develop methods which make the personal
genomic data both utilizable and confidential. Existing genomic privacy-protection methods are
either time-consuming for encryption or with low accuracy of data recovery. To tackle these
problems, this paper proposes a sequence similarity-based obfuscation method, namely
IterMegaBLAST, for fast and reliable protection of personal genomic privacy. Specifically,
given a randomly selected sequence from a dataset of genomic sequences, we first use
MegaBLAST to find its most similar sequence from the dataset. These two aligned sequences
form a cluster, for which an obfuscated sequencewas generated via aDNAgeneralization lattice
scheme. These procedures are iteratively performed until all of the sequences in the dataset are
clustered and their obfuscated sequences are generated. Experimental results on benchmark
datasets demonstrate that under the same degree of anonymity, IterMegaBLAST significantly
outperforms existing state-of-the-art approaches in terms of both utility accuracy and time
complexity.

Keywords: genomic privacy, obfuscation methods, DNA generalization lattice, MegaBLAST, sequence similarity,
clustering, machine learning, IterMegaBLAST

1 INTRODUCTION

With the technological advances in recent decades, the cost of sequencing a whole human genome has been
dramatically decreased1. As can be seen from Figure 1A, when the first human genome was sequenced in
2001, the total cost was around 300 million USD. However, in 2006, the cost was decreased to 14 million
USD and in 2016, the cost was below 1500 USD. With the feasibility and affordability of whole genome
sequencing (WGS) for personal tests, large swathes of personal genomic data have been generated.

As a result, recent decades have witnessed the widespread applications of genomic high-
throughput technologies in personalized healthcare (Chute and Kohane, 2013), with which
large-scale personal genomic data are produced and collected for genetic medical diagnoses and
new drug discovery. Moreover, individuals becomemore willing to share their genomic data on some
health-related websites [e.g., OpenSNP (https://opensnp.org/) (Greshake et al., 2014)] to learn their
predispositions to genetic diseases and their ancestries (Humbert et al., 2013). Besides, with the
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COVID-19 pandemic entering the third year of upending life
around the world and more than 300 millions of people have
been infected (Figure 1B), hundreds of thousands if not millions of
COVID-19 patients have their genomes sequenced to help
scientists and researchers to unravel the genetic mechanisms of
the SARS-CoV-2, the virus causing the COVID-19 pandemic.
Moreover, the US and Europe have launched their respective
plans (i.e., “All of Us” (https://allofus.nih.gov/) for US and “1 +
Million Genomes Initiative” (https://digital-strategy.ec.europa.eu/
en/policies/1-million-genomes) to sequence at least one million
human genomes to unlock genetic mysteries (Figure 1C).

All of these events significantly boost the rapid accumulations of
personal genomic data in huge size. On the positive side, the large-
scale individual genomic data demonstrate the advancement of
biomedical technologies and will bring tremendous benefits to
biomedicine and patient healthcare as well as accelerate the
progress of personalized medicine, personalized therapy, drug
discovery, early diagnostics and prevention, etc. On the negative

side, however, these events simultaneously pose serious challenges
to the protection of personal genomic privacy. Actually, the
genomic information of an individual can be as personally
indicative as his/her fingerprint, if not more revealing (Leonard
et al., 1972). The genomic information is highly at risk of being
abused to affect employment, insurance status, etc (Clayton, 2003).
Due to the large size and rich information of personal genomic
data, it is much more difficult to protect the genomic privacy of an
individual than other sensitive information (such as social security
numbers and names) that can be securely protected by encryption
(Malin and Sweeney, 2004). Therefore, it is highly required to
develop efficient and fast methods for protecting genomic privacy
while utilizing the genomic information for specifically designated
purposes, such as medical diagnosis and new drug discovery.

Existing approaches for genomic privacy protection can be
roughly divided into three categories: 1) cryptology-based
methods (Kantarcioglu et al., 2008; Goodrich, 2009); 2) data
de-identification methods (Malin and Sweeney, 2000; Malin and

FIGURE 1 | Current status of personal genomic data for utilization and privacy. (A) The whole genome sequencing (WGS) cost decreased significantly with the
technological advances in recent decades. (B) The number of COVID-19 cases increased significantly in these 2 years and concurrently the number of personal genomic
data would increase. (C) Large-scale projects have been launched for betterment of human healthcare while simultaneously posing serious challenges on protecting
individual genomic privacy. “All of Us” (https://allofus.nih.gov/) was launched by US and “1 +Million Genomes” (https://digital-strategy.ec.europa.eu/en/policies/1-
million-genomes) was initialized by the European Union. Blue circles represent good benefits of genomic data utilization or privacy well proteted, whereas the red circle
represents the challenge of genomic data privacy breached.
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Sweeney, 2004) and 3) data augmentation methods (Lin et al.,
2002; Malin, 2005b).

• Cryptology-based methods do not disclose raw genomic
data while supporting the genomic data mining. However,
this kind of methods are not suitable for long-term genomic
privacy protection because the cryptographic algorithms
can be broken in a comparably shorter time than the
personal genomic privacy protection requires (Humbert
et al., 2013). Besides, they offer no protection against re-
identification (Loukides et al., 2010).

• Data de-identification methods tend to remove or encrypt
those genomic data-associated identifiers which are also
personally specific and sensitive, such as social security
numbers or names. Nevertheless, these methods cannot
guarantee sufficient privacy protection and are not able
to deal with the re-identification problems (Malin, 2005a).

• Data augmentation methods achieve the goal of privacy
protection by generalizing or obfuscating DNA sequences, which
can make each record indistinguishable from each other. With
this kind of methods, the privacy of genomic data can be well
protected at the expense of limited loss of data utility.

Among the aforementioned methods, a DNA sequence
obfuscation method called DNA lattice anonymization
(DNALA) (Malin, 2005b) is one of the state-of-the-art
approaches. DNALA is based on the famous k-anonymity
principle (Sweeney, 2002) which uses a generalized sequence to
represent k aligned DNA sequences after sequence alignment and
clustering. In this way, individual sequences within a cluster will
not be distinguished. This method can efficiently protect the
personal genomic privacy; however, it uses a low-accuracy
clustering algorithm called CLUSTALW (Thompson et al.,
1994) and a time-consuming sequence alignment technique.
Later, Li et al. (2007) proposed a stochastic hill-climbing
method to improve the clustering algorithm for better
performance. Recently, Li et al. (2012) further reduced the
information loss for genomic privacy protection by proposing a
maximum-weight matching (MWM) based algorithm. However,
these methods are still inefficient and with low accuracy.

To address these problems, this paper proposes a sequence-
similarity based obfuscation method, namely IterMegaBLAST,
for protecting personal genomic privacy. Unlike previous
methods (Malin, 2005b; Li et al., 2007; Li et al., 2012), which
use CLUSTALW as the clustering algorithm, IterMegaBLAST
uses MegaBLAST (Zhang et al., 2000) for both sequence
alignment and clustering. MegaBLAST is a sequence alignment
search algorithm which finds highly-similar sequences to the
query one. Specifically, given a dataset, we iteratively use
MegaBLAST to find homologs within the dataset for randomly
selected query sequences. Then, the query sequences and the
corresponding homologs are subsequently formed as clusters for
further sequence obfuscation. Our results also demonstrate that
IterMegaBLAST is much faster and more accurate than the
existing state-of-the-art methods under the same degree of
privacy protection. IterMetaBLAST is publicly available at
https://github.com/shibiaowan/IterMegaBLAST.

2 METHODS

2.1 Problem Statement
Given a dataset of DNA sequences, our objective is to protect the
individual-specific genomic information from identification and/or
re-identification2 as much as possible while the loss of information
affecting the data utility is as little as possible. In other words, the
genomic privacy is enhanced at the expense of data precision
reduction. One of the effective ways is to obfuscate the differential
information within a cluster of DNA sequences with high sequence
similarity. In this way, the individual-specific privacy information can
be preserved while the loss of information is the minimum.

Generally speaking, given a dataset of genomic data
{Q}i�{1,...,N}, for which the i-th element Qi represents the
individual genomic information (e.g., DNA sequence) for the
i-th person whose sensitive attributes might be identified via one
or more individual-specific loci by combining with publicly
available (yet perhaps anonymized) information (e.g.,
demographic). N is the number of genomic sequences within
the dataset of interest. Our purpose is to find an encryption
method f so that after encryption, i.e.,Gi � f(Qi), i � {1, . . . , N},
the personal genomic privacy P is not compromised whereas the
utility U of the genomic data is conserved as much as possible.

arg min
f

∑
N

i�1

U Qi( ) − U Gi( )
1 − P Gi( )

� arg min
f

∑
N

i�1

U Qi( ) − U f Qi( )( )
1 − P f Qi( )( ) ,

(1)

where P(x) and U(x) is the privacy and utility functions for the
x-th genomic sequence, respectively.

We assume that the utility value after encryption will not surpass
that before encryption (i.e., U(Qi)≥U(Gi)), because any encryption
method would incur information loss. For simplicity, we consider the
output of the privacy function represents the degree of privacy being
compromised (suppose the privacy can be quantified). In most cases,
we don’t want our (genomic) privacy being compromised as much as
possible. In other words, the output of the privacy function should be
only binary, i.e., 0 (the privacy is not compromised) or 1 (the privacy is
compromised). When the privacy is compromised even after data
encryption, i.e., P(f(Qi)) � 1, Eq. 1 will equal to + ∞, which is not
wewant. In other words, we should first find the encryption function f
that can protect our privacy and based on this condition, we try to
minimize the utility loss as much as possible. In this paper, we use
an encryption method based on k-anonymity (Section 2.3), which
is an efficient way to protect the data privacy. In this case, Eq. 1 has
been converted into a problem to find a method to maximize the
utility value of the encrypted genomic data. In the following
sections, we will elaborate our method to simultaneously protect
the genomic privacy and maximize the utility value.

Due to their special properties, DNA sequences can not be
clustered if without sequence alignment. Therefore, the
procedures for an obfuscation method for genomic privacy

2Re-identification means matching the anonymized personal data with its original
information or owner.
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protection generally include two steps: 1) sequence alignment and
clustering; and 2) obfuscation (or anonymization).

2.2 MegaBLAST for Sequence Alignment
and Clustering
MegaBLAST is a DNA sequence alignment search tool which uses
a greedy algorithm (Zhang et al., 2000) to find those highly-
similar sequences to the query one. MegaBLAST is optimized to
find near identities and can provide functions of both sequence
alignment and clustering. Compared to the traditional BLAST
algorithm (Altschul et al., 1997), MegaBLAST runs 10 times faster
and is particularly efficient to handle much longer DNA
sequences.

Therefore, MegaBLAST is very suitable for our case due to the
following reasons: 1) the genomic data (i.e., DNA sequences)
concerned should be aligned and clustered before obfuscation
methods are used; 2) in practical situations, a fast sequence
alignment and clustering tool is highly required to deal with a
tremendous number of DNA sequences; 3) usually genomic
privacy protection should be imposed on datasets of DNA
sequences within the same species, which are often with high
sequence similarity and MegaBLAST specifically excels in
handling highly-similar sequence alignment.

Because MegaBLAST can find a list of homologs3 to the query
sequence, we can select a certain number (i.e., the k defined in
Section 2.3) of the top homologs together with the query
sequence to form a cluster. Later, obfuscation methods are
imposed on each cluster for genomic privacy protection.

2.3 k-Anonymity
The k-anonymity (Sweeney, 2002) was initially proposed to tackle a
problem of how to make the individual data-owners
indistinguishable while their data are publicly released and
remain practically useful. The value k refers to the number of
individuals (or samples) within a cluster. In other words, the data
are originally entity-specific and well-organized which are
represented by some semantic categories (or attributes) consisting
of a set of values. To prevent the data owners from being re-
identified, a typical k-anonymity based method uses generalization.
Generalization methods are based on a linear and unambiguous
generalization hierarchy (Malin, 2005b) where the value at the
higher level (ancestor) is less-specific than that at the lower-level
(child). They replace the value of each individual by a higher-level
value via the generalization hierarchy rule. For example, we can use
“California” to replace “Los Angeles” and “San Diego,” and use
“United States” to replace “California” and “New York”. In this way,
a released data set processed by a k-anonymity method can
guarantee that an individual’s record within this data set cannot
be distinguished from at least (k − 1) other individuals. In other
words, the probability of re-identifying an individual based on the
data set is no more than 1/k. Obviously, a larger kwill provide better

privacy protection. Besides generalization, suppression (Kisilevich
et al., 2010) is another way to realize the k-anonymity.

2.4 Sequence Obfuscation
In this paper, for sequence obfuscation, we used a method proposed
in (Malin, 2005b). This method used a generalization hierarchy
based on the IUPAC nucleotide representation code (IUPAC-IUB
Comm. on Biochem. Nomenclature, 1970). Generally speaking, the
basic four nucleotides (A, T, C and G) act as the elements in the 1-st
level of the generalization hierarchy; in the 2-nd level, six letters (R,
W, M, K, S and Y) are used to represent the six different
combinations of any two nucleotides in the 1-st level; letters (D,
V, H and B as well as the gap) in the 3-rd level represent the
combinations of any three nucleotides plus the gap; and we use the
letter N in the 4-th level to represent all the possible situations.
Details of the generalization hierarchy is shown in Figure 2.

Specifically, given two nucleotides qil and q
j
l in the l-th position of

the i-th and the j-th aligned DNA sequences Q(i) and Q(j),
respectively, their obfuscation (nucleotide) code is represented as
g(qil, qjl ). For example, given two aligned nucleotide sequence
segments CCTGTAAA and CA-GTRAA, according to the rule in
Figure 2, their obfuscation sequence is CMNGTRAA. To measure
the information loss after sequence obfuscation, a distance
measurement was proposed in (Malin, 2005b). The distance
between qil and qjl after nucleotide obfuscation is defined as:

dist qil, q
j
l( ) � 2lev g qil, q

j
l( )( ) − lev qil( ) − lev qjl( ), (2)

where lev (·) is the level of nucleotides. Based on Eq. 2, the
distance between two aligned sequences (suppose the length of
both sequences is L) can be defined as the sum of distances of all
the nucleotides at the same positions, i.e.,

d Q i( ),Q j( )( ) � ∑
L

l�1
dist qil, q

j
l( ). (3)

Using the two sequences CCTGTAAA and CA-GTRAA,
according to Eq. 3, we obtain the sequence distance is d = 0 +
2 + 4 + 0 + 0 + 1 + 0 + 0 = 7. In our experiments, we use the
distance to measure the degree of information loss after sequence
obfuscation. Definitely, the shorter the distance is, the less the
information loss incurs after sequence obfuscation.

FIGURE 2 | The generalization hierarchy (Malin, 2005b) for sequence or
nucleotide obfuscation. Note that lev is the level of corresponding nucleotides
and the symbol “-” represents the gap.

3A homolog is a sequence from a searching database which shares a high sequence
similarity with the query one.
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2.5 IterMegaBLAST for Genomic Privacy
Protection
Given a dataset of DNA sequences, the procedures for our
method can be summarized in Algorithm 1. In Algorithm 1,
�x�means taking the largest integer less than or equal to x; ∪ and \
are the set union and set difference, respectively;
MegaBLAST(Q(t),S(t)) means using Q(t) as the query
sequence and S(t) as the searching database to do the
MegaBLAST search. Similar to other studies (Li et al., 2012),
we set k = 2 in our experiments. Note when the number of a
dataset is odd, we need to use MegaBLAST to align the last three
sequences. After sequence alignment, we obtain the obfuscated
sequence for the query sequence and the top homolog. Then we
do the second obfuscation on the second top homolog and the
obfuscated sequence previously obtained.

For ease of reference, we name our method as
IterMegaBLAST, which is publicly available at https://github.
com/shibiaowan/IterMegaBLAST.

Algorithm 1. The algorithm for IterMegaBLAST

3 RESULTS

3.1 Datasets
Two datasets [Dataset I (Makova et al., 2001) and Dataset II
(Yao et al., 2002)] were used to evaluate the performance of
IterMegaBLAST. Both datasets are human DNA sequences.
Dataset I is a group of DNA sequences in the melanocortin
gene promoter region while Dataset II is in the human
mitochondrion control region. The numbers of sequences
for these two datasets are 56 and 372, respectively. As can be
seen from Figure 3A,B, the average sequence length of
Dataset I (i.e., 6.58 kb, Figure 3A) is much longer than
that of Dataset II (i.e., 0.5 kb, Figure 3B). Besides, the
nucleotide G has relatively high enrichment in Dataset I
compared to other nucleotides (Figure 3C) whereas
Dataset II is enriched in the nucleotide C compared to
other nucleotides (Figure 3D).

The average distance between sequences and their obfuscated
sequences, and the time complexity were used to measure the
performance of different algorithms. Note that because all of the
algorithms we compared in this paper are based on the k-
anonymity, the degree of anonymity (or degree of privacy)
(Diaz et al., 2002) should be the same when k is the same.
Therefore, we do not report the degree of privacy.

3.2 Performance of IterMegaBLAST Varying
with Respect to the Number of Sequences
Figure 4 compares IterMegaBLAST against several state-of-the-art
privacy-protection methods for both Dataset I and Dataset II when
the number of DNA sequences gradually increase. DNALA (Malin,
2005b) uses a multiple sequence alignment technique for sequence
alignment and uses the CLUSTALW for clustering. All of MWM,
Online and Hybrid use global pairwise sequence alignment, while
for clustering, they use maximumweight matching (Li et al., 2012),
an online algorithm (Li et al., 2012) and hybrid of the former two
algorithms. IterMegaBLAST uses an iterative MegaBLAST for both
sequence alignment and clustering. The performance is measured
by the average distances between sequences and their obfuscated
sequences. For readers’ convenience, we have summarized the
methodological differences between IterMegaBLAST and other
methods in Table 1. Please note that because all of the
algorithms we compared in this paper are based on k-
anonymity for sequence obfuscation, we only show the steps of
sequence alignment and clustering in the table. Only DNALA uses
a multiple sequence alignment method (MSA) called CLUSTALW
whereas other methods use a pairwise sequence alignment method
which is generally faster than MSA methods. For the clustering
step, MWM has the same time complexity as the greedy algorithm
used in DNALA; however, the former is with higher precision. The
online algorithm tries to speed up the clustering step based on the
MWM method at the expense of less precision. The shorter the
distance is, the less the information loss. Because the query DNA
sequences for IterMegaBLAST are randomly selected, the
performance of IterMegaBLAST may vary a bit even when the
same DNA sequences are used. To reduce the bias, we performed
IterMegaBLAST ten times for each case (number of sequences).
For ease of presentation, only the average performance is shown.

As can be seen from Figure 4A, IterMegaBLAST significantly
outperforms all of the state-of-the-art methods in all cases when
the number of sequences increases from 10 to 56. While the
average distances of all of MWM, DNALA, Hybrid and Online
are strictly monotonically decreasing with the number of
sequences, this is not the case for IterMegaBLAST, which
achieves its best performance when the number of sequences
is 20. It is noted that because all of these five methods are based on
k-anonymity (i.e., k = 2), the degree of anonymity (Diaz et al.,
2002), which is to measure the degree of how well the privacy is
protected, should be the same. Therefore, experimental results
suggest that under the same degree of anonymity,
IterMegaBLAST can maintain the least information loss for
data utility among all the genomic privacy-protection
methods. The results also suggest that sequence similarity
based methods (i.e., IterMegaBLAST) can provide sufficient
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privacy protection for genomic data (particularly long DNA
sequences) while the information loss maintains at a
low level.

Similar conclusions can be drawn from Figure 4B except that
IterMegaBLAST may be only comparable to (if not better than)
MWM, particularly when the number of sequences is larger than
300. Except MWM, IterMegaBLAST performs better than
DNALA and Online for all the ranges of sequence numbers,
and outperforms the Hybrid algorithm for all cases except when
the number of sequences is around 325. This is probably because
the lengths of DNA sequences are vary short (average 0.5 kb) and
MegaBLAST is better able to handle long DNA sequences.
Moreover, we would like to emphasize that the number of
non-standard nucleotides (e.g., N) in the sequences of Dataset
II is much larger than that of Dataset I, which contributes to more
information loss whereas MegaBLAST treats them with equal
weights as those standard nucleotides. On the other hand, MWM
directly uses the minimum distance as the criteria to cluster the
sequences.

For the genomic-privacy datasets (e.g., Datasets I and II), they
are usually with high sequence similarity. When the number of
DNA sequences increases, for most of the methods, it is more
likely for a query sequence to find its top homolog with higher
sequence similarity, thus reducing the distance between the
original sequence and their obfuscated sequence. While we
observed the similar trend (e.g., Dataset II and the general
trend of Dataset I) for IterMegaBLAST, it had a minor
difference that it achieved the best performance at 20 instead
of further reducing the average distance when the number of
sequences further increased for Dataset I. As MegaBLAST is
suitable for high-similarity sequence alignment, IterMegaBLAST
might form clusters with lower distances between the original
sequences and the obfuscated sequences compared to other
methods. However, adding more sequences will change the
compositions of clusters because more than one homolog
might be found with the same high sequence similarity. In this
case, by selecting a different homolog to form a cluster with the
query sequence, it will affect the alignment of the remaining

FIGURE 3 | Statistics of the twodatasets used in this paper. (A) and (B): Thedensity distribution of the sequence lengths for Dataset I (A) andDataset II (B). (C,D): Distributions of
the percentages of each nucleotide (i.e., A, C, G, and T) for Dataset I (C) and Dataset II (D). The numbers of sequences for Dataset I and Dataset II are 56 and 372, respectively.
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sequences which might achieve less optimal alignment, leading a
bit increase in the average distances. But please note that the
general trend of the average distance with respect to the number
of sequences is without huge difference between IterMegaBLAST
and other methods.

3.3 Comparing With State-of-The-Art
Methods
To further demonstrate the superiority of IterMegaBLAST,
Table 2 compares the performance of IterMegaBLAST against
several state-of-the-art privacy-protection methods. Another

algorithm called stochastic hill-climbing (Li et al., 2007) is
added to compare with IterMegaBLAST. Moreover, DNALA,
MWM, Online and Stochastic hill-climbing are capable of
performing multiple sequence alignment (MSA) and pairwise
sequence alignment (PSA).

As can be seen from Table 2, for Dataset I, IterMegaBLAST
remarkably outperforms all of the four state-of-the-art methods,
no matter they use MSA or PSA; while for Dataset II,
IterMegaBLAST performs better than DNALA, Online and
stochastic hill-climbing, but its performance is comparable to
(if not better than) that of MWM. In other words, under the
same degree of anonymity or privacy protection,

FIGURE 4 | The average distances of IterMegaBLAST varying with respect to the number of DNA sequences for (A) Dataset I and (B) Dataset II. The shorter the
distance is, the less the information loss. DNALA is from (Malin, 2005b), while MWM, Hybrid and Online algorithms are from (Li et al., 2012). IterMegaBLAST is themethod
proposed in this paper.

TABLE 1 | Methodological Comparison between IterMegaBLAST and state-of-the-art genomic privacy-protection methods. PSA: pairwise sequence alignment.

Method Alignment Clustering References

DNALA CLUSTALW A greedy algorithm Malin, (2005b)
MWM PSA MWM Li et al. (2012)
Online PSA An online algorithm Li et al. (2012)
Stochastic hill-climbing PSA A stochastic hill-climbing algorithm Li et al. (2007)
IterMegaBLAST Iterative MegaBLAST A MegaBLAST-homolog-based algorithm This paper
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IterMegaBLAST can achieve higher utilization value compared
to other methods.

Table 3 compares the computational time of IterMegaBLAST
against MWM equipped with either PSA or MSA. Since MWM
performs the best among the four aforementioned methods as
demonstrated in the reference (Li et al., 2012), we only report the
computational time of MWM here.

As can be seen, IterMegaBLAST performs impressively faster than
MWM + PSA and MWM + MSA for both datasets. The reason is
that IterMegaBLAST only needs to use MegaBLAST for �N/2� times
and each time the number of sequences in the searching database will
decrease. As we have mentioned, MegaBLAST performs 10 times
faster than traditional BLAST, whereas MWM has to obtain all the
pair-wise distances for all sequences. Interestingly, the computational
time of IterMegaBLAST for Dataset II is much longer than that for
Dataset I. This is because the number of sequences in Dataset II is
much larger, causing a significantly larger number of MegaBLAST
invocations for Dataset II. Moreover, MegaBLAST is more capable of
handling long sequences like Dataset I, which also explains why the
time advantage of IterMegaBLAST over MWM is more obvious for
Dataset I than that for Dataset II.

3.4 Example of Using IterMegaBLAST
To further exemplify how IterMegaBLAST is used to protect
genomic privacy and minimize the utility loss, we showed an
example (Figure 5) of using a query sequence from Dataset II.
IterMegaBLAST consists of two major steps: sequence alignment
and clustering (the left panel of Figure 5), and sequence

obfuscation (the right panel of Figure 5). Specifically, given the
query sequence LN|AF392171|GI|18029617, IterMegaBLAST first
uses MegaBLAST to find its top homolog, e.g.,
LN|AF392284|GI|18029730 and a cluster. As can be seen from
Figure 5, there are two positions of mismatches, namely 232 and
290 (see the red circles in Figure 5), both of which are “T″ for the
query sequence whereas both of the corresponding nucleotides for
the homolog are “C”. Then, IterMegaBLAST uses the sequence
obfuscation method introduced in Section 2.4 to generate the
generalized sequence for this cluster. Thus, the mismatched
nucleotides are replaced by the more generalized nucleotide “Y”
(see the blue circles in Figure 5). Then, the distance is calculated as
4 according to Eq. 3 and the related meta information is produced.
This process can be iteratively performed if more sequences are
incorporated and deeper degrees of obfuscation are needed. After
obfuscation, it is unlikely to differentiate the query sequence from
the sequences in the same cluster, whereas we can keep the other
sequence information unchanged to maximize its utility value.

4 DISCUSSIONS

As more and more people are involved in personalized medicine,
genomic privacy has become one of the essential yet easy-to-ignore
topics. Givenmultiple national-level projects like “All of Us” and “1
+ Million Genomes” Initiative have been proposed across the US
and Europe, we expect to see an avalanche of personal genomic
data to be sequenced and thus require high-degree of genomic
privacy protection. Conventional methods on protecting genomic
privacy largely rely on common data privacy methods but ignore
the special properties of genomic sequences. As sequence-based
data are in in large size and are more complicated than
conventional data which are easy to digitalized or vectorized,
sequence-specific privacy-protection methods should be
proposed to tackle the concern of genomic privacy.

It should also be noted that in recently years, multiple machine
learning based methods (Al et al., 2017; Wan et al., 2017; Chen et al.,
2020; Carpov et al., 2021) are proposed to balance the tradeoff between
data privacy protection and maximize data utilization. Most of these
methods will optimize an objective function which maximize the data
utility value and simultaneously minimize the privacy compromise.

TABLE 2 | Comparing IterMegaBLAST with state-of-the-art genomic privacy-protection methods. m ± n denotes (mean)±(standard deviation). The performance is
measured by the average distance between DNA sequences and their obfuscated sequences. The shorter the distance is, the less the information loss. MSA, multiple
sequence alignment; PSA, pairwise sequence alignment.

Dataset Method MSA PSA

I DNALA Malin, (2005b) 13.79 13.57
MWM Li et al. (2012) 13.39 13.18
Online Li et al. (2012) 16.93 16.81
Stochastic hill-climbing Li et al. (2007) 13.39 13.18
IterMegaBLAST 10.78 ± 0.94 10.67 ± 1.07

II DNALA Malin, (2005b) 3.33 3.35
MWM Li et al. (2012) 2.99 2.98
Online Li et al. (2012) 3.79 3.80
Stochastic hill-climbing Li et al. (2007) 3.13 3.11
IterMegaBLAST 3.05 ± 0.07 3.00 ± 0.10

Bold values indicate the best performance.

TABLE 3 | Comparing the computational time of IterMegaBLAST with that of
state-of-the-art genomic privacy-protection methods. MSA, multiple
sequence alignment; PSA, pairwise sequence alignment.

Dataset Method Time (seconds)

I MWM + MSA Li et al. (2012) >9000
MWM + PSA Li et al. (2012) >7000
IterMegaBLAST 112

II MWM + MSA Li et al. (2012) >2000
MWM + PSA Li et al. (2012) >2000
IterMegaBLAST 384

Bold values indicate the best performance.
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Some of them focus on protecting common data (e.g., demographic
data like age, ethnics, address) while other methods focus on
protecting genomic-specific privacy. The advantages of machine
learning based methods over conventional encryption methods are
that it is impossible for a third party to intercept any encryption keys to
retrieve the data privacy, although these are achieved at the expense of
some degree of data utility loss. Thus, one of the priorities onmachine
learning based methods are to maximize the data utilization based on
the condition that the genomic data privacy has been preserved.

In this paper, we propose a sequence obfuscation method to
protect personal genomic privacy by leveraging the properties of
DNA sequences and k-anonymized method. By sequence
alignment and clustering, and sequence obfuscation, we have
demonstrated that our proposed method outperform existing state-
of-the-art methods in terms of both accuracy and time complexity. It
should be also noted that one of the limitations of this paper is that no
clear utilization applications have been shown due to the high
requirement of specific biological knowledge. Instead, we have
demonstrated the effectiveness of our method indirectly from the
minimization of the difference between the original sequence data and
the encrypted sequence data, i.e., the less the difference, the higher the
utilization value of the encrypted data. Although it is logically sound, it
might be more impressive to have specific utilization applications like
(Gymrek et al., 2013) to demonstrate the applicability of our method.
We will dive into this direction in our future research to improve our
method on genomic privacy protection.

Besides generalization mentioned in Section 2.3, another
common way for data anonymization is data suppression.
Suppression is to remove an attribute’s value entirely from a
data set. This would be useful when the data features or
attributes are clearly defined. For example, the age
information for a demographic data, can be suppressed
(i.e., removed) from each sample entirely. But please note
that the suppression should only be used for features or
attributes which are not relevant to the purpose of data
utilization. If our purpose is to determine which age groups
of people are more inclined to develop a particular disease,
removing the age information does not make sense in this
case. While for genomic privacy protection, data suppression
has not been commonly used because the features in genomic
data are not clearly defined. But that does not mean data
suppression can’t be applied in genomic data. If we have a
specific utilization task in which the genomic features can be
clearly defined, the suppression method will be more useful in
this case.

In this paper, we used k = 2 for the k-anonymity in our
comparisons. It would be interesting to see how the performance
of IterMegaBLAST will be with respect to the increase of k in the
k-anonymity. However, we would like to emphasize that to have a
fair comparison with other methods, we implemented
IterMegaBLAST with the same k (i.e., k = 2) for the k-
anonymity part. Using different k’s will lead to different

FIGURE 5 | An example of how IterMegaBLAST works. IterMegaBLAST consists of two major steps: sequence alignment and clustering, and sequence
obfuscation. Given a query sequence, e.g., LN|AF392171|GI|18029617, IterMegaBLAST first uses MegaBLAST to find its top homolog, e.g.,
LN|AF392284|GI|18029730, which form a cluster. Then, IterMegaBLAST uses the sequence obfuscation method introduced inSection 2.4 to generate the generalized
sequence (see the “Sequence info” box on the right panel) for this cluster. The distance is calculated and the related meta information is produced (see the “Meta
info” box on the right panel). The red circles indicate the mismatched nucleotides between the query sequence and the homolog, and the blue circles represent the
generalized nucleotides for the mismatches nucleotides.
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degrees of privacy protection. Specifically, a larger k will yield
higher degree of privacy protection at the expense of less data
utilization. In other words, the average distances for k > 2 will be
larger than those for k = 2.

As some compared state-of-the-art methods used
CLUSTALW for sequence alignment whereas IterMegaBLAST
usedMegaBLAST, it is interesting to know their differences. First,
the major difference between CLUSTALW and BLAST is that
CLUSTALW is a multiple sequence alignment tool whereas
BLAST is a pairwise sequence alignment (but BLAST can also
be adapted to multiple sequence alignment case).
IterMegaBLAST is based on MegaBLAST which is similar to
BLAST except that MegaBLAST is efficient to handling much
longer DNA sequences and it particularly excels in handling
highly-similar sequence alignment (which is common for
genomic privacy-protection data). Therefore, the major
difference between CLUSTALW and IterMegaBLAST is that
CLUSTAL is a multiple sequence alignment tool whereas
IterMegaBLAST is based on a pairwise sequence alignment
tool MegaBLAST. While both of them are popular tools for
computing sequence similarity, we believed our algorithm
plays a more significant role for improving the performance
than the difference between these two tools.

We noted that the two datasets in this paper might be a bit old,
thus it might be good to try our method on different datasets to
further demonstrate the superior performance. While on another
hand, we would like to emphasize that genomic privacy protection
is a bit different from traditional machine learning application
problems. Traditionally, for machine learning (especially
supervised learning) applications, it would be more unbiased
when using old data as training sets and using newer data as
test sets compared to using old data for both training and test sets.
However, in this paper, no supervised learning is involved. Instead,
our purpose is to obfuscate the unique properties or characteristics
for an individual DNA sequence from a group of highly similar
sequences. Using old data will not compromise the unbiasedness of
the way we evaluated methods. In our future research, however, we
will try our method on larger-scale datasets.

5 CONCLUSION

This paper proposes an accurate and efficient approach, namely
IterMegaBLAST, which leverages sequence similarity and

information obfuscation for genomic privacy protection. Given
a dataset of DNA sequences, we formed clusters by iteratively
selecting query sequences and finding their top homologs by
MegaBLAST. Subsequently, the aligned sequences in each cluster
were obfuscated by replacing the different nucleotides with their
lowest common ancestors via a DNA generalization lattice
scheme. It was found that IterMegaBLAST performs much
better than existing genomic privacy-preserving methods with
less information loss and higher efficiency under the same degree
of genomic privacy protection.
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