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Prostate cancer is one of the most common malignancies in males. Despite the recent
development of advanced diagnostic platforms and treatment, patients with metastatic
disease still have a poor five-year survival rate. Cancer metastasis is correlated with the
characteristics of the tumor microenvironment and is significantly associated with patient
prognosis. In this study, we obtained mutated genes with significant differences between
primary and metastatic prostate cancer from the COSMIC database. Unsupervised
consensus clustering was used based on the 1,051 genes obtained, and two PCa
clusters were identified, which exhibited different prognostic outcomes and immune
characteristics. Next, we generated a scoring system and evaluated the prognostic
value of riskscore and its potential to aid treatment decisions in clinical practice. The
riskscore could be applied to predict patients’ response to immunotherapy and sensitivity
to Docetaxel. In conclusion, this study performed an integrated analysis of mutated genes
between primary and metastatic prostate cancer and provides a novel assessment
scheme to precisely select treatment strategies.

Keywords: metastasis, mutation, prostate cancer, treatment decision, unsupervised consensus clustering

INTRODUCTION

Prostate cancer (PCa) is the second most common type of cancer diagnosed in males (Sung et al., 2021).
While several patients run an indolent course, most patients present with high-risk localized, locally
advanced, or metastatic cancer (Teo et al.,, 2019). Despite localized prostate cancer exhibiting long-term
survival, metastatic prostate cancer remains largely incurable even after intensive treatment (Wang et al.,
2018). It has been reported that more than ninety percent of cancer-related deaths result from metastasis,
and most prostate cancer patients die from metastasis (Rycaj et al., 2017). Therefore, exploring those genes

Abbreviations: COSMIC, The Catalogue of Somatic Mutations in Cancer; ECM, Extracellular matrix; FC, Fold change; GDSC,
Genomics of Drug Sensitivity in Cancer; GEO, Gene Expression Omnibus; GSVA, Gene set variation analysis; PCa, Prostate
cancer; PCA, principal components analysis; ROC, Receiver operating characteristic; ssGSEA, Single sample gene set en-
richment analysis; TCGA, The Cancer Genome Atlas; TMB, Tumor mutation burden; TME, Tumor microenvironment.
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with significant differences between primary and metastatic prostate
cancer may help us to predict the prognosis of patients and formulate
a more effective treatment regimen.

Metastasis is processed by the mechanisms by which tumor cells
invade local tissues, reach the circulation, and colonize distant organs
(Lopez-Soto et al,, 2017). Recent research has suggested that immune
cells can regulate these steps of metastasis by influencing the
extracellular matrix (ECM) (Blomberg et al, 2018). ECM
remodeling can facilitate metastasis by influencing the
architecture of the surrounding tissue to favor tumor cell
invasion (Ghajar and Bissell, 2008) or allowing the release and
diffusion of the pro-tumoral signaling molecules (Cox and Erler,
2011). Currently, the clinical successes of immunotherapy, such as
immune checkpoint blockade, have revolutionized cancer
therapeutics, and astonishing clinical responses have been
achieved in several types of cancers (van den Bulk et al, 2018).
Immunotherapy results in long-term durable remission in some
advanced cancer patients (Ganesh et al., 2019). However, a large
proportion of patients cannot benefit from checkpoint blockade.
Therefore, how to choose suitable treatment is critical in clinical
practice, and the development of immunotherapy calls for a better
understanding of the influence of immune regulation on metastasis
to enhance the treatment efficacy for patients with metastatic disease.

COSMIC, the Catalogue Of Somatic Mutations In Cancer,
contains the most detailed and comprehensive materials of
somatic mutations in human cancer (Tate et al., 2019). Its
latest release includes almost 6 million coding mutations
across 1.4 million tumor samples. In this study, we
downloaded mutation data and corresponding sample features
and performed Chi-square test to identify those genes with
significant differences in mutation frequencies between
primary and metastatic prostate cancer. Then, we filtered these
genes by the univariate Cox regression method, performed
unsupervised clustering method and identified two PCa
clusters based on these mutated genes. Comprehensive analysis
revealed that the two subclasses were significantly different in
progression-free survival, characteristics of the immune
microenvironment and the expression of immune checkpoint
genes. Moreover, we extracted the feature genes to construct a
riskscore by principal component analysis and evaluated the
prognostic value of the riskscore and its potential to aid
treatment decisions in clinical practice.

MATERIALS AND METHODS

Data Collection and Pre-Processing

Transcriptional data (read counts), clinical characteristics and
somatic mutation data were acquired from the TCGA database
(Supplementary Table S1). Next, we downloaded four datasets with
the same platform (Affymetrix GPL570) from the GEO database:
GSE69223 (Meller et al., 2016) (N = 30), GSE32448 (Derosa et al.,
2012) (N = 80), GSE55945 (Arredouani et al., 2009) (N = 21), and
GSE46602 (Mortensen et al., 2015) (N = 50). Thereafter, we adjusted
the background by using the “RMA” algorithm of the “affy” R
package (Gautier et al., 2004) and removed the batch effect by the
“ComBat” algorithm of the “sva” package (Leck et al, 2012).

Gene Signature Aid Treatment Decisions

Therefore, we can merge the four datasets as the validation
cohort. Moreover, GSE21034 (Taylor et al, 2010) (N = 370) was
utilized to validate the prognostic value.

Identification of Mutated Genes Between

Primary and Metastatic Prostate Cancer
COSMIC is currently the broadest database of mutations in human
cancer (Forbes et al., 2017). COSMIC mutation data (Genome
Screens) and corresponding sample features were downloaded, and
we estimated the frequency of each mutation site. Chi-square test
was applied to discover the mutated genes with significant
differences between primary and metastatic prostate cancer.
Next, we executed prognostic analysis for each gene discovered
by univariate Cox regression, and the genes related to prognosis
with p-value < 0.05 were extracted for further analysis.

Identification of PCa Subclasses

Unsupervised consensus clustering of the obtained genes was executed
by using the k-means algorithm in the “ConsensusClusterPlus” package
(Wilkerson and Hayes, 2010), which was repeated 1,000 times to ensure
the stability of the classification. Survival differences between the two
clusters were visualized by Kaplan-Meier curves. To explore the
molecular  characteristics  of the two  dusters.  The
“c2.cpkeggv74symbols” gene set was downloaded from the
MSigDB  database, and we applied the “GSVA” package
(Hénzelmann et al,, 2013) to perform the GSVA analysis.

Immune Infiltration Levels Between PCa

Subclasses

The “ssGSEA” method was performed to estimate the infiltration
degrees of 28 immune cells by using the “GSVA” package. Estimate
is commonly used to calculate scores reflecting the infiltration levels
of immune cells and stromal cells in the tumor microenvironment
by the package “estimate” (Yoshihara et al., 2013). We applied the
estimate algorithm to calculate the ImmuneScore and StromalScore
of each sample. Additionally, the correlation between the expression
of immune checkpoint genes and androgen receptor between the
two clusters was estimated.

Generation of Riskscore

The Pearson correlation coefficients of mutated genes with the
identified PCa subclasses were estimated, and the signature genes
A and B were obtained based on the correlation coefficients.
Then, we applied the Boruta algorithm to the positively and
negatively correlated genes to select feather genes. Finally,
principal component analysis (PCA) was performed to
estimate the first principal components of signature genes A
and B. We defined the riskscore of each sample as follows:

Riskscore = z PC1B - z PC1A

Correlation Between Clinical Parameters,

Immune Infiltration and Riskscore
The difference in the riskscore in patients stratified by clinical
parameters was estimated to expound the effect of the riskscore on

Frontiers in Genetics | www.frontiersin.org

April 2022 | Volume 13 | Article 877086


https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Lietal

Gene Signature Aid Treatment Decisions

COSMIC database

(N =551)

TCGA-PRAD cohort

I

1051 mutated genes
between primary and
metastasis prostate cancer

GEO validating cohort (GSE69223, GSE32448,
GSE55945, GSE46602, N = 181)

Unsupervise
cluste

d consensus
ering

Tumor microenvironment
infiltration features

Pearson coefficients with 1051 genes

Molecular characteristics

Positively correlated genes
(n=553)

Negatively correlated genes
(n=498)

[«— Boruta

algorithm  ———|

Signature genes A
(n=120)

Signature genes B
(n=110)

PCA l

Riskscore =
score B- score A

I

|

l

]

l

Mutation characteristics and
TMB analysis

Prognostic value and
correlation with clinical
parameters

Immune-related
characteristics and response
to immunotherapy

Drug sensitivity analysis

I

Validated in the GSE21034
cohort

l

Preliminary validation in the
IMvigor210 cohort

FIGURE 1 | Flow chart of this study.

cancer progression. Moreover, immune cell infiltration, ImmuneScore,
StromalScore and the expression of immune checkpoint genes were
also assessed between the high- and low-risk groups.

Tumor Mutation Burden Analysis

Tumor mutation burden (TMB) has been demonstrated as a
predictive biomarker to identify whether patients with cancer can
respond to immune checkpoint inhibitors well (Merino et al., 2020).
Here, we explored the correlation between TMB and riskscore.
Furthermore, we divided patients into four subgroups based on
the median value of riskscore and TMB. Survival differences of the
four subgroups were visualized by Kaplan-Meier curves.

Benefits of the Riskscore to Aid Treatment
Decisions

Since the comparison of the expression of different immune
checkpoint genes between the high- and low-risk groups was
performed, here we used an immunotherapeutic cohort
(IMvigor210 cohort) as a validation cohort (Mariathasan et al.,
2018). We first evaluated the influence of the riskscore on the

prognosis of patients treated with immunotherapy. Then, the
riskscore of patients with different clinical statuses after treatment
were compared. Finally, transcriptional data of tumor cell lines
and IC50 values of antitumor drugs from the GDSC database
were used to perform the drug sensitivity analysis by using the
“pRRophetic” package (Geeleher et al., 2014).

Statistical Analysis

All analyses were performed in RStudio 4.0.4. Correlation
analysis was computed by the Spearman method. Student’s
t test and the Wilcoxon test were applied for two-group
comparisons. Correspondingly, the Kruskal-Wallis test and
one-way ANOVA were used for multiple groups. Statistical
significance was defined as p-value < 0.05.

RESULTS

Genetic Alterations in Prostate Cancer
The roadmap of this study is illustrated in Figure 1. The top 20
mutated genes for prostate cancer are shown in Figure 2A, and
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FIGURE 2 | Gene mutation in prostate cancer: (A) The top 20 mutated genes in prostate cancer. (B,C) The distribution of different types of mutations in prostate
cancer. (D) The Manhattan plot of mutation sites that have significantly different mutation frequencies between primary and metastatic prostate cancer.

the mutation frequencies are displayed next to the gene name.  differences between primary and metastatic prostate cancer

Furthermore, Figures 2B,C shows the distribution of different  (Figure 2D).

types of mutations for prostate cancer. Missense substitution

(88.07%), synonymous substitution (49.48%) and nonsense ldentification of PCa Subclasses

substitution (37.91%) were the main types of mutations, and =~ We obtained 3,716 mutated genes with significant differences

the substitution mutations mainly included G > A (72.93%), C>  between primary and metastatic prostate cancer by the Chi-
square test (Supplementary Table S2). Thereafter, we

T (72.42%), A > G (64.57%), and G > T (61.27%). Moreover, the
Manhattan plot depicted mutation sites that had significant  explored the prognostic value of these genes for progression-
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FIGURE 3 | Identification of PCa subclasses by unsupervised consensus clustering: (A) Matrix heatmap of the K-means clustering using 1,051 mutated genes
between primary and metastatic prostate cancer. (B) CDF curve of the clustering result. (C) Kaplan—Meier survival curve of PFS between different clusters. (D) Heatmap
of GSVA enrichment based on KEGG pathways between different clusters. (*p < 0.05, **p < 0.01, **p < 0.001).

free survival (PFS) by the univariate Cox method, and 1,051 genes  that Cluster 2 had a significant survival advantage compared with
were extracted (Supplementary Table S3) for further analysis. Cluster 1 (Figure 3C). Moreover, GSVA analysis and limma

After comprehensive consideration of CDF curves and delta  analysis (log FC > 0.2, adjusted p-value < 0.05) were performed.
area, we chose k = 2 as the optimal cluster number for the  Significant differences in pathways related to cancer progression,
clustering (Figure 3). Finally, 308 patients were assigned to  such as the ERBB signaling pathway and VEGF signaling
Cluster 1, and 187 patients were assigned to Cluster 2. We  pathway, and pathways associated with the immune response,
also applied t-SNE dimension reduction, and the results  such as the B cell receptor signaling pathway and T cell receptor
suggested that the discrimination among subgroups was  signaling pathway, were observed between the two clusters
decent (Supplementary Figure S1). Survival curves suggested  (Figure 3D).
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FIGURE 4 | Tumor microenvironment characteristics of different PCa subclasses: (A) The proportions of TME cells in the two clusters. (B) ImmuneScore and
StromalScore of the two subgroups. (C-F) The expression of the immune checkpoint genes PD-1 (C), CTLA4 (D), PD-L1 (E) and PD-L2 (F) between the two clusters.
(G) The expression of AR in the two clusters. ("p < 0.05, *p < 0.01,

In order to delve into the immune-related characteristics of
the two clusters, the infiltration levels of immune cells were
compared between the two clusters. A significant difference
was observed in the infiltration degree of all immune cells, and

all

immune cells

infiltration were lower

in Cluster 2

(Figure 4A). Moreover, the results indicated that both the

StromalScore

and

ImmuneScore

of Cluster 2 were

significantly lower compared with Cluster 1 (Figure 4B).
What’s more, the expression of immune checkpoint genes,
including CTLA4, PD-1, PD-L1 and PD-L2, appeared to be
decreased in Cluster 2 (Figures 4C-F). However, the
expression of AR was higher in Cluster 2 than in Cluster 1
(Figure 4G), which is consistent with the poor survival of

Cluster

2.
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FIGURE 5 | Construction of the riskscore and prognosis analysis. (A) Kaplan—-Meier survival curve between high- and low-risk subgroups in the TCGA cohort. (B)
The proportion of the survival rate between the high- and low-risk subgroups. (C) Kaplan—Meier survival curve between the high- and low-risk subgroups in the validation
cohort, GSE21034. (D) The differences in riskscore between patients with different clinicopathological parameters (Gleason score, age, T stage, N stage, M stage).

Construction of the Riskscore For Each
Sample and the Prognostic Value

Previous results indicated that the subclass was closely
associated with the prognosis and immune infiltration levels
of patients. However, this population-based classification
cannot be directly used in clinical practice. Therefore, we
constructed a scoring system to estimate the riskscore to
predict the outcome of the patients and aid in making
treatment decisions. After performing the Boruta algorithm,
230 genes that were positively and negatively correlated to the
subclass were defined as signature genes A and B
(Supplementary Table S4). The riskscore was acquired by
conducting PCA on each signature gene (Supplementary
Table S5). Patients were classified into high- and low-risk

groups according to the cut-off point gained by the
“survminer” package (Supplementary Figure S2). The
results of survival analysis showed that patients in the high-
risk group had lower PES than those in the low-risk group
(Figure 5A). As shown in Figure 5B, the high-risk group
possessed a higher proportion of death. In the validation
cohort GSE21034, patients with higher riskscore also
showed a significantly shorter median PFS (Figure 5C).
Moreover, it was observed that the riskscore was elevated in
the high-risk clinical group with the progression of tumor
(Figure 5D), and patients who achieved complete response
after treatment had a significantly lower riskscore than other
outcomes (Supplementary Figure S3).
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Relationship Between Riskscore and TMB

TMB is emerging as a potential biomarker to predict the patients
response to immune checkpoint inhibitors (Chan et al., 2019).
Here, we evaluated the association between the riskscore and
TMB. As shown in Figure 6A, patients in the high-risk group had
a higher TMB than those in the low-risk group, and patients with
a higher TMB had lower PFS (Figure 6B). Moreover, the
correlation analysis indicated that the riskscore was positively
associated with TMB (Figure 6C). Next, we combined the
riskscore and TMB to divide patients into four subgroups. The
patients with a high riskscore and high TMB had the shortest
median PFS, and patients with a low riskscore and low TMB
performed the best prognosis (Figure 6D). Finally, the mutation
status of genes with high mutation frequencies in the high- and
low-risk groups was visualized (Supplementary Figure S4).

Correlation Between Immunotherapy

Reactivity, Drug Sensitivity and Riskscore

Anticancer immunotherapies involving immune checkpoint
inhibitors have emerged as new therapeutic regimens
(O’Donnell et al., 2019). The tumor microenvironment (TME)
was proven to be tightly linked to tumor progression and
metastasis (Brassart-Pasco et al, 2020) and can blunt the

therapeutic response, thus affecting the clinical outcome (Wu
and Dai, 2017). To further explore the correlations between
patients’ response to immunotherapy and riskscore, we first
compared the immune cell infiltration levels between high-
and low-risk groups, and the results indicated that compared
with the low-risk patients, the infiltration levels of 28 immune
cells in the high-risk patients were significantly downregulated
(Figure 7A).

Moreover, infiltration estimation for TCGA was downloaded
from TIMER 2.0 (Li et al., 2020), which includes several methods,
such as XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC,
and CIBERSORT. We correlated the immune cell infiltration
levels and the riskscore, and the results also suggested that the
riskscore was negatively related to most of the immune cells
(Supplementary Figure S5). Additionally, the StromalScore and
ImmuneScore of the high-risk patients were significantly lower
than low-risk patients as well (Figure 7B). Furthermore, the
associations between immune checkpoint inhibitor genes and the
riskscore were evaluated. The expression of ICI genes, such as
CTLA4, PD-1, PD-L1 and LAG3, were downregulated in the
high-risk groups compared with the low-risk groups (Figure 7C).
Finally, we validated the performance of the riskscore in the
IMvigor210 cohort. As shown in Figure 8A, the low-risk patients
still showed a significant survival advantage compared with high-
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risk patients. We evaluated the differences in riskscore among
patients with different responses to immunotherapy. Patients with
complete response (CR) had the lowest riskscore while patients
performed progressive disease (PD) had the highest riskscore
(Figure 8B). These results suggested that patients in the high-
risk group may not have a satisfying response to immunotherapy.

Considering that androgen deprivation therapy and
chemotherapy still play vital roles in the treatment of prostate
cancer. We used the GDSC database to explore the association
between the riskscore and drug sensitivity. The results revealed
little difference in the predicted IC50 of Bicalutamide between the
high- and low-risk groups (Figures 8C,E). However, both in the
TCGA and GEO cohorts, significant differences were observed in
the predicted IC50 of Docetaxel between the high- and low-risk
groups (Figures 8D,F). The IC50 of Docetaxel was significantly
lower in the high-risk group, suggesting that these patients are
sensitive to Docetaxel.

DISCUSSION

Prostate cancer affects millions of men all over the world, and
accounts for 7% of newly diagnosed cancers in men worldwide
(Rebello et al., 2021). While the prognosis of localized PCa has a
good 5-years survival rate, the 5-years survival rate of metastatic
PCa decreases significantly to only 30% (Siegel et al., 2020). It is
well-known that the growth and progression of prostate cancer
are significantly influenced by androgen, and androgen
deprivation is an effective treatment strategy which is widely
used in clinical practice (Marques et al., 2005). However, among
patients with metastatic disease, a substantial proportion will
develop metastatic castration-resistant prostate cancer (mCRPC),
which is not sensitive to androgen deprivation therapy.
Therefore, the long-term prognosis for patients with mCRPC
is extremely poor (Henriquez et al., 2021). On that account, it is
critical to unearth the mechanism of metastasis of prostate
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cancer, which may assist us in predicting the prognosis of patients
and forming a desirable therapeutic regimen. Although
multitudinous studies have explored the correlation of some

specific genes in tumor metastasis, few studies have focused on
the overall mutated genes between primary and metastatic
prostate cancer. Therefore, we used the COSMIC database,
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which contains the most detailed resource of somatic mutations
in human cancer, and executed the Chi-square test to obtain
mutated genes with significant differences between primary and
metastatic prostate cancer.

In this study, unsupervised clustering method was conducted,
and two subclasses of PCa were obtained. Then, we
comprehensively assessed the two clusters of prostate cancer
and explored their biological characteristics. We observed that
significant differences existed between the two clusters in some
carcinogenic activation signaling pathways, such as the ErbB
signaling pathway (Wang, 2017) and Vegf signaling pathway
(Apte et al, 2019), and pathways associated with the immune
response, such as the B cell receptor signaling pathway and T cell
receptor signaling pathway. Moreover, the results indicated that all
the immune cell infiltration levels and the expression of immune
checkpoint genes were lower in Cluster 2, which was associated
with poorer survival. We supposed that the poor prognosis of
patients in Cluster 2 was due to tumor immune escape.

Next, we evaluated the riskscore of each patient by using the
“Boruta” algorithm and PCA analysis. Its prognostic value was
demonstrated both in TCGA and GEO cohorts. Since cancer
develops as a result of somatic mutation and clonal selection
(Martincorena et al., 2017), herein, we correlated riskscore and
TMB and found a significant positive correlation between
riskscore and TMB. Moreover, we assessed the mutation status
of genes with high mutation frequencies in the high- and low-risk
groups. It was observed that the high-risk groups contained more
mutated samples and more mutation types.

Androgen deprivation therapy is a standard treatment used in
all stages of recurrent prostate cancer. However, patients will
develop CRPC eventually (Gamat and McNeel, 2017). In the past,
the consensus was that immunotherapy might be ineffective in
prostate  cancer due to the immunosuppressive
microenvironment (Chakravarty et al., 2020). However, with
the recent development of advanced molecular diagnostic
platforms, immunotherapy has revolutionized the treatment of
prostate cancer and is re-emerging as a practicable option for
patients, especially for CRPC (Cha et al., 2020). Nevertheless, a
key challenge for immunotherapies is that these treatments have
serious adverse effects, including autoimmunity and nonspecific
inflammation (Riley et al., 2019). Additionally, many patients
appear to have innate or acquired resistance to immunotherapies
(O’Donnell et al., 2019). Therefore, it is critical to find reliable
validated biomarkers to predict the immunotherapy
responsiveness of patients. In fact, it is obvious that using a
single biomarker to predict benefit from immunotherapy
strategies is unstable. Consequently, we extracted 230 feature
genes to construct the riskscore. According to the results, all
immune cell infiltration levels were higher in the low-risk groups,
and immune checkpoint genes used in immune checkpoint
blockade therapy, such as PD-1, CTLA4 and PD-L1, were also
more highly expressed in the low-risk groups. Therefore, we
suppose that patients identified as having a low riskscore may
benefit from the therapeutic strategy combining immune
checkpoint blockade therapy, while patients are diagnosed
with a high riskscore. Since open-access data of prostate
cancer cohorts accepting immunotherapy are rare, we used
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patients in the IMvigor210 cohort for preliminary validation.
We observed that patients who reacted as complete response had
the lowest riskscore while patients performed progressive disease
had the highest riskscore, which is consistent with the trends of
expression of immune checkpoints.

Considering it is unrealistic that utilizing immunotherapy
alone can dramatically change the outcome of prostate cancer
right now, the combination of conventional cytotoxic agents,
androgen deprivation therapy and personalized immunotherapy
is more appropriate for patients. We used the GDSC database,
which is the largest public resource for information on drug
sensitivity in cancer cells (Yang et al., 2013), to predict the IC50
values of drugs for treating prostate cancer. We observed that the
high-risk group was more sensitive to Docetaxel than the low-risk
group. In fact, Docetaxel was the first systemic therapy to
demonstrate survival benefit in mCRPC and became the
standard of care for mCRPC in 2004 (Teo et al, 2019). It is
still recommended as a first-line treatment for mCRPC in the
latest EAU guidelines (Cornford et al., 2021). Therefore, it seems
reasonable that patients identified with high riskscores had a
higher sensitivity to Docetaxel. Bicalutamide is a competitive
androgen receptor antagonist that leads to prostate cell apoptosis
and the inhibition of prostate cancer growth (Wellington and
Keam, 2006). We also evaluated the IC50 values of Bicalutamide
in the high- and low-risk groups. However, there were few
differences in the predicted IC50 of Bicalutamide between the
high- and low-risk groups. Regrettably, limited by the data
currently available in the GDSC database, we could not
evaluate the IC50 values of Abiraterone and Enzalutamide in
this study. As second-generation androgen receptor inhibitors,
they have already been recommended by the latest EAU
guidelines (Cornford et al, 2021). Numerous studies have
demonstrated that the second-generation androgen receptor
inhibitor is associated with improved outcomes compared with
bicalutamide in CRPC (Penson et al., 2016; Naiki et al., 2021;
Ueda et al., 2021; Vaishampayan et al., 2021). Therefore, the drug
sensitivity of Abiraterone and Enzalutamide between high- and
low-risk groups needs to be further explored. Moreover, due to
the lack of available immunotherapy cohorts of prostate cancer,
preliminary validation was performed in the IMvigor210 cohort
for bladder cancer. The ability of the riskscore to predict the
immunotherapy response of patients still needs further validation
in immunotherapy cohorts of prostate cancer.

CONCLUSION

In summary, we selected mutated genes with significant
differences between primary and metastatic prostate cancer
from the COSMIC database and identified two PCa clusters
that exhibited different prognostic outcomes and immune
characteristics. For a better application in clinical practice, we
constructed a scoring system and evaluated the prognostic value
of the riskscore and its potential to aid treatment decisions. The
riskscore could be applied to predict patients’ response to
immunotherapy and sensitivity to Docetaxel. The results
suggested that immunotherapy may benefit patients in the
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low-risk group, while Docetaxel is more effective for patients
identified in the high-risk group.
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