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Background: Preoperative and postoperative evaluation of colorectal cancer (CRC) patients
is crucial for subsequent treatment guidance. Our study aims to provide a timely and rapid
assessment of the prognosis of CRC patients with deep learning according to non-invasive
preoperative computed tomography (CT) and explore the underlying biological explanations.

Methods: A total of 808 CRC patients with preoperative CT (development cohort: n = 426,
validation cohort: n = 382) were enrolled in our study. We proposed a novel end-to-end Multi-
Size Convolutional Neural Network (MSCNN) to predict the risk of CRC recurrence with CT
images (CT signature). The prognostic performance of CT signature was evaluated by Kaplan-
Meier curve. An integrated nomogram was constructed to improve the clinical utility of CT
signature by combining with other clinicopathologic factors. Further visualization and correlation
analysis for CT deep features with paired gene expression profiles were performed to reveal the
molecular characteristics of CRC tumors learned by MSCNN in radiographic imaging.

Results: The Kaplan-Meier analysis showed that CT signature was a significant prognostic
factor for CRC disease-free survival (DFS) prediction [development cohort: hazard ratio (HR):
50.7, 95% CI: 28.4–90.6, p < 0.001; validation cohort: HR: 2.04, 95% CI: 1.44–2.89, p <
0.001]. Multivariable analysis confirmed the independence prognostic value of CT signature
(development cohort: HR: 30.7, 95% CI: 19.8–69.3, p < 0.001; validation cohort: HR: 1.83,
95% CI: 1.19–2.83, p = 0.006). Dimension reduction and visualization of CT deep features
demonstrated a high correlation with the prognosis of CRC patients. Functional pathway
analysis further indicated that CRC patients with high CT signature presented down-regulation
of several immunology pathways. Correlation analysis found that CT deep features were mainly
associated with activation of metabolic and proliferative pathways.

Conclusions: Our deep learning based preoperative CT signature can effectively predict
prognosis of CRC patients. Integration analysis of multi-omic data revealed that some
molecular characteristics of CRC tumor can be captured by deep learning in CT images.
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INTRODUCTION

Colorectal cancer (CRC) is one of the most prevalent cancers and
has become the third leading cause of cancer death (Siegel et al.,
2020). Stratification of CRC patients is quite essential to design
more accurate and personalized treatment according to their
clinical characteristics (Sorbye et al., 2007). Though the current
tumor-node-metastasis (TNM) system has been used for guiding
treatment decisions of CRC patients for over 50 years (Nagtegaal
et al., 2011), it is still inadequate for accurately assessing the
prognosis of some colorectal patients, especially for patients in
clinical stage II and III (Joachim et al., 2019). Even with the same
clinical stage, patients may be suitable to different treatment
options before and after surgery as heterogeneity of CRC
(Molinari et al., 2018). Thus, prognostic analysis of CRC
patients and evaluation of their preoperative and postoperative
interventional treatment options are recent research hotspots.

Previous studies on the molecular basis of cancer and the
discovery of cancer associated genes, oncogenes and tumor
suppressor genes indicates that cancer is a genetic disease
(Pierotti, 2017), which determines a natural advantage for
cancer survival analysis with genomics data (Walther et al.,
2009; Yu et al., 2015). However, the expensive cost and long
detection time severely limit its mass adoption. Radiomics is a
high-throughput analysis of quantitative tumor characteristics
from standard-of-care medical imaging, like computed
tomography (CT) and magnetic resonance imaging (MRI). By
further modeling with machine learning, radiomics can provide
better clinical-decision support systems for the clinicians, like
tumor diagnosis and prognosis prediction (Lambin et al., 2017).
Compared with genetic detection, radiographic testing is non-
invasive and does little harm to the weak patients. Especially,
comparing with MRI, CT is much cheaper, and its examination
results can be available faster. As a preoperative routine test for
CRC patients to locate the tumor before resection surgery, CT
imaging analysis can provide timely guidance on surgical
procedures and postoperative treatment. With sophisticated
image processing tools to obtain high-dimensional image
features, CT images contain abundant information which
provides a powerful application in multiple medical studies
(Limkin et al., 2017).

Typical radiomic features are mainly morphological
characteristics of the tumor lesion, such as tumor size,
shape and texture, which are customized according to
human recognition cognition or compliant with certain
human-defined rules (Gillies et al., 2016). The
standardization of radiomic features makes it possible to
quantify phenotypic characteristics on medical imaging (van
Griethuysen et al., 2017). Through successfully applications in
tumor differentiated grading (Kim et al., 2015), genomics
prediction (Yang et al., 2018), prognosis predicting (Huang
et al., 2016), evaluation of tumor immune microenvironment
(Jiang et al., 2020) and prediction of chemoradiation therapy
response (Shi et al., 2019), radiomic studies demonstrate that
radiographic images can provide abundant information for
cancer research. However, these radiomics features obtained
by typical method are still limited by the human definition. It

fails to consider the feature-to-feature relationship which plays
a vital role in tumor microenvironment. Deep learning, one
kind of machine learning based on artificial neural networks,
has a powerful ability in image analysis (LeCun et al., 2015)
with convolutional neural networks (CNNs). A few studies
based on deep learning have proved its effectiveness in tumor
assessment like lymph node status prediction (Zheng et al.,
2020) and tumor recurrence prediction (Liu et al., 2022).
Though with high prediction accuracy, deep learning is
known as a black box as lacks the interpretation for its
prediction, which makes it hard to be accepted by doctors.
Excavating the hidden biological mechanism for the deep
learning models will improve its interpretability and
promote the clinical utility. Thus, there is an urgent need
for developing a biologically interpretable deep learning model
for predicting the prognosis of colorectal cancer.

In this study, we investigated an end-to-end CNNs model to
quantify radiographic tumor characteristics and prognosis
prediction for CRC patients. Deep features of CT images were
extracted for correlation analysis with RNS-seq data from the
ICGC-ARGO project (The International Cancer Genome
Consortium-Accelerating Research in Genomic Oncology) to
further explore the underlying biological mechanism learned
by the Multi-Size Convolutional Neural Network (MSCNN)
model. Our results proved that deep CT features can reveal
the molecular information of tumors to some extent and
ultimately improve the stratification of CRC patients.

MATERIALS AND METHODS

Patients and Data Collection
In this retrospective study, a total of 808 colorectal cancer patients
who had cancer resection at the Sixth Affiliated Hospital of Sun
Yat-sen University from 22 Jan 2008 to 30 Jan 2018 were included
for analysis. Patients admitted during 2008-2013 were assigned to
the development cohort (n = 426) for model construction and the
rest of patients admitted during 2014-2018 were assigned to the
validation cohort (n = 382) for model validation. All patients had
CT examinations before the cancer resection surgery and the
image data were stored in DICOM (Digital Imaging and
Communications in Medicine) format. Region of interest
(ROI) for colorectal cancer tumor area was manually
delineated by experienced doctors with ITK-snap (Version 3.2)
software. Baseline clinicopathological information containing
age, gender, differentiated grade, lymph node metastasis and
microsatellite status. Among these patients, 236 patients were
enrolled in the ICGC-ARGO project and had paired RNA
sequencing data.

Data Preprocessing and Enhancement
Figure 1 shows the pipeline of our analysis from origin CT images
and their corresponding ROI to predict the disease-free survival
for each patient. Origin CT images size is 512 * 512 with slices
from 23 to 682 (mean = 162), and the valid slices which have
tumor lesion of ROI for each CT image range between 3 and 77.
To fit the deep learning model and reduce the computational
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parameters, all 3D CT images and ROIs only kept the slices with
valid areas and then were resized to 256 * 256 * 12 with SciPy
ndimage python submodule. To better conclude the tumor
boundary information, all ROIs were binarily dilated with five
pixels using morphology function in ndimage submodule. As the
tumor ROI area of colorectal cancer is usually quite small,
accounting for only 1–5% of the whole CT image, detailed
information for the tumor is hard to extract from the deep
learning model. To address this issue, the tumor area is
cropped and magnified at different magnifications. Meanwhile,
the cropped CT images were also augmented by rotating at
random angles and flipping with a certain probability. Finally,
all images for each patient were stacked together to feed into the
neural network.

Multi-Size Convolutional Neural Network
Model Construction
Convolutional Neural Network (CNN) is a powerful Deep
Learning algorithm that can extract relevant texture features
from the image. By stacking several CNNs, deep learning
model can learn deeper features from the image according
to the training task. Although model becomes much difficult to
train if there are too many layers in deep learning networks, a
residual neural network (ResNet (He et al., 2016)) is designed
to solve this problem. Our model was based on ResNet34,
which contains 34 convolutional neural networks and four
residual blocks. First, one subnetwork with CNNs of different
input sizes were designed for features extraction from the
origin CT image and its enhanced cropped images. Then all
features from these CNN were stacked together and following
one CNN layer and the rest residual blocks of RenNet34 were
used to extract higher and deeper features. Finally, one Fully
Connected (FC) layer which contains one hidden layer with 64

nodes and one output layer finished the patient disease-free
survival classification task.

Model Development and Validation
As shown in Supplementary Figure S1, for better training the
model, only patients with tumor recurrence in 3 years or
disease-free survival for more than 5 years were considered
in the model development stage. CT images with ROI were fed
into the deep learning model, and disease-free survival status
was used as the labels. Model training was performed by
updating the network weights using the backpropagation
algorithm according to the cross-entropy loss between the
prediction and the real outcomes. Adam optimizer was used in
model network weights updating, and the learning rate was
decayed to half for every 10 training epochs with an initial rate
of 0.001. During training, the loss was continuously
monitored, and model weights were saved when loss
decreased. If the loss was not decreased for more than 20
epochs, then training was ended and saved model with the
highest Area under the receiver operating characteristic (ROC)
Curve (AUC) was loaded for further validation. CT signatures
score was calculated on the whole development and validation
cohort through the MSCNN model with CT images. A
nomogram was constructed by incorporating the CT
signature with other clinicopathologic risk factors, and its
benefit was evaluated by the calibration curve and Decision
curves analysis (DCA).

Radiomics Method
To compare our deep learning based method with
conventional radiomics method, we constructed a model
with CT radiomics features. For each of CT image, a total
of 107 radiomics features were extracted using Pyradiomics
(van Griethuysen et al., 2017) package in python 3.8 platform.

FIGURE 1 |Workflow of MSCNN. (A)Multi-Size based data enhancement of CT images before fed into MSCNN. (B) Data preprocessing of CT images with ROIs.
(C) Network structure of MSCNN Multi-Size which includes a CNN to combine Multi-Size CT data, a ResNet34 network to extract image features of tumors from CT
images and a last classification network.
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Standard Deviation (SD) and Median Absolute Deviation
(MAD) were used to initially screen features with
significant differences. Z-score normalization was performed
to increase the comparability between the left radiomics
features. The least absolute shrinkage and selection operator
(LASSO) with cox regression was used to construct the final
radiomics based model.

Deep Features Visualization
To visualize how the MSCNN divides patients into high
recurrence risk and low recurrence risk, deep features from
the last two layers of the MSCNN model were exported for
further analysis. A correlation heatmap was performed on the 64
features from the hidden notes of the FC layer to show the most
related deep CT features with high recurrence risk and low
recurrence risk. Principal component analysis (PCA) analysis
was performed on 512 origin deep CT features from the ResNet34
network and 64 features from hidden nodes of the FC layer.

Correlating the Computed Tomography
Signature and Deep Computed
Tomography Features With Gene
Expression Data
To explore the biological characteristics of CT signature, Gene
Ontology analysis and Gene Set Enrichment Analysis (GSEA)
was conducted for differentially expressed genes between the risk
groups. To further figure out how the model captures the

underlying biological information from CT images, correlation
analysis was performed between 64 deep CT features and cancer-
related pathways. Functional spectra were calculated with the
DeepCC method to explore the most related biological pathways
with deep CT features (Gao et al., 2019). All hallmark pathways
which have significant correlations with these 64 deep CT features
were displayed in a bar plot.

Statistical Analyses
All statistical analyses were performed by R software (version
4.1.1). Kaplan-Meier curve was used to perform survival analysis
for model prediction results with R package “survival”. Log-rank
test was used to evaluate results of the univariable analysis of
model prediction results and other clinic-pathological factors
with disease-free survival (DFS). Multivariable analysis was
performed using the Cox proportional hazards regression
method with only the significant variables from univariable
analysis. Correlation analysis were performed using the
Pearson method. For all analyses, the two-sided value p value
< 0.05 was considered statistically significant.

RESULTS

Risk Prediction From Computed
Tomography Images
We calculated the recurrence risk of colorectal cancer patients
with CT images and ROI in an end-to-end deep learning method.

TABLE 1 | Baseline characteristic of patients in the development and validation cohort.

level Development cohort(n = 426) Validation cohort (n = 328)

Low Risk High Risk P Low Risk High Risk P

n 268 158 200 182

Age (mean (SD)) 58.732 (12.676) 59.816 (15.649) 0.4878 56.799 (13.099) 57.134 (13.191) 0.833

Sex (%) F 116 (43.28) 57 (36.08) 0.1735 92 (46.00) 68 (37.36) 0.1085
M 152 (56.72) 101 (63.92) 108 (54.00) 114 (62.64)

TNM stage (%) I 28 (10.45) 7 (4.43) <0.0001 38 (19.19) 35 (19.34) 0.0026
II 126 (47.01) 29 (18.35) 69 (34.85) 42 (23.20)
III 99 (36.94) 53 (33.54) 63 (31.82) 52 (28.73)
IV 15 (5.60) 69 (43.67) 28 (14.14) 52 (28.73)

T stage (%) T1 14 (5.22) 5 (3.18) 0.0001 9 (4.55) 8 (4.42) 0.6512
T2 23 (8.58) 4 (2.55) 35 (17.68) 29 (16.02)
T3 208 (77.61) 112 (71.34) 133 (67.17) 117 (64.64)
T4 23 (8.58) 36 (22.93) 21 (10.61) 27 (14.92)

N stage (%) N0 157 (58.80) 51 (32.90) <0.0001 118 (59.00) 84 (46.15) 0.0175
N1 84 (31.46) 65 (41.94) 58 (29.00) 60 (32.97)
N2 26 (9.74) 39 (25.16) 24 (12.00) 38 (20.88)

M stage (%) M0 253 (94.40) 89 (56.33) <0.0001 172 (88.21) 130 (78.31) 0.0168
M1 15 (5.60) 69 (43.67) 23 (11.79) 36 (21.69)

Differentiation grade (%) Low 57 (30.81) 29 (26.36) 0.0256 45 (36.00) 29 (25.44) 0.181
Moderate 117 (63.24) 64 (58.18) 76 (60.80) 79 (69.30)
High 11 (5.95) 17 (15.45) 4 (3.20) 6 (5.26)

Chemotherapy Adjuvant (%) No 68 (32.69) 32 (32.65) 1 108 (56.84) 102 (61.82) 0.3992
Yes 140 (67.31) 66 (67.35) 82 (43.16) 63 (38.18)
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After model training with the development cohort, a CT signature
score of each patient was calculated with the MSCNN model in
Supplementary Table S1. Patients with a recurrence risk of more
than 0.5 were classified into high risk groups, and the remain
patients were in low risk group. Patients’ clinical characteristics in
development and validation cohort were displayed in Table 1.

High Risk and Low Risk Patients Show
Significant Different Survival
In both development and validation cohorts, high risk patients show
worse mean survival (23 vs. 105months and 46 vs. 58months).
Kaplan-Meier curve revealed a significant association between CT
images risk prediction and patients’ DFS in the development cohort
(HR: 50.7, 95% CI: 28.4–90.6, p < 0.001) and validation cohort (HR:
2.04, 95% CI: 1.44–2.89, p < 0.001) (Figures 2A–D). Previous
research showed that clinicopathological information may be not
enough to accurately predict the recurrence risk for colorectal
patients with stage II and III (Tsikitis et al., 2014). Kaplan-Meier
survival curve in stage II and III patients showed that risk prediction

of our model can still divide those patients into significant survival
different groups (Figures 2E–H). Univariable and multivariable cox
regression analyses were performed to identity significant
clinicopathological factors associated with cancer recurrence.
Besides the risk scores calculated from CT images, clinical factors
sex, age, T stage, N stage, differentiation grade and Microsatellite
status were added to multivariable analysis. Forest plot showed risk
scores from CT images was an independent prognostic predictor of
cancer recurrence in both development and validation cohorts
(Figures 2I,J).

Radiomics Model and Risk Prediction
Standard Deviation and Median Absolute Deviation for each
radiomics features was calculated after z-score normalization
and only 50 features with SD > 1 and MAD > 3.5 were left for
subsequent modeling. Finally, 11 radiomics features were kept
with LASSO-cox regression to construct the classification
model. Radiomics score was calculated by a linear
combination of non-zero coefficients multiplied with these
11 radiomics features. To classify high and low risk groups, the

FIGURE 2 | Prognostic performance of MSCNN. The distribution of CT signature of MSCNN and its corresponding recurrence status in the development cohort (A)
and validation cohort (C). Kaplan-Meier curves showed a significant survival difference between the high and low risk groups in the development cohort (B) and validation
cohort (D). Prognostic analysis of CRC patients in stage II and III subgroups (E–H). Univariable and multivariable analysis of clinical factors in the development cohort (I)
and validation cohort (J).
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optimal cut-off of radiomics scores was determined by the
time-dependent ROC curve. Survival analysis showed
significant differences between high risk patients and low
risk patients according to radiomics scores (Supplementary
Figures S2B,D). Comparison between our MSCNN method
and Radiomics method were displayed with ROC curves and
the result proved that our model could obtain better prediction
of prognosis in both development and validation cohorts
(Supplementary Figures S2A,C).

Nomogram for Risk Prediction From
Radiomics
According to the multivariable analysis, the Cox regression model
which incorporated CT signature, T stage andN stagewas developed
and displayed as a CT signature based nomogram (Figure 3A). The
calibration curve of the radiomics nomogram showed good
concordance between the prediction and the actual DFS survival
(Figures 3B,C). DCA curve showed that nomogram achieved better
net benefit compared with TNM-stage only (Figures 3E,F).

FIGURE 3 | The developed nomogram incorporated CT signature with T & N stage (A). Coordinates length for each prognostic factor was determined by the
coefficients of the cox regression model. For each patient, the total score was calculated with all variable scores. The probability of DFS was derived from the mapping
relationship between the evaluation results and total score on specified patient survival time. (B,C) Calibration curves of nomogram for 5 years DFS in the development
and validation cohort. (D,E) Decision curve analysis for nomogram established in the development and validation cohort.
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Visualization for the Deep Features From
Radiomics
Deep features were extracted from the output of the ResNet34
network and hidden notes of the FC layer. 512 features were
exported from the ResNet34 network for each CT image, and
then the 64 features most related to tumor recurrence and
disease-free survival were extracted from the hidden layer. PCA
analysis showed deep features from the RseNet34 network were not
enough to accurately divide patients into high risk groups and low
risk groups (Figures 4A,B). However, recurrence related 64 features
extracted from the hidden layers achieved distinct classification
(Figures 4C,D). Unsupervised clustering of 64 deep CT features
displayed in the heatmap showed that these deep CT features were
significantly highly correlated with high and low risk subgroups of
CRC patients (Figure 4E).

Pathway Analysis of Radiomics Risk Group
and Deep Features
To further explore the biological interpretability of deep CT features
from the MSCNN model, Gene Ontology analysis of the different
groups and the GSEA showed significant enrichment of immune
pathways (Figure 5A) such as Interferon alpha response (p < 0.001),
Interferon Gamma Response (p < 0.001) and Inflammatory
response (p = 0.037) (Figure 5B). Significantly differential

expression genes of risk groups were shown in Supplementary
Figure S3. Besides, correlation analysis of the 64 deep CT features
(Figure 5C) found thatmost of these features were highly correlated.
Their further correlation analysis with the hallmark pathways was
performed to explore the biological mechanism of the MSCNN
model. Hallmark pathways were selected according to significant
association with those deep CT features, and the result showed those
features had a significant enrichment in some metabolism and
proliferative pathways (Figure 5D).

DISCUSSION

In this study, we proposed a deep learning based end-to-endmethod
to predict prognosis of colorectal cancer patients after tumor
resection surgery from CT images. Our deep learning model
successfully screened out high tumor recurrence risk patients
with significant prognostic differences from the others.
Univariable and multivariable analyses showed that CT signature
was an independent factor for CRC patient survival prediction. By
incorporating CT signature and clinical risk factors, we built a
nomogram that can facilitate the risk prediction for colorectal
cancer patients. Correlation analysis with genomic data indicated
that high risk patients showed downregulation of immune pathways
and deep CT features learned by MSCNN model were significantly
enriched in some metabolism and proliferative pathways.

FIGURE 4 | Dimension reduction for visualization and correlation analysis of deep CT features. Principle component analysis (PCA) on the 512 features of the
ResNet34 network (A,C) and 64 features (CT feature) of hidden notes of the FC network (B,D). Correlation heatmap between 64 deep CT features and prognostic
difference group (E).
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Traditional prognostic analysis based on genetic testing can
obtain good performance as expression of several genes were
highly related with patient’s tumor progression (Kandimalla et al.,
2018; Sveen et al., 2020). However high cost and long test time
cycle limited its large-scale applications. Compared with genetic
testing, CT imaging, a much cheaper non-invasive preoperative
routine test for CRC patients to locate the tumor before the
resection surgery, can provide more preoperative interventions.
Our study was based on deep learning model which focused
detailed and deeper information of CT images and acquired good
performance in prognostic prediction for CRC patients.

Deep learning model with CNN can learn the features of CT
images from low to high dimensions and their correlation
(Yamashita et al., 2018), which may be the key reason for high
performance in image analysis. Since most previous CT image
based prognostic research have only used pretrained deep
learning to extract images features, subsequent analysis
required subjective screening of these features to build the
machine learning model again (Huang et al., 2020; Park et al.,
2021; Liu et al., 2022). Besides, they did not consider the special

characteristics of medical images which mean generic pretrained
deep learning models were not suitable. Our MSCNN model was
an end-to-end method to quickly predict the prognosis for CRC
patients with CT images, which can also reduce the subjectivity of
human selection of image characteristics. In addition, the
percentage of tumors in CT images is often small, accounting
for only about 1–5%, which makes it difficult for ordinary CNN
models to learn the key information of CT images. Based on the
idea of multi-instance learning in pathology research (Bilal et al.,
2021; Sirinukunwattana et al., 2021), our MSCNN model
considered both full-image and local detail information of CT
images by cropping and deflating the ROI region, making the
prognostic predicting of our model more comprehensive and
accurate.

Recent rapid development of deep learning has generated a series
of CNN based studies for radiographic analysis, like treatment
response predicting (Xu et al., 2019; Lu et al., 2021) and
detection of Synchronous Peritoneal Carcinomatosis (Yuan et al.,
2020). However, few of them considered the interpretation of their
deep learning models, making it hard for clinicians to be convinced

FIGURE 5 | Global gene set pathway analysis. (A) Gene Ontology pathway enrichment analysis between CT signatures and RNA-Seq expression. (B) GSEA
showed several Immune related pathways were downregulated in high CT signature patients. (C,D) Correlation between 64 deep CT features and their enrichment
hallmark pathways.
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of their findings. Our study not only visualized the process of
classifying CRC patients in high and low risk groups, but also
found that the CT signature of our MSCNN model was
significantly correlated with several immune pathways.
Meanwhile, our results found that deep CT features showed
significant enrichment in some metabolic proliferative pathways
which was consistent with previous studies (Kandimalla et al., 2019;
Cai et al., 2020; La Vecchia and Sebastián, 2020).

However, despite satisfactory results with sufficient
biological interpretation, our study still has some
limitations. First, a prospective study was needed to further
confirm and optimize our model. In our study, all patients
included are from one single center, which may cause bias for
the model validation. In addition, our CT images for prognosis
predicting need manual ROI segmentation which is time-
consuming and seriously affects the applicability of our
model. This can be achieved by object detection through
deep learning with enough data. In this way, the ROI can
be directly learned from the model without manual sketching.

In conclusion, our study demonstrated that deep learning with
CT images can be effectively applied to cancer recurrence
prediction. By incorporating clinical factors, more accurate
results can be achieved than just routine TNM staging.
Correlation analysis with gene expression data showed that
deep CT features captured by our model did have a biological
meaning which gave credibility to our MSCNN model.
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