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In order to meet the global challenges of food security, one of the foremost solutions lies in
enhancing the crop productivity. This can be attained by considering key plant hormones
such as cytokinins as agrochemicals as cytokinins in particular are known to control the
essential processes of the plants. Even though, it has already been established since
1980s that the enzyme, cytokinin oxidase/dehydrogenase (CKO/CKX) deactivates
cytokinins; the potential applications of manipulating these enzymes have mostly been
speculated to have a high potential in the biotechnology industry and spreads to
agriculture, horticulture and agroforestry. The enzyme is critical in maintaining a
balanced level of cytokinins in plants. However, it is yet to be fully established that
inhibiting this enzyme can be the constant source of improvement in the productivity
of plants, even though success has been obtained in some economically important plant
species. Furthermore, the impact efficiency of this enzyme may vary from plant to plant,
which needs to be evaluated employing tissue culture and other extrinsic applications. This
review intends to cover the relevant studies addressing any biological activity of this
enzyme in the current context and any associated biotechnological applications specific to
enhanced grain yield, abiotic stress tolerance, delayed senescence and in vitro
organogenesis among various plants and not only cereals. Moreover, our study will
identify the present gaps in research with respect to many important food crops,
which will be useful for researchers who are actively involved in providing a foundation
for a variety of genetically improved plants achieved through this manner. In addition to this,
other ways of engineering the amount of cytokinin levels appropriate for signaling also
needs to be analyzed in order to extend the benefits of cytokinin biology to other crops too.
The application of these inhibitors can be considered among the best alternates as well as
addition to genetically modified plants for overcoming the gaps in crop demand.
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INTRODUCTION

The exponential rise in human population over the last few decades has forced many ultimate
challenges at the basic level in terms of “food, feed, and bioenergy” (Gupta et al., 2021; Nisler et al.,
2021), especially for the developing countries, such as India. Moreover, constant human interference
has led to environmental imbalance causing poor crop yield. Along with this, various types of abiotic
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stresses such as drought, salinity, etc., have marred the
agricultural production (Aremu et al., 2015). All this has led
to scarcity of agricultural land, leaving almost no scope for its
expansion to keep pace with the burst to meet the population
needs. In order to maintain a sustainable balance between the
supply chain of food and demand, it has been strongly realized by
the scientists that the solution to this problem lies in focusing on
developing ways of enhancing crop productivity of the “existing”
agricultural land (Nisler et al., 2021). There are many facets
through which the crop yields can be improved; one of such
aspect involves controlling the level of plant growth regulators
(PGRs) in the crops. It is well known fact that amongst the
common PGRs, cytokinins play an indispensable function in
plant growth and morphogenesis (Pavlů et al., 2018; Hai et al.,
2020). Extensive research on cytokinins have revealed that
appropriate levels of cytokinin are necessary for cytokinin
governed essential physiological and regulatory responses in
different cell types (Gupta et al., 2021) through the “complex
network” of cytokinin signaling (Li et al., 2019). These include,
controlling the “cell division” involving the expansion,
proliferation and development of foliage, branches, root as
well as the reproductive organs through “photomorphogenic
cell differentiation” (Chiang et al., 2012; Efroni et al., 2013;
Bishopp, et al., 2011); non-initiation of lateral roots (Bielach
et al., 2012), prolongs stomatal closure (Pospíšilová et al., 2005)
and seed fill (Kieber and Schaller, 2014). It has been realized that
most of these morphogenetic responses can be directed towards
enhancing crop production. Therefore, cytokinins can be
employed as “potential agrochemicals” (Koprna et al., 2016;
Nisler et al., 2021) for inducing the physiological advantages
that can be achieved through enhancing the levels of cytokinins in
the plants. Moreover, it has been reported that the increase in
cytokinin levels in a plant can enhance seed/crop yields (Bartrina
et al., 2011; Jameson and Song, 2016), increase positivity in
tillering, improve setting of flowers and seeds (Koprna et al.,
2016), impede senescence of the leaf (Zwack and Rashotte, 2015)
and mediate their stress tolerance especially in case of drought
(Hai et al., 2020; Devireddy et al., 2021), salinity adaptation (Joshi
et al., 2018; Li et al., 2019), etc. This review focuses on the current
understanding of cytokinin biology in relation to crop
improvement. It has been divided into four further sections,
commencing with the ways through which the level of
cytokinins can be enhanced in the plants, followed by the
understanding of the types of the cytokinin inhibitors, their
mode of action, then summarizing the various
biotechnological responses, especially related to various forms
of stress.

CYTOKININ AUGMENTATION IN PLANTS

The enhancement of cytokinins in the plants can be achieved
through two possible ways, either by the addition of cytokinins
that are natural or synthetic in nature or by restricting the
cytokinin inhibitors. Strong natural cytokinins such as zeatin
can only be applied to the plant as a “single dose at one time
point”, which typically gets diluted after some days (Nisler et al.,

2021). The positive impact is visible, however, as a short-term
effect rather than a long term one and causes variations that are
unreproducible and are therefore, unacceptable from the
commercial point of view (Koprna et al., 2016). In contrast,
synthetic ones such as thidiazuron (TDZ), N-(2-Chloro-4-
pyridyl)-N′-phenylurea (CPPU), etc., are ineffective in their
signaling aspects and may induce undesirable side effects.

Besides these, another way to increase the cytokinin levels can
be through inhibiting the action of cytokinin regulation.
Physiologically within the plants, the levels of cytokinins are
controlled through the balance of four enzymes; out of which
isopentenyl transferase (IPT), which employs the mevalonate as
well as methylerythritol phosphate pathway (Wang et al., 2014), is
primarily responsible for the cytokinin metabolism in nature
(Jameson and Song, 2016), while deactivation of cytokinin is the
sole responsibility of the enzyme called cytokinin oxidase/
dehydrogenase, CKO/CKX (Chatfield and Armstrong, 1986;
Jiang et al., 2016). As the part of the mechanism of action,
CKO/CKX enzyme irreversibly inactivates the cytokinins
through the removal of N6-isoprene side chain from the
cytokinin molecules (Mok and Mok, 2001). It can also be
suggested that the CKX enzyme, being a flavoprotein (Gupta
et al., 2021), is also involved in the balance as well as regulation of
cytokinins, thereby helps in maintaining cytokinin homeostasis
(Thu et al., 2017; Hai et al., 2020). This regulatory function has
mostly been reported from major cereals such as Hordeum
vulgare (Zalewski et al., 2014), Zea mays (Brugière et al.,
2003), Oryza sativa (Ashikari et al., 2005) and Triticum
aestivum (Song et al., 2012; Zhang et al., 2012; Ogonowska
et al., 2019). At the genetic level, the prevalence of CKX gene
families in plants has varied from species to species (Nisler et al.,
2021) with isoforms differing in “spatial and temporal expression
patterns and subcellular localization” with some being localized
in the apoplast, vacuoles and cytosols (Joshi et al., 2018; Nisler
et al., 2021). The number of genes involved in cytokinin
inhibition ranges from seven as found in Arabidopsis thaliana
(Werner et al., 2003) andMedicago sativa (Li et al., 2019) to eight
in Fragaria vesca (Jiang et al., 2016), eleven in Oryza sativa (Tsai
et al., 2012) and Triticum aestivum (Chen et al., 2020), twelve in
Malus domestica (Tan et al., 2018), thirteen in Zea mays (Morris
et al., 1999) and 23 in Brassica napus (Liu et al., 2013). These
genes can be targeted for production of genetically modified
plants, which will induce the overexpression of CKX enzyme
and can cause drastic changes in the “organ proportions”
especially root morphology in barley plants as observed by
Mrί;zová et al. (2013). The negative regulation of the
cytokinins leads to enhanced crop yield and mediation
towards tolerance of abiotic stresses as reported in rice
(Yamburenko et al., 2017), Arabidopsis (Werner et al., 2003;
Prerostova et al., 2018), barley (Pospíšilová et al., 2016; Holubová
et al., 2018). Besides the up regulation of this gene, its down
regulation or knocking off has also caused increased yield in rice
due to the increase in the quantity of reproductive organs
(Ashikari et al., 2005) even during salinity stress (Joshi et al.,
2018). Apart from the traditional forms of genetic modification
such as selective breeding and crossbreeding, genetic engineering
and genome editing are some of the mechanisms through which
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gene manipulation can be done (US Food and Drug, 2022). It was
reported that controlling this enzyme can lead to “tailor made”
improvements in the productivity of plants (Ashikari et al., 2005).
Moreover, newer techniques for genome editing such as CRISPR/
Cas9 (clustered regularly interspaced short palindromic repeat)
have been recently used for knocking out of CKX/CKO genes in
barley (Holubová et al., 2018; Gasparis et al., 2019) and rice (Mao
et al., 2020; Rong et al., 2021). However, none of the mechanism
of action has not been fully understood till now (Joshi et al., 2018),
even though success has been obtained in some economically
important plant species such as apple (Liao et al., 2017), tobacco
(Macková et al., 2013), etc. Furthermore, the effectivity of the
impact of this enzyme may vary from plant to plant, which needs
to be evaluated employing tissue culture and other extrinsic
applications (Gupta et al., 2021).

CYTOKININ OXYGENASE/
DEHYDROGENASE INHIBITORS: TYPES
AND MODE OF ACTION
The primary approaches to decrease the expression of CKX
enzyme can either be through chemical means (Kopecný et al.,
2010; Nisler et al., 2021) and molecular approaches (Gouda et al.,
2020a; Nguyen et al., 2021). Figure 1 represents a schematic
diagram on the mechanism of CKO/CKX control. Nisler et al.
(2021) points that inhibition of CKX enzyme by chemicals had
been reported long time back which is predated even before the
engineering of the genetically modified plants. These chemicals
are classified as synthetic cytokinins such as TDZ and its variants
(Nisler et al., 2016, Nisler, 2018), diphenyl urea (DPU),
chloropyridin phenyl urea (CPPU), N-(2-amino-pyridin-4-yl)-
N′-phenylurea (APPU) (Kopecný et al., 2010) or new potent
inhibitors derived from CPPU, DPU, and DCPU (Nisler et al.,
2021). The findings from Nisler et al. (2016) showed a 15-times
decrease in half-maximal inhibitory concentration (IC50) with
TDZ for AtCKX2 in Arabidopsis and ZmCKX1 and ZmCKX4a in
Zea mays. Along with this, derivatives of 2-X-6-anilinopurine
along with 2-chloro-6-(3-methoxy- phenyl) aminopurine
(INCYDE) have also been found to be effective inhibitors of
CKX enzyme in Arabidopsis (Zatloukal et al., 2008; Prerostova

et al., 2020) and tomato (Aremu et al., 2014), respectively. The
antioxidant defense mechanism and efficiency of photosynthesis
got elevated by the use of these potent compounds (Aremu et al.,
2014). The potency of inhibition was found to be higher in the
variant of DPU in comparison to DCPPU and the inhibition
occurred at the concentration of 10−8 M (Nisler et al., 2021).
Similarly, APPUwas found to be a better inhibitor as compared to
CPPU, TDZ and their derivatives (Kopecný et al., 2010).
Moreover, the chemical use of CKX enzyme inhibitors was
found to be more advantageous than the application of
cytokinin exogenously as a moderate level but “long-term”
enhancement in the endogenous levels of cytokinins was
observed. Among the molecular approaches, heterogenous
nuclear RNA (hRNA-CX3 and -CX5) were used to suppress
expression of CKX enzyme in rice (Yeh et al., 2015). An increase
in growth, chlorophyll content and grain yield were observed in
this case. Recently, one of the molecular approaches applied
specific missense single nucleotide polymorphisms (SNPs),
namely SNP42, SNP43, SNP44, and SNP46 to reduce the
expression of CKX enzyme in rice that led to increase in grain
numbers (Gouda et al., 2020a), while another nine SNPs from five
genes were demarcated in soybean for enhanced seed yield
(Nguyen et al., 2021). In a new approach, computational
means has also been followed to study the “structure, function
and interaction” of the CKX enzyme from rice plants for the first
time (Gouda et al., 2020b). A hypothetical 3-D structure of this
enzyme was predicted, which showed the presence of 24 α helix
and 13 β strands. This can be extremely useful in understanding
the cause of enhanced yield in these plants.

BIOTECHNOLOGICAL RESPONSES

The decrease in CKX enzyme using various form of inhibitors has
manifested a series part of the biotechnological application
response or effects. Table 1 summarizes the various studies
conducted on the understanding the influence of CKX enzyme
inhibitors over abiotic stress tolerance. One of the most common
manifestations observed in the genetically modified plant
includes the reduction of abiotic stresses and adaptations to
drought in Arabidopsis (Prerostova et al., 2018), barley

FIGURE 1 | Mechanism of CKO/CKX gene control.
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(Pospíšilová et al., 2016; Ramireddy et al., 2018), tobacco (Werner
et al., 2010; Macková et al., 2013; Lubovská et al., 2014) and apple
(Liao et al., 2017); heat tolerance in Arabidopsis (Prerostova et al.,
2020); cold as well as salinity tolerance in tomato (Aremu et al.,
2014), in alfalfa (Li et al., 2019), in Arabidopsis (Nisler et al.,
2021), etc. Moreover, tolerance towards stresses from heavy
metals such as cadmium also can be observed as a result
(Gemrotová et al., 2013). Most importantly, there is an
increase of antioxidant enzymes (Devireddy et al., 2021).
Other outcomes include inducing shoot regeneration, roots
and morphogenesis in Chinese water chestnut (Wang et al.,
2015), in vitro responses such as organogenesis (Aremu et al.,
2015; Werbrouck, 2016; Chen and Wei, 2018; Mazri et al., 2018),
callus culture bioassays (Kopecný et al., 2010), delayed senescence
(Nisler et al., 2016; Prernostava et al., 2018) and as basic as
increasing yield of the cereal crops (Ashikari et al., 2005; Nisler
et al., 2021). Moreover, 44% increased zinc levels were present in
the seeds of the transgenic barley plant along with drought
tolerance. It was construed that the overexpression of CKX
enzyme made the plant more nutrient efficient (Ramireddy
et al., 2018). In contrast, Gasparis et al. (2019) reported that
knocking out the CKX genes may not enhance the grain yield in
barley.

CONCLUSION, PERSPECTIVES AND
FUTURE SCOPE OF RESEARCH

The application of inhibitors of CKX enzyme as a successful and
capable tool for tolerance of abiotic stresses is evident from this
study, which has a great potential for crop improvement in a

variety of crops, including cereals. The present study reviews
relevant research pertaining to the biological activity of the CKX
enzyme in the context of adapting towards abiotic stresses along
with improved grain yield. This can also be extended as the source
of providing benefits to various crops through cytokinin biology.
Other biotechnological responses of this enzyme also include
delayed senescence and inducing organogenesis through tissue
culture. In addition to this, other ways of manipulating the level of
cytokinin suitable for signaling was also explained and the present
gaps in this research area has been identified from this study.

The comparison of CKX enzyme inhibitors reveals that the
use of chemicals is more popular over the molecular approaches.
Therefore, it is anticipated that these chemicals can work as an
alternate to genetically modified crops (Nisler et al., 2021). This
will be extremely advantageous for mankind as any legal hassles
towards acceptance of genetically modified organisms (GMOs)
can be easily avoided using this approach, implying a wider
reach among many varieties of plants across countries.
However, an appropriate dosage level as well as the “cost
effectiveness” of these chemicals is yet to be assessed at a
commercial level, thereby warranting immediate attention
from the researchers in this field. Recent studies demonstrate
the emergence of successful genetic approaches (Wang et al.,
2020; Nguyen et al., 2021; Nisler et al., 2021; and many others),
emphasizing that modulating CKX enzymes can open up
multiple paths for developing “tailor made” stress resistant
and nutrition rich crops which will be useful in the long-
term breeding programs (Ramireddy et al., 2018). These will
be developed as a means of sustainable agriculture through
unravelling the signaling network of the cytokinins (Pavlů et al.,
2018). From this review, it was also realized that both up- and

TABLE 1 | Biotechnological responses of plants targeted with CKX inhibitors through chemical and molecular approaches.

Sl Plant name Chemical/Molecular
approaches

CKO/CKX family
member or

gene targeted

Biotechnological applications/
response/ effects

Reference

1 Soybean Molecular- SNPs GmCKX GFMs, Increased yield and proposed
abiotic stress resistance

Nguyen et al.
(2021)

2 Maize, Arabidopsis, Spring barley,
Winter wheat, winter oilseed rape

Chemical- new inhibitors derived
from DPU

AtCKX 2, Zm CKX1,
ZMCKX4q and ZmCKX8

Stress resistance and increased
seed yield in Arabidopsis

Nisler et al.
(2021)

3 Arabidopsis Chemical- INCYDE Not mentioned Heat tolerance Prerostova et al.
(2020)

4 Arabidopsis Molecular- Overexpression of genes in
the genetically modified plant

Introduced MsCKX from
Alfalfa

Salt tolerance Li et al. (2019)

5 Arabidopsis Chemical- Dexamethasone AtCKX1 Drought tolerance Prerostova et al.
(2018)

6 Barley Molecular- Overexpression of genes in
genetically modified plant

Introduced AtCKX1 Drought tolerance Ramireddy et al.
(2018)

7 Rice Molecular – Knocking off in genetically
modified plant

OsCK2 Yield increase and salinity tolerance Joshi et al.
(2018)

8 Apple Molecular- Overexpression of genes in
genetically modified plant

MdCKX4a Drought tolerance Liao et al. (2017)

9 Tomato Chemical: 2-chloro-6-(3-methoxy-
phenyl) aminopurine (INCYDE)

Not mentioned Salt tolerance, vegetative and
reproductive growth

Aremu et al.
(2014)

10 Medicinal plants- Bulbinea and Curly
dock

Chemical- INCYDE Not mentioned Adaptation towards cadmium
stress

Gemrotová et al.
(2013)

11 Tobacco Molecular- Genetically modified plant Introduced AtCKX1 Drought and heat tolerance Macková et al.
(2013)

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8775104

Arora and Sen Cytokinin Oxygenase/Dehydrogenase Inhibition: A Review

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


downregulation of the CKX gene can be instrumental in
improving the economic needs, even though it seems to vary
from plant to plant and even within a plant species. This
ambiguity opens up a wide scope for further molecular
research. In future, CKX inhibitors can be treated as part of
plant defense regulators and studies can focus on
comprehending the molecular mechanism of the interaction
of CKX enzyme with other plant defense regulators such as
jasmonic acid, salicylic acid, ethylene, abscisic acid (ABA) and
others in order to develop a better understanding towards
abiotic stresses.
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