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Despite the enormous economic and societal burden of chronic kidney disease

(CKD), its pathogenesis remains elusive, impeding specific diagnosis and targeted

therapy. Herein, we sought to elucidate the genetic causes of end-stage renal

disease (ESRD) and identify genetic variants associatedwith CKD and related traits in

Saudi kidney disease patients. We applied a genetic testing approach using a

targeted next-generation sequencing gene panel including 102 genes causative

or associated with CKD. A total of 1,098 Saudi participants were recruited for the

study, including 534 patients with ESRD and 564 healthy controls. The pre-validated

NGS panel was utilized to screen for genetic variants, and then, statistical analysis

was conducted to test for associations. The NGS panel revealed 7,225 variants in

102 sequenced genes. Cases had a significantly higher number of confirmed

pathogenic variants as classified by the ClinVar database than controls

(i.e., individuals with at least one allele of a confirmed pathogenic variant that is

associated with CKD; 279 (0.52) vs. 258 (0.45); p-value = 0.03). A total of 13 genetic

variants were found to be significantly associated with ESRD in PLCE1, CLCN5,

ATP6V1B1, LAMB2, INVS, FRAS1, C5orf42, SLC12A3, COL4A6, SLC3A1, RET, WNK1,
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and BICC1, including four novel variants that were not previously reported in any

other population. Furthermore, studies are necessary to validate these associations

in a larger sample size and among individuals of different ethnic groups.

KEYWORDS

chronic kidney disease, next-generation sequencing, renal failure, panel sequencing,
novel variants

Introduction

Chronic kidney disease (CKD) affects over 10% of the adult

population worldwide and is now recognized as the most rapidly

increasing contributor to the global burden of disease (Thomas

et al., 2017). Recent predictions by the Institute for Health

Metrics and Evaluation indicate that CKD will become the

fifth cause of years of life lost globally by 2040 (Foreman

et al., 2018). In Saudi Arabia, end-stage renal disease (ESRD),

the terminal manifestation of CKD, affects more than 6% of the

population, resulting in substantial morbidity, mortality, and

high healthcare costs (Alsuwaida et al., 2010). At present, there

are approximately 17,000 patients on dialysis, and this number is

increasing at an exponential rate of 8% annually, with a national

dialysis incidence of 140 new cases per million population (PMP)

(Wang et al., 2016).

Despite the enormous economic and societal burden of CKD,

its pathogenesis remains elusive, impeding specific diagnosis and

targeted therapy (Romagnani et al., 2017). CKD is a complex

disorder comprising numerous pathophysiologically distinct

conditions, which share the common feature of leading to

persistent anomalies in the kidney structure and/or function

(O’Seaghdha and Fox, 2011). Prior research has shown that CKD

results from a combination of genetic and environmental factors

(Satko and Freedman, 2005). Moreover, familial aggregation of

CKD in diverse ethnic groups is well-documented, confirming

the role of heritable factors in predisposition to CKD (Cañadas-

Garre et al., 2018a). Although CKD can be identified by well-

established clinical biomarkers including the estimated

glomerular filtration rate (eGFR), albuminuria, or serum

creatinine (SCr) levels, the early prediction of individual risk

for CKD or the likelihood of later progression to ESRD remains a

challenge (Satko and Freedman, 2005; Cañadas-Garre et al.,

2018b).

Genetic studies, initially using candidate gene approaches,

and more recently, genome-wide association studies (GWAS)

have identified numerous genetic biomarkers conferring

susceptibility and disease progression in CKD (Köttgen et al.,

2012; Sveinbjornsson et al., 2014; Prokop et al., 2018). However,

these genetic biomarkers do not account for all the susceptibility

to CKD and explain a minority of the overall heritability.

Although there are several causes of kidney failure in Saudi

patients on dialysis, as reported in the registry of the Saudi Centre

for Organ Transplantation (Bullich et al., 2018), genetic and

congenital anomalies of the urinary system are listed as the causes

of only 2% and 1.6% of cases, respectively. However, this is an

underestimated percentage, and many of the causes listed as

“unknown” (7%) or hypertension (38%) may well be due to

genetic factors. Globally, a 20% prevalence of family history of

kidney disease was reported by incident dialysis patients in the

USA (of them, 22.2% in diabetes mellitus; 18.9% in hypertension;

22.7% in glomerulonephritis; and 13.0% in patients with other

etiologies) (Fallerini et al., 2014). In another US study, 23% of

incident dialysis patients had close relatives with ESRD, while

21% of patients over 55 years old had a family history of ESRD.

The prevalence values of family history among patients with

diabetes, glomerulonephritis, hypertensive nephrosclerosis, and

“other” causes of their CKD were 24.4%, 22.5%, 23.2%, and

17.5%, respectively (Riedhammer et al., 2020). Additionally, a

study from Norway reported that individuals with a first-degree

relative with ESRD had a 7.2 times higher risk of ESRD than

individuals without a first-degree relative with ESRD (Cañadas-

Garre et al., 2018a). Importantly, heritability studies of eGFR in

twin studies reported an estimate of 50% (Cañadas-Garre et al.,

2019). The familial aggregation studies demonstrated that

heritability ranged from 36 to 75% for eGFR and from 16% to

49% for albuminuria (Cañadas-Garre et al., 2018a; Adam et al.,

2020).

In this study, we used a genetic testing approach based on

targeted next-generation sequencing of 104 genes causative or

associated with CKD in Saudi patients with ESRD. We sought to

elucidate the genetic causes of CKD and identify genetic variants

associated with CKD and related traits in the Saudi population,

supporting precision medicine for Saudi patients with kidney

disease.

Methods

Ethics statement and study population

Ethical approval for this study and all experimental protocols

was obtained from the Institutional Review Board at King

Abdullah International Medical Research Center (KAIMRC),

Ministry of National Guard—Health Affairs (MNG-HA), and

site-specific approvals were obtained from all participating

centers. The study and all experimental protocols adhered to

the Declaration of Helsinki. All participants or their guardians

were consented to by their local team for genetic testing and

participation in this study upon recruitment.
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Cohort selection

This study included a total of 1,098 Saudi subjects, including

534 patients with stage 5 CKD who were referred to the

Hemodialysis Unit at King Abdulaziz Medical City (KAMC),

MNG-HA between September 2019 and March 2020, or the

participating centers. The remaining 564 subjects are healthy

CKD-free controls whose medical history was retrieved from the

MNGHA health database and carefully revised. The inclusion

criteria for the cases were as follows: 1) Saudi adults, who are

descendants of Saudi parents and grandparents, 2) having CKD

stage 5 (including those on dialysis), and 3) being willing to

consent to general genetic research. We excluded patients with

terminally ill conditions who were unable to provide informed

consent.

Data collection

Detailed demographic and clinical information was collected

for all recruited patients from their electronic health records. All

extracted data were collected in a predefined and secure database.

Collected variables included age, sex, comorbidities, and family

history of renal disease. Clinical information included disease

manifestations, phenotypic information, and primary causes of

ESRD, which were determined by the treating nephrologist.

Sample collection and preparation

Blood samples were collected in EDTA tubes from all

recruited subjects. Genomic DNA was extracted from whole

blood using the Gentra Puregene Blood Kit C instrument

(QIAGEN, Hilden, Germany) according to the manufacturer’s

instructions. The isolated DNA was then quantified using a

NanoDropTM spectrophotometer (Thermo Fisher Scientific,

Waltham, MA, United States) and/or Qubit fluorometer

(Thermo Fisher Scientific, Waltham, MA, United States) using

standard procedures. DNA with the A260/280 ratio between

1.8 and 2.0, and A260/230 ratio ≥ was used for NGS library

preparation.

CKD panel curation

We used a predesigned panel that contains 102 genes that

have known or suspected associations with CKD. The gene list

was curated by a multi-disciplinary team of nephrologists,

clinical geneticists, and laboratory scientists (Cyrus et al.,

2018). The used panel has shown 57% overall clinical

sensitivity, i.e., detection of a likely causal variant that is

subsequently confirmed by Sanger sequencing, and the

sensitivity values in selected subgroups of patients with

glomerular/tubular disorders, cystic kidney diseases, and

TABLE 1 Baseline characteristics of the participants.

Variable Control (n = 564) Case (n = 534) p-value

Mean SD Mean SD

Age, years 43.9 16.8 59.3 17.7 <0.05
BMI, kg/m2 29.5 6.3 29.6 8.1 —

Hemoglobin (Hgb), gm/L 133.8 21.5 111.1 26.9 <0.05
Creatinine, umol/L 76.7 63.3 660.8 308.5 <0.05
eGFR, ml/min/1.73m2 102.7 28.8 11 14.8 <0.05
Albumin, g/L 40.2 5.4 38.5 5.0 <0.05
Hemoglobin A1c 5.8 1.2 6.6 1.8 <0.05
Potassium, mmol/L 4.3 0.4 4.8 0.7 <0.05
Sodium, mmol/L 138.2 3.5 134.8 3.9 <0.05
Calcium, mmol/L 2.2 0.16 2.2 0.20 —

Adjusted calcium, mmol/L 2.3 0.11 2.3 0.19 —

Phosphorus, mmol/L 1.2 0.27 1.3 0.53 <0.05
Alkaline phosphatase, U/L 88.6 59.2 148.1 105.9 <0.05
Total bilirubin (T Bili), umol/L 11.9 13.6 11 10.1 —

Uric acid, umol/L 314.3 110.7 335.5 120.5 <0.05
Triglyceride, mmol/L 1.5 3.00 1.5 0.76 —

Cholesterol total, mmol/L 4.7 1.16 4 1.14 <0.05
High-density lipoprotein (HDL), mmol/L 1.2 0.33 1 0.32 <0.05
Low-density lipoprotein (LDL), mmol/L 3.1 1.05 2.3 0.94 <0.05
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kidney malformations were 41%, 63%, and 69%, respectively

(Cyrus et al., 2018). The complete list of the included genes and

description of gene panel design information is provided by the

Saudi Mendeliome Group (Cyrus et al., 2018).

NGS library preparation and sequencing

NGS libraries were constructed using the Ion AmpliSeq

Library Kit Plus (Thermo Fisher Scientific, Waltham, MA)

according to the manufacturer’s standard protocol. Sequencing

was performed on the Ion Chef System instrument (Thermo

Fisher Scientific, Waltham, MA) according to the manufacturer’s

workflow. A complete library preparation, NGS methodology,

and data processing and bioinformatics analysis are described in

the SHGP (Cyrus et al., 2018). Additionally, the Ensembl Variant

Effect Predictor (VEP, v104) tool was used to annotate all the

identified variants using Ensembl release 100 and assembly

GRCh37/hg 19 of the human reference genome (Lee et al.,

2007). Variants were also compared against the Genome

Aggregation Database (GenomAD). Functional assessment of

the identified variants was conducted using SIFT (v5.2.2),

PolyPhen-2 (v2.2.2), and CADD (v1.6) (Cyrus et al., 2018;

O’Seaghdha et al., 2014; Santín et al., 2011).

Statistical analysis

Baseline characteristics and known risk factors for CKD were

summarized by case and control status using frequency (%) and

mean (standard deviation). The difference between case and

control was compared by the Wilcoxon rank-sum test for

continuous variables and by the chi-squared test for

categorical variables. The direct association between identified

variants and the risk of CKD status was tested by using Fisher’s

exact test as implemented in PLINK (Cyrus et al., 2018). A

p-value that is corrected for multiple comparisons using the

Bonferroni method was considered significant for the genetic

association test. For all statistical analyses, the significant value is

considered at a two-sided 5% level unless stated otherwise.

Results

Baseline characteristics

A total of 1,098 participants fulfilled the study eligibility

criteria and were included in all subsequent analyses. Of the

recruited subjects, 49% were cases (n = 534) and the remaining

51% were controls (n = 564). The baseline characteristics of the

two groups are shown in Tables 1, 2. There were no significant

differences between the two groups in terms of gender or body

weight level, but the control group was younger than the case

group (44 vs. 59 years; p-value <0.05). Existing other

comorbidities were more common among cases than in

controls, especially for cardiovascular diseases and diabetes

(Table 2). The proportion of the common CKD subtypes

among cases is provided in Table 3.

Gene profiling

The NGS panel revealed 7,225 variants in the 104 sequenced

genes. More than half of the identified variants are extremely rare

variants (MAF <0.001; 52.9%), and only 830 (11.5%) variants

were common with an allelic frequency above 0.05

(Supplementary Figure S1). We identified 1,348 (18.7%) new

variants that were not previously reported in other databases.

These new variants were more common in FRAS1, C5orf42,

PKD1, CEP290, and PKHD1 (Supplementary Figure S2,

Supplementary Table S1). Most of the variants identified were

intronic variants (0.46; Supplementary Table S3), followed by

missense variants (0.25). Genes with the highest proportion of

TABLE 2 Categorical baseline characteristics of the participants.

Variable Control Case p-value

Count % Count %

Gender

Female 293 52.0 272 50.9 —

Male 271 48.0 262 49.1 —

Age Category

40 years old or lest 285 50.5 88 16.5 <0.05
41.0 to 60.0 171 30.3 171 32.0 —

61.0 to 80.0 94 16.7 224 41.9 <0.05
81.0 years old or more 14 2.50 51 9.60 <0.05

BMI category

Underweight 14 2.60 10 7.60 <0.05
Normal 115 21.7 32 24.2 —

Overweight 182 34.4 38 28.8 —

Obese 218 41.2 52 39.4 —

Comorbidity

Cardiovascular disease 80 16.2 237 49.5 <0.05
Cerebrovascular diseases 37 7.50 179 37.4 <0.05
Diabetes mellitus 24 4.90 274 57.2 <0.05
Hyperlipidemia 143 28.9 159 33.2 —

Hypertension 77 15.6 355 74.1 <0.05
CNS disorders 57 11.5 119 24.8 <0.05
Eye disease 77 15.6 162 33.8 <0.05
Cancer 39 7.90 53 11.1 —
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possibly or probably damaging variants as predicted by the

PolyPhen score (Supplementary Table S4); GRHPR (21%) and

FXYD2 (20%); UMOD (19%); LAMB2 (18.2%) and FREM2

(17.4%). Cases had a significantly higher number of the

confirmed pathogenic variant as classified by the ClinVar

database than control (i.e., individuals with at least one allele

of a confirmed pathogenic variant that is associated with CKD;

279 (0.52) vs. 258 (0.45); p-value = 0.03).

SNP association test

Variants with extremely rare allele frequency (MAF<0.001) were
excluded from this analysis (n = 3,827 variants), as well as variants

that extremely deviated from HWE among the control group only

(n = 102 variants); thus, a total of 3,294 variants were included in the

association test. Supplementary Table S4 shows the statistically

significant SNPs for CKD stage 5 and dialysis. The top three

significant SNPs were rs2274224 in PLCE1 gene (OR = 0.47; 95%

CI: 0.39–0.56; p-value = 5.02E-18), rs188947350 in CLCN5 gene

(OR = 0.23; 95%CI: 0.15–0.35; p-value = 1.17E-14), and

rs11681642 in ATP6V1B1 gene (OR = 1.9; 95%CI: 1.53–2.36;

p-value = 3.11E-09).

Discussion

Herein, we screened a relatively large cohort of ESRD patients

to identify genetic factors contributing to extremely severe forms of

CKD. We applied an advanced genetic testing approach using a

targeted NGS gene panel including 102 genes causative or

associated with CKD to characterize a cohort of 534 Saudi

patients. We identified 13 statistically significant variants within

genes implicated in kidney function. All 13 variants were not

previously reported to be associated with kidney diseases. Among

these 13 variants, four were novel variants that were not previously

reported in any other population. Unlike most GWASs that

explored the role of genetic factors in kidney function among

the general population, this study uniquely reported the

association between genetic variants and severe forms of kidney

disease among a homogenous disease-specific population.

Several GWASs were performed for variable kidney function

traits. The Chronic Kidney Disease Genetic Consortium

(CKDGen) performed a GWAS on more than

67,000 individuals of the European ancestry and reported

20 loci associated with renal function and CKD (Prokop et al.,

2018). The study showed that a genetic risk score (GRS)

including 16 SNPs explained a 1.4% variation in the renal

function, as explained by serum creatinine (eGFRcrea). Later

GWASs which included larger sample sizes were able to bring the

number of variants that are associated with eGFRcrea up to 63,

explaining up to 3.99% of the phenotypic variance (Fallerini et al.,

2014; Bullich et al., 2018). As expected, variants identified from

these GWAS were of modest effect size and common with allele

frequency above 5%. Since these studies were performed on the

general population with the majority of study participants having

eGFR greater than 60 ml/min/1.732, transferring such results

into concrete risk estimation, for the development of ESRD

TABLE 3 SNPs associated with ESRD.

Gene SNPa Chr BP A B MAF Genotypic frequency
(AA/AB/BB)

OR L95 U95 p-value

Case Control Case Control

PLCE1 rs2274224 10 96039597 C G 0.40 0.58 89/245/200 205/245/114 0.47 0.40 0.56 5.02E-18

CLCN5 rs188947350 23 49807143 A T 0.04 0.15 0/31/242 0/120/173 0.23 0.15 0.35 1.17E-14

ATP6V1B1 rs11681642 2 71163086 C T 0.25 0.15 31/203/300 28/111/425 1.9 1.53 2.36 3.11E-09

LAMB2 rs151037751 3 49160341 C G 0.004 0.04 0/5/529 0/44/520 0.12 0.046 0.29 1.52E-08

INVS rs61147858 9 102988329 — TT 0.05 0.01 4/42/488 3/5/556 5.00 2.59 9.65 7.02E-08

FRAS1 NR 4 78979258 GTGT — 0.11 0.05 18/80/436 8/39/517 2.38 1.71 3.32 1.65E-07

C5orf42 NR 5 37139483 T A 0.01 0.05 0/12/522 0/54/510 0.23 0.12 0.43 2.63E-07

SLC12A3 rs3214654 16 56927312 A C 0.06 0.02 7/51/476 6/10/548 3.26 2.00 5.33 5.19E-07

COL4A6 rs1266730 X 107448639 G T 0.29 0.19 35/65/173 17/73/203 1.753 1.394 2.203 1.63E-06

SLC3A1 rs3738984 2 44531484 C T 0.47 0.36 138/221/175 89/233/242 1.518 1.28 1.801 1.80E-06

RET rs2435351 10 43596179 A G 0.04 0.01 2/44/488 0/13/551 3.956 2.128 7.354 2.47E-06

WNK1 rs1951539755 12 974309 C — 0.21 0.29 35/151/348 56/219/289 0.6297 0.5177 0.766 3.60E-06

BICC1 rs2393503 10 60558125 A T 0.53 0.43 177/207/150 129/230/205 1.457 1.231 1.724 1.28E-05

Abbreviation: A, minor allele; B, major allele; BP, base position; SNP, single nucleotide alteration; Chr, chromosome; MAF, minor allele frequency; OR, odds ratio; L95, lower bond 95%

confidence interval; U95, upper bond 95% confidence interval; NR, not reported.
aFunctional annotation of the variants is presented in Supplementary Table S5.
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remains uncertain. Hence, genotyping these common variants

provides minimal clinically relevant information to individual

patients. Importantly, Parsa et al. (2013) examined systematically

the association of eGFR with common variants in 258 genes

responsible for Mendelian forms of kidney abnormalities using

the CKDGen Consortium GWAS data [30]. This study, in

addition to others, has been largely unsuccessful in identifying

common variants in genes that cause rare monogenic forms of

CKD, except for a few genes such as UMOD, LPR2, and SLC7A4

[30–32]. Although such an approach has proven its success in

other complex traits such as diabetes and lipid levels, it suggests

that this failure might be a result of relying on the GWAS panel

and subjects from the general population [30]. This is specifically

true as CKDGen encompasses a general population that may not

easily identify new variants beyond what has already been

identified by their GWAS approach. These challenges imply

that further research is needed by performing targeted

sequencing of these genes or whole-exome sequencing in a

disease-specific cohort.

As such, our study has targeted patients with ESRD and

identified 13 novel genetic variants associated with ESRD in the

Saudi population. The top significant variant (NM_016341.4:

c.4724G>C) is a missense variant within the PLCE1 gene that

results in the substitution of arginine for proline at position 1,575

(p.R1575P) and is classified by ClinVar as uncertain significance for

association with nephrotic syndrome type 3. When the same variant

was not reported before for associationwith nephrotic syndrome type

3, several other variants within PLCE1 have been reported in familial

and sporadic variants within PLCE1 (O’Seaghdha et al., 2014). The

gene product of PLCE1 is expressed in the developing kidney in

glomerular podocytes, and sequence alterationmay lead to abnormal

protein products that cause an arrest in normal glomerular

development (O’Seaghdha et al., 2014). The second top variant

(NM_001127898.4:c.163 + 72T>A) is a rare intronic variant

within the CLCN5 gene, 0.00101 allele frequency in gnomAD,

which has not been reported before for association with any

phenotype. Several variants within CLCN5 are associated with

different types of renal tubular disorders, such as Dent’s disease

(Santín et al., 2011). The third variant (NM_001692.4:c.2T>C) causes
a missense mutation, resulting in the substitution of methionine for

threonine at position 1 (p.M1T) within the ATP6V1B1 gene, which

encodes a component of vacuolar ATPase (V-ATPase), a

multisubunit enzyme that mediates acidification of intracellular

organelles. ATP6V1B1 variants are associated with an autosomal

recessive form of distal renal tubular acidosis 2 (Santín et al., 2011). In

addition, we have identified variants in LAMB2, INVS, FRAS1,

C5orf42, SLC12A3, COL4A6, SLC3A1, RET, WNK1, and BICC1;

which all play major pathophysiological roles in the pathogenesis of

kidney functions (Kestilä et al., 1998).

From both clinical and economic viewpoints, understanding

the genetic etiology behind CKD is essential before opting for

renal transplantation. Such information may provide novel

insights into disease recurrence risk post-transplantation. This

study was performed in a unique and novel (Philippe et al., 2008)

population that has not been previously explored—the

uniqueness of the Saudi population lay in the high

consanguinity rate—which provides a perfect population to

study the genetic basis of diseases. This has been seen

previously in a study that detected the highest rate of

causative genes in the Saudi population (45.2%) compared to

only 13.7% in Al-Hamed et al. (2016), which showed a strong

correlation between the rate of consanguinity and the detection

rate of disease-causing genes (R2 = 0.9414). Nonetheless, findings

from this study might be limited by some important factors; first,

the results are reported from a very homogenous population

originating from the Saudi population, and it must be replicated

in other diverse ethnic groups to validate the reported

association. Second, the control group was younger and

healthier than the case group, which could confound the

reported results. However, given the fact that these genes are

implicated in kidney function, they have pathophysiological roles

that could mitigate some of these concerns. Third, we have only

tested the disease status as a binomial trait, and future studies

should be performed to test other kidney-related functions.

In summary, utilizing a comprehensive kidney-disease gene

panel using a case-control study in a Saudi Arabian cohort, we

identified 13 genetic variants significantly associated with ESRD in

this cohort. Since this study was conducted on a disease-specific

population and not on a general population, like most of the

previously conducted GWAS, it provides more concrete evidence

of the roles of these variants in the pathogenesis of ESRD.

Furthermore, studies to replicate the findings of this study, as

well as functional analysis of the identified variants, may provide

measures to reduce the burden of CKD in KSA. In particular, that

elucidating the genetic etiology of CKD may have important

ramifications when considering disease recurrence risk post-

transplantation. Further studies both to replicate these findings

in larger sample sizes and among individuals of different ethnic

groups and to functionally validate these candidate genetic variants

are imperative. This may provide a comprehensive priority list of

molecular targets for translational research and eventually help

reduce the burden of CKD in KSA (Franceschini et al., 2006).
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