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Editorial on the Research Topic

Current Status and Future Challenges of Biobank Data Analysis

Global health care systems are severely strained under the burden of aging populations, which are
prone to enhanced incidence of chronic diseases. Biobanks help manage the population-wide disease
burden by providing resources for scientific and medical research, allowing improved public health
and individual patient care (Harris et al., 2012; Jacobs et al., 2018). Biobanks are the result of the
combination of emerging novel technologies, well-catalogued human biological samples, and
corresponding clinical and research data (Harris et al., 2012). The last 2 decades have witnessed
the emergence of several biobanks around the world. Their primary aims are to uncover the genetic
etiology of various chronic illnesses and to study the interaction of ethnicity with the underlying
clinico-pathology and genetics of individuals across different populations (Sanner and Frazier, 2007).

A wide spectrum of phenotypic information is available in biobanks, including diagnoses, risk
factors, physical and metabolic parameters, clinical information, as well as data on behavioral and
social factors (Harris et al., 2012; Jacobs et al., 2018; Coppola et al., 2019). Single nucleotide
polymorphism (SNP) genotyping arrays allow genome-wide association studies (GWASs) and
polygenic risk score (PRS) development (Jimmy Juang et al., 2020) or phenome-wide association
studies (PheWASs) (Liu and Crawford, 2022). Moreover, findings from GWASs can be utilized to
conduct genetic tests on cohorts (Yamamoto et al., 2017). Biobanks require strict quality standards,
which has led to the discovery of many new diagnostic and prognostic markers and a better
pathophysiological understanding of disease development (Jacobs et al., 2018).

Biobanks provide high-dimensional data with large sample sizes, allowing gains in statistical power
towards identification of novel genetic findings. However, the sheer amount of data they contain
presents a greater computational burden that needs to be dealt with carefully. Another issue associated
with traditional GWASs is the existence of linkage disequilibrium that leads to non-causal genetic
markers. Additionally, for weak signals (minor allele frequency (MAF) ≤0.01), existing statistical
models may not be powerful enough to detect putative rare variants. Hence, before conducting analyses
and building models, it becomes imperative to reduce the data dimension while retaining the essential
information of the original data (Sakaue et al., 2020). This is especially relevant for studies that aim to
account for missing heritability, due to the modest effect of GWAS-reported loci on disease risk of
complex traits, through genetic interactions (gene-gene, gene-environment). Prospective interactions
exponentially increase with the increase in total genetic loci, leading to a number of challenges
associated with high-dimensional data, as otherwise known as the curse of dimensionality
(Chattopadhyay and Lu, 2019). Therefore, robust state-of-the-art computational techniques are
required in order to identify and validate genetic interactions, eventually leading to a body of
evidence that can explain a part of the current gap in heritability of complex traits and diseases.
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High-throughput techniques have made available to
researchers the genomic information from multiple platforms,
such as DNA single nucleotide variants (SNVs), copy number
variations (CNVs), and DNAmethylation from SNP microarrays
and/or short- or long-read next-generation sequencing platforms.
Genetic susceptibility to a specific disease can be gauged better if
combined multi-omics studies can be conducted for each patient/
individual (Curtis et al., 2012; Brucker et al., 2020). Analysis of a
single type of -omic data is limited by correlations primarily
providing reactive signals rather than real causal ones, while
integration of multiple -omics data types potentially may identify
real causal changes that elucidate disease etiology or treatment
targets (Hasin et al., 2017). Such findings can subsequently be
tested for confirmation in molecular studies.

This Research Topic aimed to bring together studies that can
showcase the potential and wealth of information that biobanks
hold by providing a comprehensive overview of the current
advances in scientific and clinical knowledge derived from
biobank data analysis. Primarily, it aimed to compile
algorithms and statistical models that report novel findings for
different phenotypes, perform integrated analyses of multi-omics
data in health and disease, and report sophisticated
bioinformatics and statistical techniques with the aim of
establishing an association between the genetic profiles and
biological phenotypes. The second goal was to weigh the
various difficulties and challenges posed involved in high-
dimensional biobank data analysis. To this end, five studies
were published under this Research Topic, as described in the
following sections. Four studies were conducted on subjects from
the Taiwan Biobank (TWB) (Wei et al., 2021), and the fifth was a
review discussing the challenges related to biobank data analysis.

The TWB was established in 2012, with the aim of creating a
population-based cohort of 200,000 adults, recruited at regular
time intervals, with no cancer diagnosis at the time of enrollment
(Juang et al., 2021). The general population of Taiwan constitutes
individuals of Han-Chinese ancestry who immigrated from
various provinces of China and local Taiwanese aboriginals.
For genotype imputation purposes, the TWB additionally
offers a reference panel created from whole-genome
sequencing data from 1,445 early recruited participants.
Furthermore, it offers two customized SNP genotyping arrays.
Being the largest publicly available genetic database of individuals
with East Asian ancestry, it helps document population-specific
risk variants to improve the clinical care of the participants.

A study by Chen et al. described the association of a much-
reported variant ABCG2 rs2231142 and body mass index (BMI)
with the risk of incidence of hyperuricemia (HUA), a major risk
factor for gout, in East Asian populations. HUA is associated with
various comorbidities, including obesity, hypertension, type 2
diabetes, hyperlipidemia, cardiovascular diseases, chronic kidney
diseases, stroke, osteoporosis, erectile dysfunction, and
obstructive sleep apnea, and has been reported as an
independent predictor of premature mortality (Vincent et al.,
2017; Singh and Cleveland, 2019; Huang et al., 2020). They
conducted their study on 4,228 HUA patients from the TWB
and reported a higher risk of HUA in association with either the
“risk T” allele of ABCG2 rs2231142 (TT or TG genotype) or

higher BMI for both men and women. They further established
the association of strong genetic-environmental (GxE)
interaction with very high risk of HUA. Based on their
findings, they recommended controlling body weight
(i.e., lowering BMI) for patients with high risk of HUA
carrying the ABCG2 rs2231142 risk T allele.

Three studies were published under this Research Topic that
conducted genomic analysis through proposed scalable
methodologies to improve the relevance, utility and
interpretability of the reported findings. One was by Chi et al.,
who proposed SEAGLE, a scalable exact algorithm for large-scale
set-based gene-environment (G × E) tests on continuous traits,
and applied it to subjects from the TWB. SEAGLE deploys matrix
computations to calculate variance-component test statistics and
p-values of G × E interactions. It requires no additional
assumptions or approximations and is computationally
efficient, with the ability to accommodate sample sizes up to
the order of 105, thereby eliminating the requirement for high
performing computing resources. Extensive simulation studies
under different scenarios and assumptions were conducted to
establish its scalability and comparable power and type I
error rates.

The second study was by Yu et al., who proposed an integrative
co-localization (INCO) approach for combining more than one
type of -omic data. SNVs and CNVs from the same genomic unit
were utilized for obtaining their concurrent effect and dealing
with the sparsity of rare variations. Traditional integrated
analyses of multi-omics data usually analyze each type of data
separately, after which a naïve union or intersection analysis of
significant findings is conducted to identify candidate genes. Such
approaches may fall behind in identifying causal variants for traits
that are a result of the concurrent effect of both the omics levels.
INCO is a hybrid approach that conducts a screening procedure
at the gene level, followed by modeling a concurrent effect from
both levels of data, irrespective of whether each of them has a
marginal association with the trait. Finally, it focuses on narrower
genetic regions for bypassing the sparsity effect due to rare
variants. Yu et al. conducted comprehensive simulations to
demonstrate the scalability of their approach under different
assumptions and scenarios and then applied their method to
the study of subjects from the TWB, specifically their low-density
lipoprotein cholesterol and triglyceride levels. They reported a
potentially novel association of the VNN2 gene, which is a protein
coding gene involved in cell migration and fatty acid metabolism.

Finally, the third study was reported by Sun et al. and
demonstrated that a novel quality control procedure can
improve the accuracy of rare variant calling in SNP arrays.
Detection of rare variants through genomic association studies
still remains a challenge for various reasons—noisy signals and
batch effects to name a few—and improvement in the genotyping
quality may be an avenue for better clinical applications.
Analyzing a custom Axiom array of data consisting of 267,247
rare variants obtained from 43,433 individuals in the TWB, an
advanced normalization adjustment was adopted to prevent false
calls caused by splitting the cluster, and a rare het adjustment was
employed to lower false calls of rare variants. The concordance of
the MAF for the called variants was measured by comparing it
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with that of the allelic frequencies from array data. Finally,
genotyping results were used to detect familial
hypercholesterolemia, thrombophilia, and maturity-onset
diabetes of the young to assess the performance of their
proposed procedure in disease screening. All heterozygous
calls were verified by Sanger sequencing or qPCR, and the
positive predictive value of each step was reported with an
increase of up to 100%. Findings from this study
demonstrated that correctly conducted genotype calling of rare
variants could potentially be a solution for pathogenic variant
detection through SNP arrays.

Lastly, a review was published by Bi and Lee, where they
discussed challenges in multi-omics data analysis with the aim of
aiding statisticians, epidemiologists, and other medical scientists
in dealing with biobank-level data. They described in detail the
current and future statistical and computational roadblocks that
researchers stumble upon while performing GWASs (single point
association or multilevel epistatic association) and PheWASs on
large-scale biobank data; summarized recently developed scalable
and robust regression approaches; and introduced Phewebs and
some phenome-wide analysis results at the variant, gene, and
pathway levels. They further outlined the need for more advanced
methods and tools for handling future challenges and furnished
comprehensive information for statisticians to obtain an up-to-
date understanding of the tools and technologies at hand.

Based on these published studies in this Research Topic, we
discussed some of the difficulties in analyzing massive amounts of
genetic data. In addition to the methodological issues, another
crucial challenge now is to combine biobanks worldwide for
comprehensive studies to improve the equity of obtaining
genetics data in human genome research. Since genomic
research findings are often translated into genetic testing,

disease diagnosis, and therapeutic solutions, especially in the
era of personalized medicine, it is important that the scientific
conclusions are not drawn from a biased sample to enhance
population health globally (Harris and Sulston, 2004; Editorial,
2021). One way to do this would be to have a collective effort from
researchers conducting studies with genetic databases such as
biobanks around the world, so that diversity can be achieved.
Several initiatives have started to reach this goal (The H3Africa
Consortium, 2014; GenomeAsia100K Consortium, 2019; Robine
and Varmus, 2021). We have not covered this in the current
Research Topic, but we hope there will be one focusing on this
issue in the near future.

In summary, biobanks play a central role in elucidating disease
etiology and promoting public health. Incorporating biological,
clinical, and genetic information into multi-omics analysis
protocols is crucial to this end. Efficient use of big data by
biobanks, both retrospectively and prospectively, would
accelerate the implementation of preventive measures,
optimized treatments, and personalized healthcare.
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