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Recent studies suggest that RNA editing is associated with impaired brain function and
neurological and psychiatric disorders. However, the role of A-to-I RNA editing during
sepsis-associated encephalopathy (SAE) remains unclear. In this study, we analyzed
adenosine-to-inosine (A-to-I) RNA editing in postmortem brain tissues from septic
patients and controls. A total of 3024 high-confidence A-to-I RNA editing sites were
identified. In sepsis, there were fewer A-to-I RNA editing genes and editing sites than in
controls. Among all A-to-I RNA editing sites, 42 genes showed significantly differential
RNA editing, with 23 downregulated and 19 upregulated in sepsis compared to
controls. Notably, more than 50% of these genes were highly expressed in the
brain and potentially related to neurological diseases. Notably, cis-regulatory
analysis showed that the level of RNA editing in six differentially edited genes was
significantly correlated with the gene expression, including HAUS augmin-like complex
subunit 2 (HAUS2), protein phosphatase 3 catalytic subunit beta (PPP3CB), hook
microtubule tethering protein 3 (HOOK3), CUB and Sushi multiple domains 1 (CSMD1),
methyltransferase-like 7A (METTL7A), and kinesin light chain 2 (KLC2). Furthermore,
enrichment analysis showed that fewer gene functions and KEGG pathways were
enriched by edited genes in sepsis compared to controls. These results revealed
alteration of A-to-I RNA editing in the human brain associated with sepsis, thus
providing an important basis for understanding its role in neuropathology in SAE.
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INTRODUCTION

Sepsis is a life-threatening systemic infectious disease caused by bacteria, viruses, or other
factors, with high mortality worldwide (Singer et al., 2016; Rello et al., 2017; Salomao et al.,
2019). Septic patients experience damage to multiple organs and systems, including sepsis-
associated brain dysfunction. Sepsis-associated brain dysfunction (SABD) is also known as
sepsis-associated encephalopathy (SAE). It has been found that up to 70% of patients affected
with sepsis could develop SAE, which is the most common organ dysfunction in sepsis (Czempik
et al., 2020). Its clinical manifestation is diverse, ranging from mild delirium to coma (Gofton
and Young, 2012).
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Adenosine-to-inosine (A-to-I) RNA editing is an epigenetic
process of adenosine (A) to inosine (I) conversion mediated by
the adenosine deaminase acting on RNA (ADARs) family
(Christofi and Zaravinos, 2019; Wang et al., 2020). It is
recognized as guanosine (G) in reverse transcription and
translation (Nishikura, 2016). A-to-I RNA editing has an
important regulatory role in inflammatory diseases and
neurological diseases (Gélinas et al., 2011; Chung et al.,
2018). The potential role of ADAR has been reported in
sepsis. ADAR is highly expressed in the small intestine of
septic mice, which inhibits inflammation and plays a
protective role against sepsis (Shangxun et al., 2020),
providing a new potential therapeutic target for sepsis
(Chen et al., 2017). Nevertheless, the role of ADAR-
mediated A-to-I RNA editing played in sepsis remains
unelucidated, especially in SAE.

Herein the current epitranscriptomic study analyzed A-to-I
RNA editing from postmortem brain (the parietal cortex)
tissues from septic patients and controls at the
transcriptomic level and explored editing sites associated
with sepsis and their cis-regulatory effects on the gene
expression, providing new insight into the molecular
mechanism involving A-to-I RNA editing in SAE.

METHODS

RNA-Seq Data
RNA sequencing raw data were obtained from NCBI’s Gene
Expression Omnibus (GEO) database. The dataset contained
brain tissues (parietal cortex gray matter) from 12 patients who
died from sepsis and 12 controls who died from noninfectious
diseases (GSE135838) (Bustamante et al., 2020). Sepsis
patients and controls were balanced for age, Consortium to
Establish a Registry for Alzheimer’s Disease (CERAD) score,
dementia diagnosis, and length of hospital stay. Detailed
information can be found in the original report.

RNA-Seq Data Alignment
The obtained sequencing data were processed as previously
described (Tao et al., 2021). In brief, quality control analysis
was performed using FASTQC. Alignment of reads to the
reference human genome sequence (UCSC hg38) was
performed using RNA STAR (version 2.7.0e) (Dobin et al.,
2013), with multiple-mapped reads and deduplication removed
using SAMtools (version 1.9) (Li et al., 2009), and base quality
score recalibrated using GATK (version 4.1.3) (Walker et al.,
2018).

Identification and Annotation of RNAEditing
Sites
RNA single-nucleotide variation (SNV) was identified using
VarScan (version 2.4.3) software (Koboldt et al., 2012) using
a standard pipeline described previously (Tao et al., 2021).
Annotation of SNVs was performed using the
Ensembl Variant Effect Predictor (VEP) (McLaren et al.,

2016). Furthermore, only A-to-G SNVs with editing levels
≥ 1% observed in at least two samples or annotated as
known editing variants in the REDIportal V2.0 database
(Mansi et al., 2021) were retained as high-confidence
variants.

Quantification and Differential Analysis of
Gene Expression
Alignment files generated by RNA STAR were analyzed using
FeatureCounts to obtain counts of RNA expression (Liao et al.,
2014), and normalized gene expression levels (transcript per
million, TPM) were calculated.

Enrichment Analysis of Gene Ontology and
Pathways
Enrichment analysis of differentially edited genes were
performed using DAVID online prediction tools (https://
david.ncifcrf.gov/tools.jsp) and Enrichr (https://maayanlab.
cloud/Enrichr/) with false discovery rate (FDR) < 0.05 as
the significance cutoff (Kuleshov et al., 2016).

Statistical Analysis
The intergroup levels of RNA editing or gene expression were
compared using the Kruskal–Wallis (KW) non-parametric test.
Frequency data were analyzed using the Fisher’s exact test. Cis-
regulatory effects on RNA editing on the expression of edited
genes were analyzed using the Spearman correlation to calculate
the correlation coefficients (r) and p-values. Principal component
analysis (PCA) was performed and visualized using R
(version 3.6.3).

RESULTS

A-to-I RNA Editing in Human Brain Tissues
From transcriptomic data of the brain tissues from septic
patients and controls, 3024 high-confidence A-to-I RNA
editing sites in 1,192 genes were found (Figure 1A). These
editing sites covered a variety of functional categories,
including 2021 intronic variants, 467 3′-untranslated region
variants (3′-UTR), 218 non-coding transcript intronic
variants, 138 missense variants, 106 non-coding transcript
exonic variants, 42 synonymous variants, 31 5′-untranslated
region (5′-UTR) variants, and 1 stop-loss variant (Figure 1B).
SIFT predicted 55 out of the 138 missense variants to have a
potential impact on protein functions (Figure 1C). The
expression levels of RNA editing enzymes ADAR and
ADARB1, as well as the numbers of editing genes and
editing sites in the brain tissues of septic patients, were
lower than those in controls (Supplementary Figures
S1A,B, Figures 1D,E). Of all these RNA editing sites, 118
were detected exclusively detected in septic patients and 236 in
controls, and 2,670 were common in both groups (Figure 1F,
Supplementary Tables S1, S2).
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Sequence Preference for Specific Editing
Sites in Sepsis
The A-to-I RNA editing sites unique to the sepsis were then
analyzed for sequence preference of 6 bp upstream and
downstream of the editing sites. The results showed that, in
most of the variant categories, G was suppressed 1 bp
upstream of the editing sites. In addition, all editing sites
preferred G 1 bp downstream the editing sites
(Supplementary Figure S2).

Differential A-to-I RNA Editing Between
Sepsis and Controls
In order to analyze differential A-to-I RNA editing in sepsis, the
RNA editing levels of the sites among different groups were

compared by the KW test, and a total of 43 differentially edited
sites in 42 genes were found, with 23 genes downregulated and 19
genes upregulated in sepsis compared to controls (Figure 2A;
Supplementary Tables S3, S4). Forty of these differentially edited
sites were known sites. Among the 43 differentially edited sites, 23
were significantly downregulated and 20 upregulated in sepsis
compared to those in controls. PCA using these differentially
edited sites revealed separation of clustering between sepsis and
control samples, with the contribution of PC1 and PC2 to be
33.01% and 19.53%, respectively (Figure 2B). Functional
enrichment analysis of the differentially edited genes by
DAVID revealed that 29 genes were related to protein binding
and 16 were related to the cytosol (Supplementary Table S5).
The results also showed that protein phosphatase 3 catalytic
subunit beta (PPP3CB), kinesin light chain 2 (KLC2),
proteasome 20S subunit beta 2 (PSMB2), and Matrin 3

FIGURE 1 |A-to-I RNA editing sites identified from human brain transcriptome in the current study. (A)Circos plot of transcription gene expression (outer circle) and
A-to-I RNA editing sites (inner circle) in the human brain. (B) Functional categories of A-to-I RNA editing detected. (C) SIFT prediction of missense variants Boxplot of the
number of editing genes (D) and sites (E,F) Venn plot of A-to-I RNA editing sites in sepsis and controls.
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(MATR3) were associated with amyotrophic lateral sclerosis, and
PPP3CB, KLC2, and PSMB2 were associated with prion disease,
Alzheimer’s disease, and pathways of neurodegeneration
(Supplementary Table S6), pointing to the association of
sepsis with neurological damage and the important role of
A-to-I RNA editing in it.

Cis-Regulatory Effects of Differential
Editing on Expression
Correlation analysis between sites’ editing levels and
corresponding gene expression levels was performed to
investigate whether they would influence gene expression
through RNA editing. A p-value cutoff of 0.05 was used to
identify sites with higher correlation. Of the 43 differential
editing sites previously found, six sites showed a correlation
with the gene expression level (p < 0.05). Among them, the
editing levels of HAUS2:chr15:42567145 (r = 0.61), PPP3CB:
chr10:73450485 (r = 0.59), HOOK3:chr8:43028233 (r = 0.49),
and CSMD1:chr8:4877650 (r = 0.41) were positively correlated
with the gene expression level (Figures 3A–D). In contrast,
METTL7A:chr12:50930723 (r = −0.64) and KLC2:chr11:
66261078 (r = −0.41) were negatively correlated with the gene
expression level (Figures 3E,F). In addition, these six sites all had
a significantly lower editing level in sepsis than in controls:
HAUS2:chr15:42567145 (p = 0.0081), PPP3CB:chr10:73450485
(p = 0.045), HOOK3:chr8:43028233 (p = 0.023), CSMD1:chr8:
4877650 (p = 0.043), METTL7A:chr12:50930723 (p = 0.0049),

and KLC2:chr11:66261078 (p = 0.047) (Supplementary Figures
S3A–F).

Functional Enrichment in A-to-I RNA Editing
in Sepsis
In order to understand the biological function of A-to-I RNA
editing in the human brain affected with sepsis, enrichment
analysis was performed using all sites in each group. Among
the top enriched GO terms, biological processes including
retrograde axonal transport, regulation of microtubule
depolymerization, and axon development, cellular components
including trans-Golgi network, and AMPA glutamate receptor
complex, and molecular functions including actin binding,
sodium channel regulator activity, and sodium channel activity
were unique to sepsis (Figures 4A–C). In contrast, biological
processes including membrane organization, Wnt signaling
pathway (calcium modulating), neuron cell–cell adhesion, cell
junction assembly, protein autophosphorylation, and regulation
of presynapse organization and assembly, and cellular
component cortical cytoskeleton, and molecular functions
including glutamate receptor binding were enriched in
controls. KEGG pathway analysis revealed that numerous
pathways were enriched in controls but not in sepsis,
including GnRH signaling pathway, gastric acid secretion,
cholinergic synapse, ErbB signaling pathway, thyroid hormone
synthesis, growth hormone synthesis, secretion and action,
calcium signaling pathway, GABAergic synapse, axon

FIGURE 2 | Differential RNA editing sites in the brain between sepsis and controls. (A) 43 sites that show statistically different editing levels. *: p < 0.05; **: p < 0.01;
p-values are calculated using the Student’s-test. (B) Principal component analysis of the 43 differential editing sites between sepsis and controls.
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guidance, and serotonergic synapse (Figure 4D). Overall, a
reduction of enriched gene functions and pathways in sepsis
compared to controls is consistent with decreased editing enzyme
expressions, and fewer editing genes and sites in sepsis.

DISCUSSION

Recent studies suggest that RNA editing is involved in brain
dysfunction and neurological diseases. Our current study
systematically investigated A-to-I RNA editing in human
brain tissues and revealed its changes associated with sepsis
on a transcriptome-wide scale.

It has been reported that A-to-I RNA editing is widespread
in the nervous system. It is associated with the normal
development of the nervous system and a variety of
neurological diseases (Behm and Öhman, 2016). A-to-I
RNA editing has a regulatory role in a variety of
neurological diseases, such as amyotrophic lateral sclerosis,
developmental epileptic encephalopathy, depression, and
schizophrenia (Yang et al., 2021). In the current study, we
explored the distribution of A-to-I RNA editing in sepsis-

associated brain dysfunction in clinical samples. Previous
studies have shown that ADAR is highly expressed in
macrophages and has a protective effect on sepsis
(Shangxun et al., 2020). Our results showed that both the
levels of ADAR expression and A-to-I RNA editing in the brain
decreased in sepsis, which could be in line with a protective
role of ADAR and A-to-I RNA editing against sepsis.

More than 50% of the differentially edited genes in sepsis were
highly expressed in the central nervous system, indicating their
potential functional importance. Although no role of these RNA
editing sites has been reported, the edited genes have been
associated with neurological diseases. KLC2 may exert its
function through factors involved in microtubule motor
activity and kinesin binding and is associated with a variety of
neurological diseases such as hereditary spastic diseases, optic
atrophy, and SPOAN syndrome (Hedera, 1993; Melo et al., 2015).
PPP3CB encodes a calcium-dependent protein phosphatase that
acts intracellularly on Ca (2+)-mediated signal transduction
(Chen et al., 2019; Zhang et al., 2019), and its expression is
significantly correlated with human brain aging (Hu et al., 2018)
and glioblastoma multiforme patients’ overall survival (Lou et al.,
2019). Its dysregulation has been reported in schizophrenia
(Genis-Mendoza et al., 2013; He et al., 2021).

FIGURE 3 | Scatter plots showing cis-regulatory effects of A-to-I RNA editing on gene expression. (A–F) The correlation between the editing level and gene
expression level in human brain samples.
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Methyltransferase-like 7A (METTL7A) encodes a
methyltransferase mainly involved in DNA methylation and
the innate immune system (Lee et al., 2021). Its role in the
hippocampus and neuropathic pain has been implicated
(Gong et al., 2021). HAUS augmin-like complex subunit 2
(HAUS2) interacts with the γ-tubulin ring complex and is
involved in spindle assembly (Lawo et al., 2009), and one of
its paralogs are associated with glioblastoma (Ding et al., 2017).
The hook microtubule tethering protein 3 (HOOK3) gene is
involved in protein binding and microtubule binding
(Kendrick et al., 2019; Wortzel et al., 2021). Its role has been
implicated in neurological diseases such as Alzheimer’s disease
(Herrmann et al., 2015). Expression of CUB and Sushi multiple
domains 1 (CSMD1) is correlated with the development and
treatment of schizophrenia (Liu et al., 2019). In addition, small
nuclear ribonucleoprotein D3 polypeptide (SNRPD3) and
PSMB2 are also related to neurological diseases (Martinez
and Peplow, 2017; Christodoulou et al., 2020). Notably,
mutations of these differentially edited genes have been
reported in neurological diseases. For example, familial ALS
and distal myopathy were associated with mutations inMATR3
(Senderek et al., 2009; Johnson et al., 2014). In addition, it has
been shown that sepsis could cause long-term cognitive

impairment and functional limitation in patients. CSMD1,
PPP3CB, METTL7A, and KLC2 have been reported to be
associated with cognitive impairment or cognitive
performance (Melo et al., 2015; Stepanov et al., 2017; Gong
et al., 2021; Yu et al., 2021). Meanwhile, sepsis can also cause
post-traumatic stress disorder and depression. KLC2 (Du et al.,
2010), PPP3CB (He et al., 2021), and CSMD1 (Xu et al., 2014)
were associated with mood disorders such as major depressive
disorder or bipolar disorder.

Cis-regulation analysis showed that the editing level of six sites
were highly correlated with the gene expression. It has been
suggested that, in cancer, RNA editing can regulate mRNA
abundance and thus modulate immune pathways (Chan et al.,
2020). RNA editing in the 3′-UTR might affect mRNA
degradation by regulating the RNA secondary structure
stability or miRNA accessibility of the edited genes (Brümmer
et al., 2017). One of the possible mechanisms is that the editing of
HAUS2, HOOK3, andMETTL7AmRNA may regulate their gene
expression by influencing the binding of regulatory RNAs or
proteins to these genes. For example, the expression ofMETTL7A
as a tumor suppressor gene can be inhibited by ADAR-mediated
RNA editing in the 3′-UTR (Qi et al., 2017). These results thus
warranted further studies.

FIGURE 4 | Difference in Gene Ontology and KEGG pathway enriched in sepsis and controls, respectively. The top (showing up to 10) terms with FDR < 0.05 are
shown for (A) biological processes (B) molecular functions, and (C) cellular components, as well as (D) KEGG pathways uniquely enriched in either sepsis or controls.
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Gene functions and pathways of edited genes showed that the
enrichment was weaker in sepsis than in controls, implicating
that the sepsis-associated brain dysfunction may be related to the
loss of these functions in RNA editing. Among the functions
unique to sepsis, the regulation of microtubule depolymerization
was noteworthy. Several studies have shown that microtubules
are important in the nervous system, and their dysregulation is
highly associated with neurological dysfunction (Baas and
Ahmad, 2013; Diwaker and Wilson, 2019). A-to-I RNA
editing could be closely related to such a biological process.

In conclusion, this study systematically investigated A-to-I
RNA editing in the human brain tissues and revealed dynamic
alterations in A-to-I RNA editing associated with sepsis. Our
results provide a basis for further understanding how RNA
editing is involved in SAE.

ADDITIONAL INFORMATION
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