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Long non-coding RNAs (lncRNAs) play crucial roles in many biological processes and are
implicated in several diseases. With the next-generation sequencing technologies,
substantial unannotated transcripts have been discovered. Classifying unannotated
transcripts using biological experiments are more time-consuming and expensive than
computational approaches. Several tools are available for identifying long non-coding RNAs.
These tools, however, did not explain the features in their tools that contributed to the
prediction results. Here, we present Xlnc1DCNN, a tool for distinguishing long non-coding
RNAs (lncRNAs) from protein-coding transcripts (PCTs) using a one-dimensional
convolutional neural network with prediction explanations. The evaluation results of the
human test set showed that Xlnc1DCNN outperformed other state-of-the-art tools in terms
of accuracy and F1-score. The explanation results revealed that lncRNA transcripts were
mainly identified as sequences with no conserved regions, short patterns with unknown
functions, or only regions of transmembrane helices while protein-coding transcripts were
mostly classified by conserved protein domains or families. The explanation results also
conveyed the probably inconsistent annotations among the public databases, lncRNA
transcripts which contain protein domains, protein families, or intrinsically disordered regions
(IDRs). Xlnc1DCNN is freely available at https://github.com/cucpbioinfo/Xlnc1DCNN.

Keywords: long non-coding RNA (lncRNA), one-dimensional convolutional neural network (1D CNN), deep learning,
explainable artificial intelligence (XAI), SHAP (SHapley additive exPlanations)

1 INTRODUCTION

Long non-coding RNAs (lncRNAs) are RNAs that are not translated into proteins and are longer
than 200 nucleotides. lncRNAs play important roles in many critical biological processes, including
gene expression, gene regulation, gene silencing, chromatin remodeling, acting as molecular
scaffolds, etc. (Rinn and Chang, 2012; Marchese et al., 2017; Statello et al., 2021), and have been
implicated in human diseases such as cancers and diabetes (Morán et al., 2012; Fang and Fullwood,
2016; Chan and Tay, 2018; Jin et al., 2020). The enhancements of next-generation sequencing
technology, i.e., RNA sequencing (RNA-Seq) (Wang et al., 2009; Stark et al., 2019) have led to
numerous discoveries of unannotated transcripts. However, classifying the innumerable number of
unclassified sequences using experimental approaches is time-consuming and expensive. In contrast,
computational approaches are faster and more convenient.

Edited by:
Sarath Chandra Janga,

Indiana University, Purdue University
Indianapolis, United States

Reviewed by:
Doaa Salem,

Indiana University, Purdue University
Indianapolis, United States

Tsukasa Fukunaga,
Waseda University, Japan

*Correspondence:
Duangdao Wichadakul

duangdao.w@chula.ac.th

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal
Frontiers in Genetics

Received: 15 February 2022
Accepted: 11 April 2022
Published: 24 May 2022

Citation:
Lin R and Wichadakul D (2022)

Interpretable Deep Learning Model
Reveals Subsequences of Various
Functions for Long Non-Coding

RNA Identification.
Front. Genet. 13:876721.

doi: 10.3389/fgene.2022.876721

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8767211

ORIGINAL RESEARCH
published: 24 May 2022

doi: 10.3389/fgene.2022.876721

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.876721&domain=pdf&date_stamp=2022-05-24
https://www.frontiersin.org/articles/10.3389/fgene.2022.876721/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.876721/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.876721/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.876721/full
https://github.com/cucpbioinfo/Xlnc1DCNN
http://creativecommons.org/licenses/by/4.0/
mailto:duangdao.w@chula.ac.th
https://doi.org/10.3389/fgene.2022.876721
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.876721


Most of the existing computational approaches for classifying
lncRNA and protein-coding transcripts used feature extraction
methods to obtain training features, e.g., the upgraded version of
Coding Potential Calculator (CPC2) (Kang et al., 2017), CNIT
(Guo et al., 2019), PLEK (Li et al., 2014), CPAT (Wang et al.,
2013), FEELnc (Wucher et al., 2017), RNAsamba (Camargo et al.,
2020), LncADeep (Yang et al., 2018), and lncRNA_Mdeep (Fan
et al., 2020). Most of them used similar features such as the Fickett
and hexamer scores, the ORF length, and then topped up with
additional sequence and structural features. Moreover, none of
them explained how the features contributed to the model
prediction results.

Deep learning algorithms have become very popular,
especially for a dataset with a large number of data points and
data dimensions as the features will be learned by the algorithms
themselves during the training. Many convolutional neural
networks (CNNs), the 2D-CNNs, have been widely used for
image classification and segmentation applications (Yamashita
et al., 2018) because of their great capability for extracting features
from input data. Recently, many applications such as speech
recognition and ECG monitoring (Kiranyaz et al., 2021) started
using 1D-CNN instead of the traditional machine learning
approaches. The applications for detecting irregular heartbeats
(Acharya et al., 2017; Li et al., 2019; Hsieh et al., 2020) have shown
that using only a simple 1D-CNN could achieve high prediction
accuracy without explicitly addressing and extracting features as
inputs for the models.

While most complex black-box models (e.g., boosting tree
algorithms, ensemble models, deep neural networks) typically
provide better learning performance, they usually are
uninterpretable. To understand how a complex model learns
to differentiate things, explainable artificial intelligence (XAI)
has recently become one of the popular topics aiming to
interpret and explain machine learning or deep learning
models (Tjoa and Guan, 2021). Explainable AI is essential for
users to understand and trust the model prediction results. It
can help illustrate what the models perceive and explain how
these perceptions can be mapped with the underlying
knowledge of the human. Some of the favored approaches to
obtain an explanation from a complex black-box model are
LIME (Ribeiro et al., 2016) and SHAP (Lundberg and Lee,
2017). LIME builds a local surrogate model to explain
individual prediction. SHAP (Shapley Additive exPlanations)
introduced SHAP values representing the unified measure of
feature importance together with SHAP value estimation
methods. DeepSHAP (Chen et al., 2019) was built based on
the connection between the original SHAP and DeepLIFT
(Shrikumar et al., 2017) to explain the deep learning model
and further refined and extended with relative background
distributions and stacks of mixed model types.

With still some ambiguities in classifying lncRNA and
mRNA sequences based on training features, together with
the promising results of 1D-CNN in previous applications, in
this paper, we propose Xlnc1DCNN, a 1D-CNN model for
classifying lncRNA and mRNA with an explanation. The
model solely uses nucleotide sequences as the training set.
On the human test set, Xlnc1DCNN outperformed all other

models in terms of accuracy and F1-score. For the cross-
species dataset, Xlnc1DCNN also had the generalization
across testing species. We explained how the Xlnc1DCNN
distinguished the lncRNA from mRNA transcript sequences
by applying DeepSHAP to generate SHAP values representing
how the model captured and visualized the contribution of
each nucleotide using an in-house python code. The
explanation of true positives (i.e., lncRNA transcript
sequences) showed that the model classified a sequence as
lncRNA if the sequence did not contain any important regions
or contained only an N-terminal signal peptide or
transmembrane helices. The explanation of true negatives
(i.e., mRNA transcript sequences) showed that the model
learned protein domains/families from the input transcript
sequences and used them to predict the sequences as mRNAs.
The explanation of false positives (i.e., mRNA predicted as
lncRNA transcript sequences) showed that the model could
not capture any important regions representing protein
domains/families or found important regions contributing
to both lncRNA and mRNA prediction. A few false positive
sequences were also found with inconsistent transcript types
among the databases. Lastly, the explanation of false negatives
(i.e., lncRNA predicted as mRNA transcript sequences)
showed that the model captured protein domains or
families within these lncRNA sequences and, hence,
misclassified them as mRNAs.

2 MATERIALS AND METHODS

2.1 Data Compilation and Pre-Processing
The human transcript datasets for training the model were
obtained from GENCODE (Frankish et al., 2018) and
LNCipedia (Volders et al., 2018). GENCODE (release 32)
contains 48,351 sequences of lncRNA transcripts and 100,291
sequences of protein-coding transcripts (PCTs). For LNCipedia
(version 5.2), only high confidence sequences were selected,
which resulted in 107,039 lncRNA transcripts. To remove
lncRNA transcript sequences from LNCipedia that are
duplicates of GENCODE, we used CD-HIT-EST-2D (Li and
Godzik, 2006) to compare lncRNA sequences between
LNCipedia and GENCODE and filter out the sequences with
more than 95% similarity from the LNCipedia dataset. A total of
72,803 lncRNA sequences from LNCipedia remained. We then
pre-processed the sequences used for training the Xlnc1DCNN
model by discarding the sequences shorter than 200 bases and
longer than 3,000 bases. After filtering, one-hot encoding was
used to encode the sequences. The total number of remaining
sequences after cleansing was 185,030 with 108,578 lncRNAs
and 76,453 PCTs (Table 1). The lncRNAs and PCTS were set as
the positive and negative classes, respectively. The dataset was
stratified split by 80% and 20% into the training and test sets.

Cross-species datasets included the mouse dataset obtained
from GENCODE (Frankish et al., 2018) (release M23) and the
gorilla, chicken, and cow datasets obtained from Ensembl
(Cunningham et al., 2019) (release 102). We pre-processed the
cross-species datasets by discarding the sequences shorter than
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200 bases and longer than 3,000 bases. We then randomly
selected the mRNA and lncRNA sequences for each species.
The test transcripts of gorilla, chicken, cow, and mouse
contained 8,000, 8,000, 11,000, and 32,000 sequences,
respectively, each with an equal number of sequences from
each class.

2.2 Model Architecture
In this study, we designed and implemented the Xlnc1DCNN
model in Python3 using TensorFlow on NVIDIA GeForce GTX
1080 Ti and Intel Xeon Silver 4112 Processor. The built model
could distinguish lncRNAs from the mRNAs (PCTs) and
outperformed the existing tools for the human dataset. The
model architecture consists of three convolutions with
pooling layers, two fully connected layers, and a Softmax
layer. We used ReLU as the activation function for
convolution and fully connected layers. We also found that
adding the dropout layer after the pooling layer made the
model perform slightly better.

We used 10% of the data from the training set to perform
hyperparameter optimizations over the kernel size, dropout
rate, stride size, batch size, and learning rate by using the grid
search algorithm. The best kernel size was 57, with the stride
size equal to 1. The model performance started to decrease
after increasing the stride size for almost every kernel size. For
the learning details, the momentum, learning rate, number of
epochs, and batch size were 0.9, 0.01, 120, and 128,
respectively, with the stochastic gradient descent as an
optimizer. The final hypermeters used in the model
architecture are shown in Table 2.

2.3 Model Interpretation
DeepSHAP was used to interpret how the proposed Xlnc1DCNN
model could classify the lncRNAs and mRNAs from the input
transcript sequences. As DeepSHAP needs background
distributions as references to approximate the SHAPley values
on conditional expectation, 175 sequences from each class were
randomly selected as the representative background. A total of
350 sequences were used as the backgrounds as it was limited by
the available GPU.

The output fromDeepSHAP is SHAP values representing each
nucleotide’s contribution to the model. To obtain SHAP values
representing each nucleotide within a sequence, we summed up
SHAP values inside the array of one-hot encoding and got a single
SHAP value of each nucleotide. To visualize SHAP values from
DeepSHAP of the input transcript sequence, we further summed
up the SHAP values of three consecutive nucleotides, which
probably represented an amino acid, and generated the results
in three reading frames. We then plotted a color line for each
representative amino acid. The blue and red colors, respectively,
indicate the contribution of each amino acid for classifying the
sequence as an lncRNA and an mRNA (Figure 1).

2.4 Evaluation
2.4.1 Model Evaluation Metrics
To evaluate the performance of the proposed Xlnc1DCNNmodel
with other existing tools, we used the following metrics. True
positive (TP) represents the lncRNA transcript sequences that are
predicted as lncRNAs. True negative (TN) represents PCTs that
are predicted as PCTs. False positive (FP) represents the PCTs
that are predicted as lncRNAs. False negative (FN) represents
lncRNAs that are predicted as PCTs.

Accuracy � TP + TN
TP + TN + FP + FN

Sensitivity � TP
TP + FN

Specificity � TN
TN + FP

Precision � TP
TP + FP

F1 − Score � 2 × precision × sensitivity
precision + sensitivity

2.4.2 Interpretation Evaluation Method
To compare the explanation results of Xlnc1DCNN on the
human test set with known biological knowledge, we utilized
the available bioinformatics tools/databases such as TMHMM

TABLE 1 | Summary of datasets from GENCODE and LNCipedia.

Sequence Type Species Data Source Dataset Size <200 bps >3,000 bps No.of Transcripts
after Cleansing

mRNA Human GENCODE (release 32) 100,291 374 23,464 76,453
lncRNA Human GENCODE (release 32) 48,351 291 3,486 44,574
lncRNA Human LNCipedia (version 5.2) 72,803 0 8,799 64,004

TABLE 2 | Hyperparameters of the proposed 1D-CNN architecture.

Layer Hyperparameter

Conv 1D kernel size = 57, stride = 1
Max-Pooling pool size = 2
Dropout p = 0.3
Conv 1D kernel size = 57, stride = 1
Max-Pooling pool size = 2
Dropout p = 0.3
Conv 1D kernel size = 57, stride = 1
Max-Pooling pool size = 2
Dropout p = 0.3
Flatten -
Dense 256
Dropout p = 0.5
Dense 256
Dropout p = 0.5
Softmax 2
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(Krogh et al., 2001) to identify transmembrane helices, Pfam
(Mistry et al., 2020), and InterPro (Blum et al., 2020) to identify
protein domains or families for all sequences in the test set. From
InterPro, we considered InterPro entries, which include InterPro
domain, family, homologous superfamily, repeat, and sites
(i.e., active site, binding site, conserved site, PTM site).
MobiDB (integrated within InterPro) (Piovesan et al., 2021)
was also used to identify intrinsically disordered regions
within sequences.

3 RESULTS

3.1 Model Evaluation Results
We compared the performance of Xlnc1DCNN with eight
existing tools: CPC2, CPAT, CNIT, PLEK, FEELnc,
RNAsamba, LncADeep, and lncRNA_Mdeep (Wang et al.,
2013; Li et al., 2014; Kang et al., 2017; Wucher et al., 2017;
Yang et al., 2018; Guo et al., 2019; Camargo et al., 2020; Fan
et al., 2020) with the version listed in Supplementary Table S1.
To have a fair and unbiased evaluation, we retrained CPAT,
FEELnc, and RNAsamba that provided a training option using
our human training dataset and used the pre-trained models of
CPC2, CNIT, and LncADeep that did not provide a training
option. Although PLEK and lncRNA_Mdeep came with a
training option, retraining PLEK and lncRNA_Mdeep was

very time-consuming, so we skipped retraining both and
used their default pre-trained models.

3.1.1 Performance Evaluation on the Human Test Set
The results on the human test set (Table 3) show that
Xlnc1DCNN achieved the highest accuracy (94.53) and F1-
Score (95.38), the second-highest precision (94.55) slightly
lower than LncADeep, and the third-highest specificity (92.13)
slightly lower than LncADeep and FEELnc. CPC2, CNIT, and
CPAT achieved high sensitivity but much lower specificity. While
FEELnc, RNAsamba, LncADeep, and lncRNA_Mdeep
performed well on the average of every metric but overall, still
lower than Xlnc1DCNN. We then analyzed the classification
power of each tool by plotting a receiver operating characteristic
curve (ROC) and measuring the area under the curve (AUC) as
shown in Figure 2A, where Xlnc1DCNN achieved the highest
AUC (0.9825) on the human test set. Figure 2B shows that
Xlnc1DCNN also outperformed all tools on any range of
sequence lengths of the human test set (Supplementary
Table S2).

3.1.2 Performance Evaluation on Cross-Species
Datasets
To evaluate the generalization of Xlnc1DCNN with cross-species
datasets, we compared the model with other tools using the
mouse, gorilla, chicken, and cow datasets. The evaluation

FIGURE 1 | The process to obtain SHAP values for explaining the nucleotide contribution that was captured by the model to differentiate lncRNA from mRNA
transcript sequences.

TABLE 3 | Evaluation results of all tools on the human test set.

Model TP FP TN FN Accuracy Sensitivity Specificity Precision F1

Xlnc1DCNN 20,895 1,204 14,087 821 94.53 96.22 92.13 94.55 95.38
CPC2 21,023 6,457 8,834 693 80.68 96.81 57.77 76.50 85.47
CNIT 21,307 3,580 11,711 409 89.22 98.12 76.59 85.61 91.44
PLEK 20,704 6,665 8,626 1,012 79.26 95.34 56.41 75.65 84.36
CPAT 20,646 2,597 12,694 1,070 90.09 95.07 83.02 88.83 91.84
FEELNC 20,023 1,182 14,109 1,693 92.23 92.20 92.27 94.43 93.30
RNASAMBA 20,998 1,795 13,496 718 93.21 96.69 88.26 92.12 94.35
lncRNA_Mdeep 20,813 1,799 13,492 903 92.70 95.84 88.23 92.04 93.90
LncADeep 20,232 1,113 14,178 1,484 92.98 93.17 92.72 94.79 93.97

The bold values indicate the highest value within each column.
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results show that Xlnc1DCNN, which was trained on the human
dataset, has a generalization for classifying lncRNAs and
mRNAs on other species (Table 4 and Supplementary
Tables S3–S6). Xlnc1DCNN achieved the highest accuracy
on the gorilla dataset together with RNAsamba and the
second highest accuracy on the mouse dataset while
LncADeep achieved the highest accuracy on mouse and cow
datasets. Figure 3 shows that Xlnc1DCNN has the ROC curves
and AUCs close to other tools on cross-species datasets. Overall,
based on AUCs, LncADeep got the best generalization
performance on cross-species datasets.

3.2 Model Interpretation Results
As Xlnc1DCNN outperformed other tools on the human test set,
we assumed that 1D-CNN captured patterns within sequences
that could be used to distinguish lncRNAs from mRNAs. To
explain the model, we used DeepSHAP to describe the
contribution of each nucleotide to the prediction results. The
explanation output from DeepSHAP was SHAP values for all
nucleotides of the entire sequence. This explanation result was
then visualized based on the summed SHAP values of each three
consecutive nucleotides, with important representative amino
acids highlighted in the sequence.

In the following subsections, we present the explanation
results of Xlnc1DCNN focusing on the true positive, true
negative, false positive, and false negative sequences predicted
by Xlnc1DCNN on the human test set.

3.2.1 True Positive Sequences
The explanation results of Xlnc1DCNN highlighted the
important regions that contributed to the correct classification
of an input lncRNA transcript sequence as a lncRNA with blue
color. From Figures 4A,B, the explanation results of the
ENST00000658844.1 and lnc-REXO4-2:1 suggested that
Xlnc1DCNN classified a transcript sequence as a lncRNA if it
did not capture any important regions or specific patterns within
the sequence. Additional explanation results of the TP sequences
are shown in Supplementary Figures S1–S8.

3.2.2 True Negative Sequences
The explanation results of Xlnc1DCNN highlighted the important
regions of a protein-coding transcript (i.e., mRNA) as red, as
shown in Figures 5A–C. Figure 5D shows the transmembrane
helix regions of the ENST00000528724.5 transcript predicted by
TMHMM, corresponding to the important regions captured by
Xlnc1DCNN. The prediction results of TMHMM and the
explanation results of Xlnc1DCNN have similar patterns in
several other mRNA transcripts within the test set
(Supplementary Figures S9 and S10). Figure 5E shows the
KRAB box (Krüppel associated box) identified by Pfam within
the transcript ENST00000593088.5, which mostly overlapped with
the important region captured by Xlnc1DCNN as shown in
Figure 5B. Figure 5F shows the FAM32A family (family with
sequence similarity 32member A) identified by InterPro within the
ENST00000589852.5 transcript, which corresponds to the
important region of the ENST00000589852.5 identified by
Xlnc1DCNN as shown in Figure 5C. This transcript has been
linked to an ovarian tumor-associated gene (Chen et al., 2011).
Additional explanation results of the TN sequences are shown in
Supplementary Figures S11–S14.

FIGURE 2 | (A) ROC curves of all tools and their AUCs on the human test set. (B) Accuracy of all tools for any range of sequence lengths of the human test set.

TABLE 4 | Accuracy of the nine models on cross-species datasets.

Model Mouse Gorilla Chicken Cow

Xlnc1DCNN 92.58 96.06 92.35 95.92
CPC2 80.06 94.96 93.51 94.48
CNIT 87.68 94.00 92.94 95.18
PLEK 73.62 89.53 79.54 86.22
CPAT 89.46 95.1 93.70 95.52
FEELnc 90.51 94.8 92.75 93.97
RNAsamba 91.91 96.06 93.98 96.39
LncADeep 94.95 96.05 93.46 96.70
lncRNA_Mdeep 91.38 95.58 92.59 95.63

The bold values indicate the highest value within each column.
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FIGURE 3 | Receiver operating characteristic curves and AUCs of nine models on the datasets of (A) mouse, (B) gorilla, (C) cow, and (D) chicken.

FIGURE 4 | Explanation results of Xlnc1DCNN on TP sequences (A) ENST00000658844.1, a lncRNA sequence obtained from GENCODE and (B) lnc-REXO4-2:
1, a lncRNA sequence obtained from LNCipedia.
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3.2.3 False Positive Sequences
False positive sequences are mRNA transcript sequences that are
predicted as lncRNAs. Figure 6A shows the explanation result of
ENST00000408930.6, which did not contain any important
regions with red color contributing to the prediction as an
mRNA. Figures 6B,C show Pfam and InterPro’s results that
both could not identify any protein domains or families within
the ENST00000408930.6 protein-coding transcript. While the
Ensembl database reports the ENST00000408930.6 as a
protein-coding transcript of the HEPN1 (ENSG00000221932)
gene, the Gene database at NCBI reports HEPN1 as the ncRNA
gene (https://www.ncbi.nlm.nih.gov/gene/641654) and the
RefSeq database reports the NR_170,124.1 (ENST00000408930.
6) as a long non-coding RNA (https://www.ncbi.nlm.nih.gov/
nuccore/NR_170124.1). Based on our evaluation, the top five
long non-coding RNA identification (our Xlnc1DCNN,
RNAsamba, LncADeep, lncRNA_Mdeep, FEELnc) predicted
this sequence as lncRNA. This sequence highlights an example
of inconsistent annotations among public databases that affect

the model performance and evaluation. Additional explanation
results of the FP sequences are shown in Supplementary Figures
S15–S19.

3.2.4 False Negative Sequences
False negative sequences are lncRNA transcript sequences that are
predicted as mRNAs. Figures 7A,B show the explanation results of
lncRNAs: LNC-SIGIRR-2:1 and ENST00000616537.4 with important
regions that contributed to thewrong prediction asmRNA transcripts.
These regions correspond to the identified Anoctamin and the Taxilin
InterPro families identified by InterPro, as shown in Figures 7C,D.
Additional explanation results of the FN sequences are shown in
Supplementary Figures S20–S25.

4 DISCUSSION

The explanation results of Xlnc1DCNN on the true positive
sequences (TPs) show that most of the lncRNAs were found

FIGURE 5 | Comparison between the explanation results of Xlnc1DCNN on TN sequences (A) ENST00000528724.5 (B) ENST00000593088.5, and (C)
ENST00000589852.5 protein-coding transcripts; and (D) prediction result of the TMHMM program on the ENST00000528724.5, (E) KRAB (Krüppel associated box)
domain identified by Pfam within the ENST00000593088.5, and (F) FAM32A family identified by InterPro within the ENST00000589852.5 transcripts.
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with no conserved regions or patterns in short regions with
unknown functions, i.e., the highlighted regions do not
correspond to any InterPro entries (Supplementary
Figures S1, S2). The important regions of some other
lncRNA sequences highlighted transmembrane helices
(Supplementary Figures S3–S5) or signal peptides
(Supplementary Figures S6–S8). Over recent years, some
studies also found a transmembrane helix inside lncRNAs
(Anderson et al., 2015; Makarewich, 2020) and hidden
peptides encoded within non-coding RNAs (Matsumoto and
Nakayama, 2018). These findings correspond to what
Xlnc1DCNN has learned and highlighted via the explanation
result as important regions for classifying a sequence as lncRNA.
Out of 20,895 TPs, only 1,692 (8.10%) TPs were found with
InterPro entries, 9,833 (47.06%) TPs were found with only
intrinsically disordered regions (IDRs), and 11,490 (36.91%)
TPs were found with transmembrane helices identified by
TMHMM without any InterPro entries. Although 8.10% of
TPs were found with InterPro entries, top protein domains
and families of the TPs were found in only a few TNs (≤5) on
the test set (Supplementary Tables S7, S8).

On the true negative sequences (TNs), the explanation results
of Xlnc1DCNN show that the model could capture the regions
representing the protein domains or families in the transcript
sequences. Out of 14,087 TNs, 13,079 (92.86%), 882 (5.84%),
and 289 (2.05%) TNs were found with InterPro entries, only
IDRs, and transmembrane helices were identified by TMHMM
without any InterPro entries. Hence, it could classify most of the
input mRNA sequences correctly as the protein-coding
transcripts.

The explanation results of false positive sequences (FPs)
typically do not contain the important regions (red color) that
contributed to the model prediction as mRNAs. Out of 1,204 FPs,
500 (42.53%) FPs were found without any InterPro entries, 359
(29.81%) FPs were found with only IDRs, and 161 (13.37%) FPs
were found with transmembrane helices without any InterPro
entries.

For false negative sequences (FNs), from a total of 821
FNs, there were 463 (56.39%) FNs found with InterPro
entries, and the explanation results of FNs also correspond
to these entries as shown in Figure 7, and Supplementary
Figures S20–S25, 264 (32.16%) FNs were found with only

FIGURE 6 | Comparison between (A) the explanation result of Xlnc1DCNN on the ENST00000408930.6 protein-coding transcript, predicted as a lncRNA, (B)
identification result from Pfam, and (C) identification result from InterPro.
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IDRs and 104 (12.67%) FNs were found with transmembrane
helices.

We summarized the TP, TN, FP, and FN sequences of the
test set annotated with InterPro entries in Table 5. For TPs,
most of the sequences were found without InterPro entries,
in contrast with TNs. The number of TPs annotated with
only IDRs, or transmembrane helices also highlighted the
contributions of these regions to the predicted sequences as
lncRNAs. The 704 out of 1,204 (58.47%) and 358 out of 821
(43.61%) annotated FPs and FNs with and without InterPro
entries indicated the limitations of Xlnc1DCNN. We then
further analyzed the misclassified FPs and FNs by top tools
(Xlnc1DCNN, RNAsamba, LncADeep lncRNA_Mdeep,

FEELnc). The 93 out of 344 (27.03%) and 15 out of 105
(14.92%) annotated FPs and FNs with and without InterPro
entries misclassified by all top tools suggested sequences that
were difficult to identify. Finally, the 251 out of 344 (72.97%)
and 90 out of 105 (85.71%) annotated FPs and FNs without
and with InterPro entries misclassified by all top tools
suggested the possible limitations of all top tools or
inconsistent annotations across the public databases.

We also analyzed the contribution of each nucleotide by
plotting the mean of absolute SHAP values on the test set for a
single nucleotide, dinucleotide, and trinucleotide (codon).
The higher mean of absolute SHAP values indicates the
higher impact of that genetic code (Figure 8). For

FIGURE 7 |Comparison between the explanation result of Xlnc1DCNN on the long non-coding RNA transcripts (A) lnc-SIGIRR-2:1 and (B) ENST00000616537.4,
predicted as mRNAs; (C) Anoctamin family within the lnc-SIGIRR-2:1 transcript and (D) Taxilin family within the ENST00000616537.4 transcript identified by InterPro.

TABLE 5 | Summary of test set sequences annotated with InterPro entries.

Metrics Amount Found with
InterPro Entries

Found without
InterPro Entries

Contain IDRs
without InterPro

Entries

Contain Transmembrane
Helices without
InterPro Entries

TP 20,895 1,692 (8.10%) 19,203 (91.9%) 9,833 (47.06%) 7,713 (36.91%)
TN 14,087 13,085 (92.89%) 1,002 (7.11%) 822 (5.84%) 289 (2.05%)
FP 1,204 704 (58.47%) 500 (41.53%) 359 (29.82%) 161 (13.37%)
FN 821 463 (56.39%) 358 (43.61%) 264 (32.16%) 104 (12.67%)
All missed FP 344 93 (27.03%) 251 (72.97%) 164 (47.67%) 94 (27.33%)
All missed FN 105 90 (85.71%) 15 (14.92%) 5 (4.76%) 4 (3.81%)
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lncRNA, we found that the top three codons with the highest
contribution were all stop codons (TAA, TGA, TTA), and for
mRNA, the top three were the stop codon, start codon, and
arginine (TGA, ATG, CGA). For dinucleotide, CG has the
highest mean of absolute SHAP values for classifying as
mRNA, which is consistent with those of (Ulveling et al.,
2014).

As recent studies found that some putative lncRNAs contain a
short open reading frame (sORF) (Hartford and Lal, 2020), we
further analyzed the association of lncRNAs and sORF using the
explanation results of Xlnc1DCNN. Some false negative sequences
were randomly selected and checked if they contained sORF using
MetamORF (Choteau et al., 2021). While MetamORF found
sORFs in some of these sequences, the reported regions of these
sORFs did not correspond to the important regions highlighted by
the explanation results.

5 CONCLUSION

In this study, we proposed Xlnc1DCNN, a simple but effective 1D-
CNN model for classifying and explaining lncRNA and protein-
coding transcripts. We have shown that using 1D-CNN as a feature
extractor can lead to a better prediction performance than other
existing tools using traditional feature extraction methods. The
explanation results provided insights into what the model learned
to distinguish the lncRNA from protein-coding transcripts. The
transmembrane helix region highlighted by the explanation results
of several true positive lncRNA transcripts agreed with the recent
findings of transmembrane microproteins within lncRNAs.
Disordered proteins without any important regions highlighted in
the explanation results were misclassified as lncRNAs. Several
explanation results of lncRNA misclassified as protein-coding
transcripts contained important regions that correspond to protein

FIGURE 8 |Mean of absolute SHAP values for (A) single nucleotide, (B) dinucleotide, and (C) trinucleotide, indicating the impact of each genetic code on themodel
prediction as lncRNA or mRNA.
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domains or families in Pfam and/or InterPro. These insights revealed
the complexity of long non-coding RNAs and the need to evaluate
cross-referenced gene annotation amongpublic databases periodically.
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