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The physiology and behavior of living organisms are featured by time-related variations
driven by molecular clockworks that arose during evolution stochastically and
heterogeneously. Over the years, several high-throughput experiments were performed
to evaluate time-dependent gene expression in different cell types across several species
and experimental conditions. Here, these were retrieved, manually curated, and analyzed
by two software packages, BioCycle and MetaCycle, to infer circadian or ultradian
transcripts across different species. These transcripts were stored in RhythmicDB and
made publically available.
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INTRODUCTION

The molecular clockwork of living organisms, common to diverse kingdoms of life, comprising
Archaebacteria, Eubacteria, Protista, Fungi, Plantae, and Animalia, is a highly conserved endogenous
biological timer that allows anticipation and adaptation to cyclic environmental transitions, provides
competitive advantages for species survival and regulates cellular responses. The biological clock
works through a complex interplay between genomic regulation, transcriptional activation-
repression, and post-translational cellular processes (Hurley, Loros and Dunlap, 2016). Time-
related variations of gene expressionmainly show 24 h (circadian) rhythmicity, even if a few hundred
genes are featured by the first (12 h) and second (8 h) harmonics of circadian rhythmicity, thereby
showing correlation to light-to-dark/warm-to-cold transition phase and stress-response processes
and metabolism, respectively (Lloyd and Murray, 2005; Hughes et al., 2009).

Over the past 3 decades, an ever-growing number of studies reporting results of high-throughput time-
series experiments were published and accumulated many multi-omics datasets. Most data are accessible
from the EBI-ArrayExpress (Parkinson et al., 2007) and NCBI-GEO (Barrett et al., 2013) databases. Their
wide availability pushed the development of specialized computational resources to store time-series
analysis of transcriptomes and associate biological functions (Supplementary Table S4). CircaDB
(Pizarro et al., 2013) provides information on mouse and human time-series transcript profiles with 24 h
periodicity. It is equipped with a simple query interface by which users can define filters, query search
modality, and target tissues. Plots of time-course expression levels and statistical parameters for each
queried gene are returned. Rhythms can be identified through three different methods, i.e., JTK (Hughes,
Hogenesch and Kornacker, 2010), Lomb Scargle (Glynn, Chen andMushegian, 2006), and de Lichtenberg
(de Lichtenberg et al., 2005). CircaDB’s latest update notice falls back to 2014. Although raw data are
downloadable, plots and processed results for about 3,000 cycling genes are not. SCNseq (Pembroke et al.,
2015) is an R Shiny app that reports the circadian expression profiles of genes expressed in the mouse
suprachiasmatic nucleus. For each gene, expression plots, i.e., read counts per timepoints, expression and
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oscillation measures, e.g., FPKM, Peak phase, and adjusted p-values
are available. Analysis of oscillation was also performed for lincRNA
molecules. The DIURNAL web resource (Mockler et al., 2007) is
devoted to studying circadian gene expression in plant model
organisms, offering a simple interface for querying several
experimental conditions, loci, or probe accession numbers.
Queries return graphical representations of time-series gene
expression levels and the best-fitting harmonic model as
calculated by the HAYSTACK method. Bulk download of
Arabidopsis thaliana, Oryza sativa, Glycine max, Populus
trychocarpa, Brachypodium distachyon normalized gene
expression data, and probe-specific best models were also made
publicly available. CGDB (Li et al., 2017) represents the most
complete and updated tool for circadian genes, containing
information on validated and predicted (by orthology) genes in
hundreds of species. The tool can be queried using gene names,
functions, or species names and retrieves curated data, such as
oscillation period, phase, evidence level, tissue/cell context,
experimental conditions, and associated publications. Initially,
27,964 genes of 25 distinct species, from Drosophila melanogaster
to Homo sapiens to Glycine max, were reported to possess specific
oscillatory expression patterns. Around 44,000 more genes for 148
other species were tagged as “putative circadian genes” by orthology.
CircadiOmics (Patel et al., 2012) integrates different transcriptomic,
proteomic, and metabolomic datasets to allow users to retrieve
expression levels and dosage variation for oscillating metabolites,
transcripts, and proteins. The whole dataset cannot be downloaded
to date, and the query interface is not of immediate usage. Similarly,
CirGRDB (Li et al., 2018) contains public transcriptomic and
epigenomic datasets of human and mouse tissues. These were
utterly re-analyzed, and rhythmicity was detected by the LSPR
algorithm (Yang, Zhang and Su, 2011). LSPR was also used to
predict oscillatory binding events and histone modifications among
the different experimental conditions. Furthermore, rhythmicity was
evaluated for non-coding RNA such as enhancer RNAs and RNA-
edited molecules. Expression and regulatory data are also retrievable
as plain text files.

RhythmicDB collects the results of a recent effort of
homogeneous re-analysis of 87 time-course gene expression
datasets derived from 48 publicly available experiments across
19 different species. Unlike other tools, oscillatory genes were
identified using two distinct algorithms and were sought in
carefully chosen datasets from which data of mutant, treated,
or unhealthy strains were filtered out. In addition, algorithms
were also used to detecting ultradian rhythmicity across the
selected time-series data. Datasets and resulting predictions
were made available freely from http://rhythmicdb.css-mendel.it.

METHODS

From October 2017 to December 2019, we queried the EBI
ArrayExpress database with the terms: “circadian,” “time,”
“clock,” “rhythm,” and “ultradian.” We then manually
screened the matching results and selected only the datasets
for which we could retrieve: preprocessed/normalized values of
gene-wise expression time series; information about the sample

origin and type (e.g., mutational state, treatments, health/disease
state); at least four sampling points, i.e., expression time-series
with maximum 6 h sampling interval and minimum 24 h
duration. For each selected experiment, we i) downloaded the
data files (“. GSM files”) corresponding to the expression values of
control samples only for each time point, ii) merged them into
expression matrices, and iii) made them available from the
RhythmicDB website’s download section. GSM files associated
with mutant/knock-out samples were discarded, while probes or
sequence functional annotations were taken from the
experiment-specific Array Design File. If an experiment
consisted of multiple conditions (e.g., tissue, entrainment
method, different RNA extraction protocol), distinct matrices
were generated whenever different tissues, strains, or entrainment
cycles were available for the same experiment (Supplementary
Table S1). MetaCycle (Wu, et al., 2016) ver. 1.2 (MC) and
BioCycle (Agostinelli, et al., 2016) ver. 0.9.3 (BC) were then
run on these datasets, looking for ultradian (7–9 h and 10–14 h)
and circadian (20–28 h) genes.

MetaCycle was installed in a R (R Core Team, 2021) 3.5
environment and run through the following command brueprint:

meta2d (infile, outdir = res, filestyle = “txt”,
timepoints = points, minper = T1, maxper = T2,
cycMethod = c (“LS,” “JTK”), outputFile = TRUE,
adjustPhase = “predictedPer").

where “infile” is the input dataset; “timepoints” indicates the
number of time points within the “infile”; “minper"/"maxper”
constrain the minimum and maximum lengths for the oscillatory
periods of interest; “cycMethod” indicates which MC algorithms
should be used among “JTK” and “LS”; “adjustPhase” indicates
that the inferred phase needs to be adjusted with the predicted
period length. MC calculates a set of oscillatory properties for
each probe, i.e., the period, adjusted phase, and amplitude.
Estimates are provided with raw and adjusted p-values
(Supplementary Table S1). We purposely did not consider
the ARSER method integrated with MetaCycle since it cannot
manage replicated time points or time-series taken at time
intervals of different lengths.

BioCycle was run with the following command line:

Rscript ~/BioCycle_0.9.3/BioCycle.R -i
~/E-GEOD-XXXX_input.txt–o ~/E-GEOD-XXXX/
T7_T9/-s T1 -e T2

“E-GEOD-XXXX_input.txt” is an expression matrix file; “T1”
and “T2” indicate the period interval for which the algorithm is
trained. Significantly, we did not add any “GroundTruth” column
in the input dataset because we had no prior knowledge about
which probes were periodic or not. The tested oscillatory periods
were: T1 = 7 AND T2 = 9 (7–9 h, ultradian); T1 = 10 AND T2 =
14 (10–14 h, ultradian); T1 = 20 AND T2 = 28 (20–28 h,
circadian) (Supplementary Table S2).

A total of 522 independent runs were carried out (i.e., 87
experiments × two methods × 3 ″T1/T2” parameters). According
to either of the tools, only the probes or sequenced genes/transcripts
that oscillated significantly (i.e., p-value≤ 0.05)were considered. They
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were annotated with information about the original experiment id,
organism, period, and other sequence-related information. Details are
given in Supplementary Tables S1, S2. In particular, the
“Sequence.Info” field contains additional annotations, as provided
by the Array Design Files, or genomic/transcriptomic annotations, if
provided by the original datasets.

A mobile-friendly web interface was implemented in Vue. js
ver. 2.6 for these data. It allows searching for oscillating
transcripts through one or all of the 19 available species
and eventually restricting the matching results to only those
with a specified significance level or circadian or ultradian
oscillation periods. This can be equally obtained for MC and
BC. The output page recapitulates the organism, period range,
and the transcript name of a searched molecule. Moreover, it
displays the calculated p/q-values, the inferred oscillation
period, lag, and amplitude values. RhythmicDB has a
running instance of MongoDB ver. 4.4 behind it that
currently contains and serves around two million records to
the client through an Express. js ver. 4.17 middleware.

ANALYSIS

The analyses were conducted using MC and BC because of
their computational efficiency, configuration and usage
friendliness, comprehensibility of the output files, and
resilience to missing values and low sampling rates. We
processed a total of 2,073,343 probe sets across the 87
selected datasets. 173,505 (8.4%) and 401,886 (19.4%)
showed significant oscillations according to the two
software packages. While the usage of stringent statistical
cutoffs would have certainly reduced the possibility of false-
positive results, as observed in a previous benchmark analysis
(Mei et al., 2020), we have set a relaxed p-value threshold to the
canonical 0.05 value, intending to provide a maximal set of
oscillating transcripts, eventually filterable in subsequent
analysis stages. The web interface indeed allows further
filtration by more stringent p/q-value thresholds. The

outcome of the different significance thresholds for the two
approaches is provided in Table 1.

While the proportion of transcripts oscillating with 7–9 h
periodicity is similar (~17%) between MC and BC, differences
emerge for the other two tested periodicity values (Table 1, cf.
category “total,” i.e., the proportions of circadian and ultradian
transcripts over the total numbers, for each tool). Approximately
120,000 probe sets or transcripts were predicted to oscillate with
the same periodicity, 87,596 of which significantly. Proportions
differed slightly between MC and BC, i.e., 71 and 73%,
respectively. The difference can be ascribed to the fact that
certain transcripts were considered to oscillate with two period
intervals (7–9h and 10–14 h) by one method and with a single
period by the second one.

The application of two independent inference methods
allowed us to achieve higher confidence in identifying
oscillating transcripts. The list of known circadian rhythm-
associated transcripts across different experiments is provided in
Supplementary Table S3. Of note, 35 circadian transcripts were
systematically found in 46 datasets for 11 different species (A.
thaliana, O. tauri, S. elongatus, A. aegypti, A. gambiae, D.
melanogaster, D. rerio, H. sapiens, M. musculus, R. norvegicus,
P. troglodytes). To summarize, 213 known circadian genes were
retrieved across different experiments. BC detected 105 transcripts,
MC 21, and both 87 (40%). This highlights how inference methods
impact the identification of circadian rhythmicity, an issue that has
been intensely discussed (Hughes et al., 2017) and evaluated (Wu
et al., 2014; Mei et al., 2020).

Focusing on ultradian oscillations (7–9 h), 67% of all
significantly oscillating transcripts retrieved by MC (20,003 in
29,580) were also found by BC. Similar proportions resulted when
studying 10–14 h period oscillating genes (14,146 out of 20,605).
BC predicted many more oscillating transcripts; then, their
intersection decreased to 13% for 10–14 h and 25% for 7–9 h
periodicity). Increasing the statistical stringency (q-value ≤0.05),
99% of detected oscillating genes were circadian, and only ~1%
exhibited an ultradian period. Similar proportions apply to BC
(details in Table 1).

We also reported the amount and relative proportions of
7–9 h, 10–14 h, and 20–28 h, significantly oscillating
transcripts across all investigated datasets (Supplementary
Table S2). The high variability of these results is partly
explained by the fact that rhythms are strictly species- and
tissue-specific (Mure et al., 2018) and partly by the different
experimental protocols, entrainment strategies, sampling
intervals, experiment duration, and quantification/
normalization methods used to generate the data that we
collected in RhythmicDB. As expected, 20–28 h circadian
periodicity was predominantly frequent among all species,
although their proportions varied largely across different
experiments and tissues. Conversely, the proportion of
ultradian transcripts was generally negligible across all
datasets. Although the detection of ultradian transcripts is, in
fact, biologically meaningful (Westermark and Herzel, 2013; Zhu,
Dacso and O’Malley, 2018), high-frequency assessment, i.e., at
least 2 h time intervals, is technically challenging. It requires
denser sampling intervals than the prevalent setups, appropriate

TABLE 1 | Number and relative proportion of oscillating transcripts, calculated for
each method and tested periodicities.

Periodicities MC BC Category

All 173,505 401,865 —

T7_T9 29,580 (17%) 71,543 (17.8%) total
T10_T14 20,605 (12%) 107,197 (26.7%)
T20_T28 123,320 (71%) 223,125 (55.5%)

All 121,745 119,516 —

T7_T9 20,003 (16.4%) 17,832 (15.2%) common
T10_T14 14,146 (11.6%) 14,088 (11.8%)
T20_T28 87,596 (71%) 87,596 (73%)

All 20,976 32,865 —

T7_T9 - 52 (0.2%) stringent
T10_T14 165 (0.8%) 137 (0.4%)
T20_T28 20,811 (99.2%) 32,676 (99.4%)

Numbers are stratified per category (total: number of significant, i.e., p-value ≤0.05,
circadian and ultradian transcripts over the total numbers; common: common transcripts
between MC and BC; stringent: as ‘total’ but considering q-value ≤0.05).
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experimental designs, and ad-hoc computational techniques.
While the bioinformatics community has made great efforts in
this direction (Zhu et al., 2017; Veen and Gerkema, 2017), further
research is still needed.

Until now, several bioinformatics tools have been conceived for
the detection of biological rhythms and storage of their results (de
Lichtenberg et al., 2005; Glynn, Chen andMushegian, 2006;Mockler
et al., 2007; Hughes, Hogenesch and Kornacker, 2010; Yang and Su,
2010; Yang, Zhang and Su, 2011; Straume, 2004; Thaben and
Westermark, 2014; Agostinelli, Ceglia, Shahbaba, Sassone-Corsi,
et al., 2016; Wu et al., 2016; Abhilash and Sheeba, 2019; Singer
and Hughey, 2019; Carlucci et al., 2020; De Los Santos et al., 2020;
Montroya et al., 2020; Ness-Cohn et al., 2020). Nevertheless, we have
implemented and released RhythmicDB to include the datasets
elaborated in this study because a bioinformatic tool permitting
data integration of circadian with ultradian oscillating transcripts
across multiple species was lacking. Therefore, RhythmicDB should
not be considered an alternative to the above databases but a
complementary tool to inquire for ultradian rhythmic transcripts
as well. These transcripts were not collected from the literature or
public resources (e.g., Uniprot or Pfam), as, e.g., CGDB does, but
were obtained at the end of an essential preprocessing step, which
included downloading raw gene expression data from EBI
ArrayExpress and NCBI GEO, dropping mutant or unhealthy
samples and pruning datasets with biased sampling times or
duration. At the end of this process, transcripts were called using
two renowned packages for rhythmicity detection. Hence, several
databases above, with CGDB in the lead, are of mention as the first
and primary references to explore circadian transcripts, as they come
from literature. On the contrary, RhythmicDB can be helpful to
explore the natural variability of molecular oscillations across
species/tissues; corroborate or not the circadian rhythmicity of
transcripts by comparing the MetaCycle/BioCycle results; suggest
new possible, i.e., unreported by the literature, circadian and
ultradian genes.

In perspective, we plan to integrate new annotation sources, e.g.,
updated gene symbols, reference transcript accession numbers, and
Gene Ontology terms, whenever possible. In fact, the species
included in RhythmicDB are not equally well-annotated, with
some being subjected to frequent data modification or

replacement and suffering from data inconsistency. Moreover,
we will periodically update RhythmicDB so as to include new
gene expression datasets that MC and BC can process.
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