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The coronavirus pandemic has revolutionized our world, with vaccination

proving to be a key tool in fighting the disease. However, a major threat to

this line of attack are variants that can evade the vaccine. Thus, a fundamental

problem of growing importance is the identification of mutations of concern

with high escape probability. In this paper we develop a computational

framework that harnesses systematic mutation screens in the receptor

binding domain of the viral Spike protein for escape prediction. The

framework analyzes data on escape from multiple antibodies simultaneously,

creating a latent representation of mutations that is shown to be effective in

predicting escape and binding properties of the virus. We use this

representation to validate the escape potential of current SARS-CoV-2 variants.
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1 Introduction

Since 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),

accounted for more than 500 million infections and more than six million deaths

worldwide according to World Health Organization (WHO, 2022). Though the virus

mutates rapidly, only a small minority of mutations are expected to impact the virus

phenotype and increase its fitness advantage. Such mutations might alter properties of the

virus such as: pathogenicity, infectivity, transmissibility and/or antigenicity. Due to the

virus’ high infectivity and rapid mutability, in early stages of the pandemic suchmutations

of concern started to appear. For example, D614G was noted to be increasing in frequency

in April 2020 and to have emerged independently several times in the global SARS-CoV-

2 population. Subsequent studies indicated that D614G confers a moderate advantage for

infectivity (Hou et al., 2020; Yurkovetskiy et al., 2020) and transmissibility (Volz et al.,

2022).

Although several antibodies and vaccines showed good clinical results, recognizing

mutations that impact the escape from antibodies and vaccines is still a major question in

the battle against SARS-CoV2. The receptor binding domain (RBD) region is a sub-region

of the SARS-CoV-2 spike glycoprotein that mediates viral attachment to ACE2 receptors.

The RBD is a major determinant of host range and a dominant target of neutralizing

antibodies, promoting systematic studies of mutations to the RBD region and their impact

on a variety of attributes including binding (Starr et al., 2020), antibody escape (Starr et al.,

2021a; Greaney et al., 2021b; Starr et al., 2021b) and more. There are fewer studies that
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consider multiple mutations (Li et al., 2020; Barton et al., 2021),

covering only a handful of them due to the infeasible number of

experiments needed to iterate over all possibilities.

The on-going emergence of variants with dozens of mutations

motivates computational approaches to study the effect of multiple

mutations. These include structural-based approaches (Rienzo et al.,

2021; Bozdaganyan et al., 2022) or approaches that directly use deep

mutational scans. An example is the escape calculator (Greaney

et al., 2021a) which aggregates data about antibody escape using an

interpolation based approach, thus allowing for a quantitative

scoring of the antigenic effects of arbitrary combinations of

mutations. Deep learning methods (Goodfellow et al., 2016) have

become the method of choice for diverse data science applications

including the analysis of coronavirus data. Specifically, Hie et al.

(2021) applied a masked language model approach to a data set of

more than 1 million SARS-CoV-2 sequences. Using the language

model they ranked mutations based on semantic change (distance

between wildtype and mutated sequence) and grammaticality

(probability for mutation under the resulting model), thus aiding

in identification of mutations that evade the immune system. But

they did not address any antibodies or vaccines in their work.

In this paper, we try to combine the best of both

worlds–aggregating escape data based on experimental data a la

(Greaney et al., 2021a), while using deep learning methods, like in

(Hie et al., 2021)—to tackle the challenge of predicting antibody

escape potential. Our approach uses the paradigm of multi-task

learning, wheremultiple learning tasks are solved at the same time in

order to exploit commonalities and differences across tasks. We

show that using a multi-task approach to learn escape data endows

us with a representation that can be useful in multiple prediction

scenarios. We further apply our approach to analyze the common

variants of concern.

2 Results

We developed a framework to assess the effect of

mutations in the RBD on viral escape, both with a single-

task approach and a multi-task approach. We tested our

framework using experimental antibody escape data and

compared the multi-task and single-task approaches. We

demonstrate that multi-task learning helps reduce variance

and improve performance. Moreover, we show that using

multi-task learning yields an informative representation of

the RBD sequence that can be subsequently used to predict

multiple properties.

2.1 Multi-task learning improves antibody
escape recognition

Our main training data set is taken from Greaney et al.

(2021b) and contains systematic single amino-acid substitutions

in the RBD region and their effects on escape probability with

respect to each one of several antibodies. From the

aforementioned data two tasks were derived: classifying a

mutation as significant for escape and predicting (regressing)

its escape probability. To this end, we developed neural network

models that either consider one antibody at a time (single-task)

or multiple antibodies simultaneously (multi-task). The

architectures and training process of these models are detailed

in the Materials and Methods.

Figure 1 depicts the (distribution of) Pearson correlation

between predicted and measured escape probabilities across

9 antibodies, comparing between the single-task and multi-

task approaches. Similarly, Figure 2 depicts the area under the

ROC curve for the corresponding classification task. It is evident

that the multi-task approach reduces variance and increases

mean performance for both regression and classification tasks,

respectively.

2.2 Analysis of the induced embedding

After establishing the utility of our predictive model, We aim

to further use it to find an informative representation of

mutations that is more compact than the sequence of amino

acids, while also preserving antibody escape information. Such a

representation will allow us to test the predictive power of our

model with respect to yet unseen properties. As a first test, we

calculate viral escape of single amino-acid substitution from new,

yet unseen antibodies: LY-CoV016, REGN10987 and

REGN10933 Starr et al. (2021b). Figure 3 shows that the

embedding-based predictions outperform the original neural

network. This result indicates the power of the latent

representation compared to the original amino-acid sequence.

As a second test, we checked the utility of the representation in

predicting the effect of a single amino-acid substitution on the

binding of the spike protein to ACE2. Specifically, binding affinity is

given as the difference between the log of the dissociation constant of

themutation with respect to wildtype. As the binding is vital for viral

entry, we assumed the learned representation could encompass

useful information about it. Figure 3 confirms this assumption

and shows that using the learned representation leads to

improved predictions. In conclusion, the embedding was able to

encode useful data regarding sites and mutations and apply them to

new tasks successfully.

3 Materials and methods

3.1 Data representation

Greaney et al. compiled a data set containing the escape

information of about 2,000 single amino-acid substitutions in the

RBD with respect to nine monoclonal antibodies Greaney et al.
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(2021b). Since the amino-acid changes are all in the RBD region,

we can treat our input as a subsequence of the original Spike

protein, reducing the representation to a 201-long character

string.

The original escape information is given as probabilities.

In order to create the viral-escape classification task from the

continuous data, we followed Starr et al. Starr et al. (2021b)

and chose 10 times the median escape across all sites as

FIGURE 1
A comparison of single-task and multi-task performance in predicting escape probability.

FIGURE 2
A comparison of single-task and multi-task performance in binary escape prediction.
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threshold for significant escape for each antibody and gave a

label of 1 to samples that exceeded the threshold.

3.2 Neural network architecture and
training

We use a neural network that receives as an input a string of

fixed length n = 201 over an alphabet of size m = 20 (number of

amino acids). The model applies one-hot encoding on every

character, resulting in a binary vector of size m. It then applies a

linear transformation to each vector to create a “character-level”

embedding. These embeddings are concatenated and fed to a

fully-connected layer, creating a “sequence-level” embedding.

The final output layer is a linear layer with size equal to the

number of prediction tasks k, followed by k task-dependent

activation functions. In our case, k = 9, each task corresponds

to an antibody in our train data, while our output activation

functions are all sigmoids. This means our output will be

9 probabilities each corresponding to an escape probability of

a different antibody.

When we refer to a model as a “single-task model” it

means that k = 1, when k > 1 we refer to the model as a “multi-

task model”. This means, that when comparing between

multi-task and single task, we will have k single-task

model, each corresponding to one antibody, while having a

single multi-task model with k outputs. For training and

evaluation we randomly split the data into 30% test and

70% train, run the model 100 times and report the

performance distribution obtained using box-plots.

Performance is measured in the binary case using the area

under the ROC curve and in the continuous case using

Pearson’s correlation between predictions and true value in

test set. We use the Adam optimizer Kingma and Ba (2015)

with a learning rate of 1e-4 and a maximum of 100 epochs.

Our model loss function is the sum of all the tasks’ loss

functions, where for each task we use the cross entropy loss

function.

3.3 Training using a fixed embedding

Utilizing our multi-task model’s last hidden layer as a

latent representation of mutations, we can predict other RBD

properties such as binding. To this end, we add a linear layer

after the embedding layer whose weights are trained using

linear regression. When calculating escape probabilities, we

use the sigmoid activation function in our output layer, so the

training with fixed embedding is done via logistic regression

(more precisely, linear regression on the inverse sigmoid of

the escape data), meaning the task is identical to binding

regression.

FIGURE 3
A comparison of a single-task neural network to linear regression of multi-task induced embedding.
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3.4 Data and materials availability

Code and data are available at https://github.com/bgmoshe/

multi_tasking_antibodies.

4 Discussion

In this paper we develop a computational framework that

harnesses systematic mutation screens in the receptor binding

domain of the viral Spike protein for escape prediction. Unlike

(Bozdaganyan et al., 2022) and (Greaney et al., 2021a), who

demonstrate an approach to quantify binding to antibodies, we

do not assume a predefined relation between the effect of

different mutations, allowing us to have a more general model

that is learned automatically from data. Furthermore, in contrast

to (Hie et al., 2021) we can quantify mutation escape potential

with respect to each antibody. Our framework allows us to infer a

latent representation of mutations that preserves escape

information. This is particularly useful for predictions

regarding yet unseen antibodies or variants.

In order to showcase this attribute, We used our trained

model to predict the escape probabilities of variants of

concern (as defined by the World Health Organization) as

shown in Figure 4. The figure highlights the result of Planas

et al. (2021) that Omicron has higher probability of evading

antibodies than previous variants. We suggest that using our

multi-task model one can provide information on the effect of

multiple mutations at different sites, thus allowing researchers

to focus on more likely variants of concern.
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FIGURE 4
Predicted escape from antibodies for different SARS-CoV-2 variants.
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