
A General-Purpose Machine Learning
R Library for Sparse Kernels Methods
With an Application for
Genome-Based Prediction
Osval Antonio Montesinos López1, Brandon Alejandro Mosqueda González2,
Abel Palafox González3, Abelardo Montesinos López3* and José Crossa4,5*†

1Facultad de Telemática, Universidad de Colima, Colima, Mexico, 2Centro de Investigación en Computación (CIC), Instituto
Politécnico Nacional (IPN), México City, Mexico, 3Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de
Guadalajara, Guadalajara, Mexico, 4International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico, 5Colegio
de Postgraduados, Montecillo, Mexico

The adoption of machine learning frameworks in areas beyond computer science have
been facilitated by the development of user-friendly software tools that do not require an
advanced understanding of computer programming. In this paper, we present a new
package (sparse kernel methods, SKM) software developed in R language for
implementing six (generalized boosted machines, generalized linear models, support
vector machines, random forest, Bayesian regression models and deep neural
networks) of the most popular supervised machine learning algorithms with the
optional use of sparse kernels. The SKM focuses on user simplicity, as it does not try
to include all the available machine learning algorithms, but rather the most important
aspects of these six algorithms in an easy-to-understand format. Another relevant
contribution of this package is a function for the computation of seven different
kernels. These are Linear, Polynomial, Sigmoid, Gaussian, Exponential, Arc-Cosine 1
and Arc-Cosine L (with L = 2, 3, . . .) and their sparse versions, which allow users to create
kernel machines without modifying the statistical machine learning algorithm. It is important
to point out that the main contribution of our package resides in the functionality for the
computation of the sparse version of seven basic kernels, which is indispensable for
reducing computational resources to implement kernel machine learning methods without
a significant loss in prediction performance. Performance of the SKM is evaluated in a
genome-based prediction framework using both a maize and wheat data set. As such, the
use of this package is not restricted to genome prediction problems, and can be used in
many different applications.

Keywords: r package, machine learning, kernel, supervised learning, sparse kernels, genome-base prediction

INTRODUCTION

Machine learning has become the main approach for solving complex, data-based problems and it is
being used everywhere from devices and digital services such as smartphones and websites, to
scientific research in various fields (Wang et al., 2016; Ott et al., 2020; Shahin et al., 2020;
Montesinos-López et al., 2021a). As machine learning research has progressed, so has the supply

Edited by:
Ravi Valluru,

University of Lincoln, United Kingdom

Reviewed by:
Alencar Xavier,

Corteva Agriscience™, United States
Moyses Nascimento,

Universidade Federal de Viçosa, Brazil

*Correspondence:
Abelardo Montesinos López
aml_uach2004@hotmail.com

José Crossa
j.crossa@cgiar.org

†ORCID:
José Crossa

orcid.org/0000-0001-9429-5855

Specialty section:
This article was submitted to

Plant Genomics,
a section of the journal
Frontiers in Genetics

Received: 01 March 2022
Accepted: 02 May 2022
Published: 03 June 2022

Citation:
Montesinos López OA,

Mosqueda González BA,
Palafox González A,

Montesinos López A and Crossa J
(2022) A General-Purpose Machine

Learning R Library for Sparse Kernels
Methods With an Application for

Genome-Based Prediction.
Front. Genet. 13:887643.

doi: 10.3389/fgene.2022.887643

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 8876431

ORIGINAL RESEARCH
published: 03 June 2022

doi: 10.3389/fgene.2022.887643

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.887643&domain=pdf&date_stamp=2022-06-03
https://www.frontiersin.org/articles/10.3389/fgene.2022.887643/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.887643/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.887643/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.887643/full
http://creativecommons.org/licenses/by/4.0/
mailto:aml_uach2004@hotmail.com
mailto:j.crossa@cgiar.org
http://orcid.org/0000-0001-9429-5855
https://doi.org/10.3389/fgene.2022.887643
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.887643

and demand of software that facilitates its implementation. For
this reason, numerous open-source packages for data related
tasks and machine learning algorithms have become even
more prevalent (Abadi et al., 2015; Wickham et al., 2015;
Pandas development team, 2020).

One of the most used programming languages for data
analysis is R (R Core Team, 2021) due to its statistical
computing focus, free and open-source software and the
thousands of packages that extend its power to all kind of
analysis and related tasks of data science. In fact, it is difficult
to find a machine learning algorithm not implemented within an
R package. Likewise, it can even be said that some of the R
packages contain more complete/specialized implementations
(Ishwaran et al., 2008; Friedman et al., 2010; Meyer et al.,
2019) than those available in other programming languages.
As machine learning is strongly based on statistical models
and R is the de facto language for statistics research, those
who embark on machine learning will encounter R at some point.

Most R packages of machine learning algorithms include one
type of model or a family of similar models. While using R
packages have clear advantages, there are some challenges. For
example, each package has been developed by different authors
and there is no standardized code style guideline. This
complicates the use of packages since it requires users to learn
the expected data format, the name and expected parameters and
the code convention (if any) in order to train a model or retrieve
outputs. In addition, several complementing packages may be
needed to perform cross validation of models, hyperparameter
tuning, and compute accuracy metrics, among others. There are
some libraries that seek to integrate a wide range of tools needed
for machine learning in one place, such as scikit-learn (Pedregosa
et al., 2011) in Python; H2O in Java (with both R and Python
versions); and caret (Kuhn, 2016), mlr3 (Lang et al., 2019) and
tidy models (Kuhn and Wickham, 2020) in R. All these options
have their own philosophy, and they were designed using diverse
approaches to implement machine learning models.

We consider the mlr3 as the most powerful R package for
machine learning because of its potential scope. Themlr3 package
is an object-oriented solution for machine learning focused on
extensibility since it does not implement any model itself, but
rather provide a unified interface for many existing packages in R.
While this is a major advantage, such an approach does not
completely solve the dependency of other packages, which require
knowledge of both the package that implements the model and
mlr3. It is worthwhile to learn how to use all the components in
the mlr3 environment because it also provides efficient
implementation of most data related tasks, parallelization,
hyperparameter tuning and feature selection, among others.
However, it takes times getting accustomed to the way mlr3
works and how things are defined in parts with the object-
oriented paradigm, which is not so common in R
programming. Nevertheless, this learning curve is relatively short.

Alternatively, we have caret and tidy models providing their
own standardized interface, which is a very important factor in a
good quality software. Like mlr3, these two packages use other
third party packages of machine learning algorithms in tandem to
train models as they provide with different options for the same

algorithm. Caret is the oldest of these three packages, and as such,
it still enjoys considerable popularity. Notwithstanding, the major
advantage of tidy models is that they belong to the tidy verse, a
collection of R packages tailored for data science that share an
underlying design philosophy, grammar and data structures
(Wickham et al., 2019); consequently, if users are familiar with
tidy verse packages, they will naturally start using tidy models.

In the current paper, we present SKM (Sparse Kernels
Methods), a new R package for machine learning that includes
functions for model training, tuning, prediction, metrics
evaluation and sparse kernels computation. The main goal of
this package is to provide a stand-alone (or self-contained) R
software, focused on the austere implementation of only six basic
supervised learning models that are easy to understand from the
user´s point-of- view. We will focus specifically on six types of
supervised models, which are explained in the next section. The
model functions in SKM were designed with simplicity in mind,
and as such, the parameters, hyperparameters and tuning
specifications are defined directly when calling the function;
subsequently, users can understand how the package works by
observing a handful of examples. Furthermore, we strive to
provide clear documentation following a base convention in
the functions. Likewise, all the parameters are validated with
checkmate software (Lang, 2017) to inform the user when an
error occurs throughmeaningful error messages—something that
many other packages neglect. The most important
hyperparameters of each model can be tuned with two
different methods: grid search and Bayesian optimization
(Osborne et al., 2009) based on the code of Bayesian
Optimization package (Yan, 2016). Although Bayesian
optimization is a very popular and effective method of tuning,
the mlr3 and caret packages do not offer this option.

Kernels have proven to be useful in helping the conventional
machine learning algorithms capture non-linear patterns in data
(Montesinos-López et al., 2021b; Montesinos-López et al., 2022a).
In addition to capturing complex non-linear patterns, the sparse
kernel version of kernel methods can also save significant
computational resources without a relevant loss in prediction
accuracy (Montesinos-López et al., 2021b; Montesinos-López,
et al., 2022a). In this paper by sparse kernels we define those
kernels that are built with only a fraction of the total amount of
inputs by assuming that the input matrix is a sparse matrix, that
is, a matrix that contain many information with zeros. For this
reason, the term level of compression, here is used, as one minus
the proportion of the total lines (or rows) used to compute the
sparse kernels thus representing the level of dimensionality
reduction reached by using these sparse kernels. To the best of
our knowledge, there is no existing R package for the
computation of dense kernels and sparse kernels (that
compress the dimension of the dense kernels), which is the
added value of SKM and what gives it its name. The approach
of sparse kernels implemented in the SKM library is based on the
method proposed in Cuevas et al. (2020).

As software developers and consumers, we are aware of the
importance of sharing our work with the community, and as
such, SKM is a completely open-source software released under
the GNU Lesser General Public License v3.0 (LGPLv3). As such,

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 8876432

Montesinos López et al. An R Library for Sparse Kernel Methods for Genomic Prediction

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

anyone can explore the source code, make modifications and
build on it to develop other tools.

MACHINE LEARNING ALGORITHMS

The SKM package includes six different functions of supervised
machine learning algorithms. Table 1 shows the six models that
can be implemented under the SKM package, and the package of
origin that each of these models uses, in addition to the function
to implement these models in the SKM library.

It is important to point out that all models that can be
implemented in the SKM library will be able to implement the
seven kernels methods and its sparse versions explained in the
next section, whereas in the case of deep neural networks (M6),
only fully connected networks can be implemented. Under the
Bayesian methods, Bayesian Ridge regression (BRR), Bayes A
(Bayes_A), Bayes B (Bayes_B), Bayes C (Bayes_C), Bayesian
Lasso (Bayes_Lasso) and the best linear unbiased predictor
(GBLUP) in its Bayesian version (BGBLUP) can be implanted.
It should be highlighted that the six models that can be
implemented in the SKM library, including all the Bayesian
methods available in model M5, can also work with kernels.
First, the matrix of inputs (X) is created; then the square root of
the kernel is computed; next the design matrix of lines is post-
multiplied by the square root of the kernel; and finally this design
matrix is used as input in any of the six models when kernels are
used. The exception is under the BGBLUP in model M5, where
the computed kernels are directly used.

The additional layer of abstraction allows all functions to share
the same data input format. Internally, data is adapted to the
expected format of each package, where the result and prediction
objects returned by these functions are also in the same format.
Another benefit of these functions is that some parameters that
can be inferred from data itself do not need to be supplied by the
user, rather they are set automatically. For example, the family
parameter of glmnet package which has to be “Gaussian” for
continuous response variables, “binomial” for binary variables,
“multinomial” for categorical response variables and “Poisson”
for count variables, can be inferred from the response variable. In
addition, the same functions permit hyperparameter tuning in an

easy and user-friendly format without the need to call another
function or initiate another object. In theory, as with all packages
that internally call functions of other packages, ease of use and
extended functionality is expected to improve with a slight
increase in computational demand for the extra operations
required. Furthermore, since these operations are of
computationally low cost, there is no significant loss of power.

Supplementary Appendix SA included some comparative
examples of the equivalent implementation of some machine
learning models with mlr3, SKM and randomForestSRC, the
original package.

SPARSE KERNELS

As Montesinos-López et al. (2021b) point out, kernel methods
transform the independent variables (inputs) using a kernel
function, followed by the application of conventional machine
learning techniques to the transformed data to achieve better
results, mainly when the inputs contain non-linear patterns.
Kernel methods are excellent options in terms of
computational efficiency when managing large, complex data
that show non-linear patterns; likewise they can be used with any
type of predictive machine. Consequently, we have included the
kernelize function in SKM that can compute the same 7 kernels
and their sparse versions as described in Montesinos-López et al.
(2021b): Linear, Polynomial, Sigmoid, Gaussian, Exponential,
Arc-Cosine 1 and Arc-Cosine L (with L = 2, 3, . . .). The
kernel computation is independent from the model fitting
process, which allows the kernelize function to be used with
other packages or conversely, the machine learning algorithms
implementation of SKM can be used without kernels.

Next the algorithm to approximate the kernels, here called
sparse kernels is described in general terms. We assume that the
response variable (y) is associated to the genomic effects (u) as:

y � μ1 + u + e (1)
where μ is the overall mean, 1 is the vector of ones, and y is the vector
of size n.Moreover,u is the vector of genomic effectsu ~ N(0, σ2uK),
where σ2u is the genomic variance component and matrix K is the

TABLE 1 | Models that can be implemented in the SKM library.

Model Name Package of origin Function in SKM Response variables

M1 Generalized boosted
machines

gbm (Greenwell et al., 2020) generalized_ Binary, categorical and continuous; only univariate
boosted_machine
()

M2 Generalized linear
models

Glmnet (Friedman et al., 2010) Generalized Binary, categorical, continuous, and count; univariate and multivariate only
for continuous response variables_linear_model ()

M3 Support vector
machines

e1071 (Meyer, et al., 2019) Support Binary, categorical and continuous, only for univariate response variables
_vector_machine ()

M4 Random forest RandomForestSRC (Ishwaran,
et al., 2008)

random_forest () Binary, categorical and continuous, univariate and multivariate

M5 Bayesian regression
models

BGLR (Perez and de los Campos,
2014)

bayesian_model () Binary, categorical and continuous, univariate and multivariate only for
continuous response variables

M6 Deep neural networks keras (Allaire and Chollet, 2016) deep_learning () Binary, categorical, continuous, and count; univariate and multivariate for
all response variables

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 8876433

Montesinos López et al. An R Library for Sparse Kernel Methods for Genomic Prediction

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

dense kernel of order n × n constructed with any of the kernel
methods explained above. The random residuals are assumed
independent with normal distribution e ~ N(0, σ2eI), where σ2e is
the error variance. The dense kernel, K , can be approximated as
K ≈ Q � Kn,mK−1

m,mKn,m
′ (Williams and Seeger, 2001), where Q will

have the rank of Km,m, that is, m. The computation of this kernel is
facilitated since it is not necessary to compute and store the original
matrixK , since onlyKm,m andKn,m are required. This approximation
of the dense kernel (whichwe call sparse kernel) usem out of n lines to
compute K−1

m,m, then an eigen-value-decomposition of K−1
m,m �

US−1/2S−1/2U ′ is used, where U are the eigen vectors of order
m × m and Sm,m is a diagonal matrix of order m × m with the
eigen values ordered from largest to smallest. Next, these values are
substituted in Q � Kn,mUS−1/2S−1/2U ′Kn,m

′ resulting in
u ~ N(0, σ2uKn,mUS−1/2S−1/2U ′Kn,m

′), and thus, model (1) can be
expressed as:

y � µ1n + Pf + ε (2)
Model (2) is similar to model (1), except that f is a vector of order

m × 1 with a normal distribution of the form f ~ N(0, σ2f Im,m),

where P � Km,nUS−1/2 is now the design matrix. This implies
estimating only m effects that are projected into the n dimensional
space in order to predict u and explain y. Note that model (2) can be
implemented under a conventional mixedmodel framework or under
any statistical machine learning algorithm assuming that the f term of
Equation 2 is a fixed effect. For example, under a linear kernel
the Km,n and Km,m can be computed as Km,m � Xm,pXm,p

′

p and
Kn,m � Xn,pXm,p

′

p respectively, where Xm,p is the centered and scaled
matrix of markers with m lines and p markers, and Xn,p is the
centered and scaledmatrix ofmarkers with n lines andpmarkers. In
summary, according to Cuevas et al. (2020), the approximation
described above consists of the following steps:

Step 1: Computing the following matrices, matrix Km,m from m
lines of the training set.

Step 2: Constructing matrix Kn,m

Step 3: Eigen value decomposition of Km,m

Step 4: Computing matrix P � Kn,mUS−1/2.
Step 5: Fitting the model under any of the above mentioned

statistical machine learning using P � Kn,mUS−1/2 as
design matrix and y as response variable.

TABLE 2 | Prediction performance of the Wheat data set for each environment and across environments (Global) of each of the six models.

Model Metric E1 E2 E3 E4 Global

Mean SE Mean SE Mean SE Mean SE Mean SE

M1 MAAPE 0.7307 0.0069 0.6852 0.0210 0.6993 0.0188 0.6922 0.0104 0.7082 0.0090
M1 MAE 0.6801 0.0133 0.6360 0.0272 0.6644 0.0314 0.5935 0.0162 0.5955 0.0123
M1 MSE 0.7359 0.0210 0.6931 0.0494 0.7908 0.0820 0.6007 0.0332 0.5951 0.0233
M1 NRMSE 0.8575 0.0174 0.8173 0.0263 0.8763 0.0271 0.7915 0.0157 0.8316 0.0081
M1 RMSE 0.8575 0.0123 0.8304 0.0298 0.8839 0.0490 0.7738 0.0221 0.7708 0.0155

M2 MAAPE 0.7134 0.0118 0.7506 0.0107 0.7460 0.0118 0.7635 0.0049 0.7500 0.0112
M2 MAE 0.7023 0.0303 0.7116 0.0292 0.7670 0.0283 0.7179 0.0131 0.6748 0.0163
M2 MSE 0.7845 0.0527 0.8980 0.0646 0.9876 0.0746 0.8581 0.0237 0.7645 0.0289
M2 NRMSE 0.8747 0.0193 0.9429 0.0200 0.9622 0.0145 0.9344 0.0123 0.9311 0.0116
M2 RMSE 0.8836 0.0305 0.9450 0.0349 0.9909 0.0380 0.9260 0.0129 0.8737 0.0167

M3 MAAPE 0.7857 0.0038 0.7835 0.0056 0.7877 0.0010 0.7848 0.0019 0.7856 0.0015
M3 MAE 0.7675 0.0186 0.7972 0.0267 0.7766 0.0082 0.7805 0.0228 0.7341 0.0133
M3 MSE 0.9014 0.0324 1.0875 0.0656 0.9583 0.0268 1.0724 0.0343 0.9035 0.0271
M3 NRMSE 0.9997 0.0013 1.0013 0.0021 1.0012 0.0045 1.0027 0.0017 1.0004 0.0004
M3 RMSE 0.9488 0.0171 1.0409 0.0320 0.9785 0.0138 1.0350 0.0166 0.9501 0.0142

M4 MAAPE 0.7161 0.0134 0.6835 0.0169 0.6902 0.0128 0.6898 0.0204 0.6965 0.0100
M4 MAE 0.6733 0.0273 0.6258 0.0081 0.7060 0.0196 0.5945 0.0094 0.5864 0.0083
M4 MSE 0.7063 0.0450 0.6793 0.0049 0.8221 0.0494 0.6291 0.0409 0.5769 0.0186
M4 NRMSE 0.8472 0.0163 0.8105 0.0159 0.8470 0.0178 0.7963 0.0151 0.8123 0.0080
M4 RMSE 0.8387 0.0264 0.8242 0.0030 0.9050 0.0275 0.7915 0.0252 0.7592 0.0123

M5 MAAPE 0.7133 0.0108 0.6956 0.0107 0.7233 0.0067 0.7455 0.0046 0.7211 0.0043
M5 MAE 0.7141 0.0183 0.6336 0.0116 0.6846 0.0272 0.6572 0.0291 0.6156 0.0056
M5 MSE 0.7987 0.0387 0.6587 0.0170 0.7696 0.0607 0.7021 0.0639 0.6183 0.0104
M5 NRMSE 0.8796 0.0230 0.8168 0.0220 0.8742 0.0121 0.8808 0.0148 0.8547 0.0081
M5 RMSE 0.8927 0.0212 0.8113 0.0104 0.8744 0.0355 0.8346 0.0369 0.7862 0.0066

M6 MAAPE 0.7056 0.0071 0.6991 0.0107 0.7149 0.0132 0.7058 0.0037 0.7075 0.0067
M6 MAE 0.6938 0.0144 0.6358 0.0204 0.6802 0.0280 0.6327 0.0103 0.6170 0.0122
M6 MSE 0.8160 0.0499 0.6978 0.0452 0.7807 0.0678 0.7183 0.0226 0.6645 0.0355
M6 NRMSE 0.8918 0.0067 0.8385 0.0188 0.8889 0.0230 0.8534 0.0167 0.8669 0.0119
M6 RMSE 0.9016 0.0279 0.8336 0.0267 0.8802 0.0386 0.8471 0.0133 0.8140 0.0217

Generalized boostedmachines (M1), generalized linearmodels (M2), support vector machines (M3), random forest (M4), Bayesian regressionmodels (M5) and deep neural networks (M6).
The tuning process was done under the Bayesian optimization framework. Mean is the average of the five partitions for each metric and SE denotes the standard error for each metric. E1-
E4 denotes location1, location2, location3 and location4.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 8876434

Montesinos López et al. An R Library for Sparse Kernel Methods for Genomic Prediction

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

One of the major advantages of the sparse kernels is data
dimensionality reduction since the number of parameters to
be estimated is reduced significantly in comparison to the
dense kernels. This is useful when working with high
dimensional data where the number of columns is
considerably greater than the number of rows, as there is
few data, and the training process of the model is more
efficient. More details about the kernels and the
approximated kernels, here called sparse kernels, that were
implemented in the SKM library can be found in detail in
Montesinos-López et al. (2021b) and Montesinos-López, et al.
(2022a).

In Supplementary Appendix SB we have included some
examples of how to use the kernelize function of SKM to
compute the different kernels and their sparse versions.

EVALUATION METRICS

Evaluating models’ performance is an important task of all machine
learning workflows. For this reason, in SKM we have included
functions of the most popular metrics to evaluate models’
performance for both regression and classification problems. The
regression metrics included are: Mean Squared Error (MSE), Root
Mean Squared Error (RMSE), Normalized RootMean Squared Error
(NRMSE, with four types of normalization: by standard deviation,
mean, range and interquartile range), Mean Absolute Error (MAE)
and Mean Arctangent Absolute Percentage Error (MAAPE). The
classification metrics included are: accuracy, specificity, sensitivity,
Kappa coefficient, Brier score, Matthews correlation coefficient,
precision, recall, Area Under the ROC Curve (ROC-AUC),
Precision-Recall Area Under the Curve (PR-AUC), F1 score and a
function to compute the confusion matrix. In addition to the
functions already mentioned, the wrapper functions numeric
summary and categorical summary compute all the regression

and classification metrics to obtain a complete summary of the
model’s performance in a simple function. More details about
most of these metrics can be found in chapter 4 (Overfitting,
model tuning and evaluation of prediction performance) of the
book Multivariate statistical machine learning methods for
genomic prediction (Montesinos-López et al., 2022b).

As expected, all these metric functions work in harmony with
the machine learning algorithm functions since they use the same
data format; no extra data processing is necessary when they are
used correctly. This does not limit or complicate their use with
other packages, as shown in the detailed documentation
provided.

Supplementary Appendices SA, SB include examples of some
metric functions that receive the observed and predicted values
(or probabilities in classification) and return a numeric value.

INSTALLATION

SKM is a package built for the R ecosystem. As an open source
project, the package has first been published in a GitHub
repository at https://github.com/brandon-mosqueda/SKM
where the full source code and another option of installing
the development version (and most updated) can be found.
This development version may include corrections of reported
bugs and new functionalities, among others. Likewise, in the
repository users can also find a place to report bugs or
contribute to the project. In order to install the
development version, the following commands must be
executed in an R terminal.

devtools::install_github ("cran/
randomForestSRC")

devtools::install_github ("gdlc/BGLR-R")
devtools::install_github ("rstudio/

tensorflow")

FIGURE 1 | Prediction performance in terms of Mean Squared Error of
the six models (M1, M2, M3, M4, M5, M6) across environments (Global) in the
wheat data. M1 denotes the generalized boosted machine model, M2
denotes the generalized linear model, M3 denotes the support vector
machine model, M4 denotes the random forest model, M5 denotes the
Bayesian regression model and M6 denotes the deep neural networks model.

FIGURE 2 | Prediction performance in terms of Normalized Root Mean
Squared Error of the six models (M1, M2, M3, M4, M5, M6) across
environments (Global) in the wheat data. M1 denotes the generalized boosted
machine model, M2 denotes the generalized linear model, M3 denotes
the support vector machine model, M4 denotes the random forest model, M5
denotes the Bayesian regression model and M6 denotes the deep neural
networks model.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 8876435

Montesinos López et al. An R Library for Sparse Kernel Methods for Genomic Prediction

https://github.com/brandon-mosqueda/SKM
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

if (!require ("devtools"))
{install.packages ("devtools")}

devtools::install_github ("brandon-
mosqueda/SKM")

ILLUSTRATIVE EXAMPLES

Next, we will illustrate the use of the SKM library with two
popular data sets in genomic selection using 5-random partitions
to evaluate the prediction performance with the two available
tuning options. The response variables in both datasets are
numeric response variables, and as such, we present the
prediction performance in terms of Mean Arctangent Absolute
Percentage Error (MAAPE), Mean Absolute Error (MAE), Mean
Squared Error (MSE) and Normalized Root Mean Squared Error
(NRMSE). We have included a function in SKM to compute
summaries for prediction performance with genomic selection
data (summaries). This function requires a by data. frame with
whole predictions in different folds, including genotype and
environment information; this is used in all the examples
described below.

Wheat Data
This data set was first used by Crossa et al. (2010) and Cuevas et al.
(2016), Cuevas et al. (2017) and Cuevas et al. (2019) and is comprised
of 599 wheat lines from the CIMMYT Global Wheat Program
evaluated in four international environments representing four
basic agroclimatic regions (mega-environments). The phenotypic
trait considered for the 599 wheat lines evaluated in each of the
four mega-environments was grain yield (GY). The 599 wheat lines
were genotyped using 1447 Diversity Array Technology (DArT)
markers generated by Triticarte Pty. Ltd.

In this example we evaluated the six models included in the
package, each one using Bayesian optimization to tune its specific
hyperparameters, with the exception of Bayesian methods (model
M4), which do not require hyperparameter tuning. The cross-
validation used to evaluate the predictions’ accuracy was with five
random (splits) partitions, where 80% of the data was used for
training and 20% for the testing set, and the average of the five testing
sets was reported as prediction performance. To tune the
hyperparameters, an inner 5-fold cross validation was also used to
evaluate each hyperparameter combination. It is important to point
out that the inner 5-fold cross validation is implemented in each
partition, which in this case, contains only 80% of the data. In this

TABLE 3 | Prediction performance of the Maize data set for each environment and across environments (Global) of each of the six models.

Model Metric E1 E2 E3 E4 Global

Mean SE Mean SE Mean SE Mean SE Mean SE

M1 MAE 0.2038 0.0024 0.4360 0.0122 0.2708 0.0035 0.5392 0.0088 0.3409 0.0047
M1 MSE 0.0700 0.0028 0.2991 0.0179 0.1125 0.0034 0.4670 0.0177 0.2059 0.0059
M1 NRMSE 0.8751 0.0259 0.9021 0.0077 0.9159 0.0135 0.9146 0.0196 0.8872 0.0147
M1 RMSE 0.2644 0.0051 0.5459 0.0166 0.3352 0.0050 0.6829 0.0129 0.4535 0.0066

M2 MAAPE 0.7672 0.0106 0.7787 0.0120 0.7734 0.0102 0.7580 0.0075 0.7565 0.0064
M2 MAE 0.2040 0.0067 0.4687 0.0144 0.2700 0.0060 0.5751 0.0166 0.3592 0.0072
M2 MSE 0.0713 0.0045 0.3460 0.0157 0.1131 0.0064 0.5281 0.0319 0.2336 0.0126
M2 NRMSE 0.9174 0.0119 0.9687 0.0057 0.9353 0.0163 0.9517 0.0070 0.9498 0.0040
M2 RMSE 0.2664 0.0083 0.5876 0.0134 0.3358 0.0095 0.7253 0.0225 0.4826 0.0127

M3 MAAPE 0.7861 0.0059 0.7829 0.0010 0.7871 0.0031 0.7870 0.0023 0.7852 0.0015
M3 MAE 0.2187 0.0054 0.4814 0.0130 0.2855 0.0049 0.6109 0.0151 0.3817 0.0069
M3 MSE 0.0847 0.0034 0.3701 0.0144 0.1287 0.0051 0.5861 0.0325 0.2603 0.0131
M3 NRMSE 1.0023 0.0027 1.0024 0.0031 0.9985 0.0010 1.0032 0.0013 1.0029 0.0014
M3 RMSE 0.2908 0.0059 0.6079 0.0119 0.3584 0.0070 0.7643 0.0215 0.5095 0.0126

M4 MAAPE 0.7450 0.0146 0.7615 0.0114 0.7432 0.0150 0.7418 0.0077 0.7444 0.0063
M4 MAE 0.2006 0.0053 0.4430 0.0100 0.2615 0.0069 0.5586 0.0119 0.3498 0.0034
M4 MSE 0.0678 0.0048 0.3073 0.0136 0.1070 0.0062 0.5041 0.0223 0.2215 0.0054
M4 NRMSE 0.8882 0.0082 0.9320 0.0076 0.9032 0.0173 0.9052 0.0076 0.8997 0.0042
M4 RMSE 0.2598 0.0091 0.5538 0.0122 0.3265 0.0096 0.7093 0.0157 0.4705 0.0058

M5 MAAPE 0.7853 0.0067 0.7601 0.0125 0.7600 0.0064 0.7275 0.0067 0.7483 0.0058
M5 MAE 0.2199 0.0033 0.4507 0.0074 0.2747 0.0086 0.5259 0.0089 0.3426 0.0060
M5 MSE 0.0796 0.0037 0.3269 0.0104 0.1166 0.0067 0.4500 0.0153 0.2099 0.0081
M5 NRMSE 0.9858 0.0087 0.9364 0.0111 0.9533 0.0223 0.8808 0.0063 0.9116 0.0065
M5 RMSE 0.2819 0.0065 0.5714 0.0091 0.3408 0.0100 0.6705 0.0113 0.4578 0.0089
M6 MAAPE 0.7980 0.0126 0.7792 0.0101 0.7819 0.0189 0.7681 0.0113 0.7747 0.0110

M6 MAE 0.2177 0.0075 0.4843 0.0157 0.2907 0.0094 0.5653 0.0200 0.3655 0.0112
M6 MSE 0.0798 0.0048 0.3775 0.0220 0.1398 0.0071 0.4992 0.0290 0.2396 0.0148
M6 NRMSE 0.9720 0.0214 1.0107 0.0114 1.0406 0.0199 0.9267 0.0249 0.9616 0.0215
M6 RMSE 0.2820 0.0084 0.6134 0.0180 0.3735 0.0096 0.7053 0.0212 0.4885 0.0155

Generalized boostedmachines (M1), generalized linearmodels (M2), support vector machines (M3), random forest (M4), Bayesian regressionmodels (M5) and deep neural networks (M6).
The tuning process was done under the grid search framework. Mean is the average of the five partitions for each metric, SE denotes the standard error for each metric.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 8876436

Montesinos López et al. An R Library for Sparse Kernel Methods for Genomic Prediction

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

regard, each inner training contains only 64% of the data while the
validation set contains only 16% of the data. In Table 2, the
evaluation results are presented for the wheat data set, while the
code for implementing the six models is given in Supplementary
Appendix SC.

In Figures 1, 2 we compare the prediction performance of the
six evaluated models across environments in terms of MSE and
NRMSE, respectively. Both figures show a similar pattern in the
prediction performance results. In terms of both metrics, M4, M1
and M5 produced the best prediction performance. In terms of
MSE, the best model (M4) outperformed M1 by
(0.5951 − 0.5769) × 100

0.5951 � 3.05%, M2 by

(0.7645 − 0.5769) × 100
0.7645 � 32.51%, M3 (the worst) by

(0.9035 − 0.5769) × 100
0.9035 � 36.14%, M5 by

(0.6183 − 0.5769) × 100
0.6183 � 6.69% and M6 by

(0.6645 − 0.5769) × 100
0.6645 � 13.18%. Regarding NRMSE, the

outperformance between models is not as large as in MSE
terms. For example, the outperformance between the best
(M4) and worst (M3) was (1 − 0.8123) × 100

1 � 18.77%,
significantly different from the 36.14% in MSE terms. It
should be noted that the model M5 was implemented in all
the examples provided with Bayesian Ridge Regression (BRR; that
works with the scaled matrix of markersZ), which is equivalent to
BGBLUP [that works with the linear kernel computed as
ZZT/ncol(Z)]. As mentioned before, the other Bayesian
methods can be implemented by merely changing “BRR” in
model to the other available options like: Bayes_A, Bayes_B,
Bayes_C, Bayes_Lasso and BGLUP (See Supplementary
Appendix SB5. Bayesian regression model).

Maize Data
This maize data set was included in Souza et al. (2017) and comes
fromUSP (Universidad Sao Paulo). It consists of 722 (with 722 × 4 =
2888 observations) maize hybrids obtained by crossing 49 inbred
lines. The hybrids were evaluated in four environments (E1-E4) in

Piracicaba and Anhumas, São Paulo, Brazil, in 2016. The hybrids
were evaluated using an augmented block design with two
commercial hybrids as checks to correct for micro-environmental
variation. At each site, two levels of nitrogen (N) fertilization were
used. The experiment conducted under ideal N conditions received
100 kg ha-1 of N (30 kg ha-1 at sowing and 70 kg ha-1 in a coverage
application) at the V8 plant stage, while the experiment with low N
received 30 kg/ha at sowing. The parent lines were genotyped with
an Affymetrix Axiom Maize Genotyping Array of 616 K SNPs.
Markers with Minor Allele Frequency (MAF) of 0.05 were removed.

FIGURE 3 | Prediction performance in terms of Mean Squared Error of
prediction of the six models (M1, M2, M3, M4, M5, M6) across environment
(Global) in Maize data. M1 denotes the generalized boosted machine model,
M2 denotes the generalized linear model, M3 denotes the support vector
machine model, M4 denotes the random forest model, M5 denotes the
Bayesian regression model and M6 denotes the deep neural networks model.

FIGURE 4 | Prediction performance in terms of Normalized Root Mean
Squared Error of the six models (M1, M2, M3, M4, M5, M6) across
environments (Global) in Maize data. M1 denotes the generalized boosted
machine model, M2 denotes the generalized linear model, M3 denotes
the support vector machine model, M4 denotes the random forest model, M5
denotes the Bayesian regression model and M6 denotes the deep neural
networks model.

FIGURE 5 | Prediction performance across environments (Global) in
Maize data in terms of Mean Square Error (MSE) of models M4 and M5 for
seven kernel methods. M4 denotes the random forest model and M5 denotes
the Bayesian regression model.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 8876437

Montesinos López et al. An R Library for Sparse Kernel Methods for Genomic Prediction

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

After applying QC, 54,113 SNPs were available to make the
predictions.

In this second example, we evaluated the same cases as the wheat
data example using the grid search as a tuning strategy for the
hyperparameters. Likewise, in this data set, the prediction
performance was evaluated with five random partitions where 80%
of the data was used for training and 20% for the testing set and the
average of thefive testing sets was reported as prediction performance.
To tune the hyperparameters, an inner 5-fold cross validationwas also
used to evaluate each hyperparameter combination. In Table 3 the
evaluation results are shown for this data set (Maize). The complete R
code for implementing the six models in the SKM library is provided
in Supplementary Appendix SD.

In Figures 3, 4 the Global results of the maize data example are
presented. Figure 3 shows the prediction performance in terms of
MSE and Figure 4 the prediction performance in terms of NRMSE.
According to Figure 3, the best Global results were observed in M1
with 0.2059 of MSE followed by M5 0.2099, that is
(0.2099 − 0.2059) × 100

0.2099 � 1.9% worst. M1 outperformed M4 by
(0.2215 − 0.2059) × 100

0.2215 � 7.57%, M2 by
(0.2336 − 0.2059) × 100

0.2336 � 11.85%, M6 by
(0.2396 − 0.2059) × 100

0.2396 � 16.36% and M3 (the worst) by
(0.2603 − 0.2059) × 100

0.2603 � 20.89%. In Figure 4 a similar pattern
appears: M1 produced the best results since it has the lowest NRMSE.
The only change in the order compared to that observed in Figure 3
is that M4 outperformed M5 in terms of NRMSE. The remaining
models’ results agree with Figure 3 given that the following best
results in terms of NRMSE were obtained with M2, M3 and M6,
respectively.

In Figure 5, we compared the performance of seven kernels for
the maize data set: Linear, Polynomial, Sigmoid, Gaussian,
Exponential, Arc-Cosine_1 and Arc-Cosine_2 for model M4 and
M5. For model M5, the best prediction performance was observed
under the Arc_cosine_1 and Polynomial kernel and the worst under
the Gaussian kernel.While undermodelM4, the best performance in
terms ofMSEwas observed under the Gaussian Kernel and the worst
under the Linear kernel. The code used for implementing model M4
and M5 with the seven kernels are given in Supplementary
Appendix SE. It is important to point out that in the SKM
library it is possible to perform kernel and sparse kernels not only
under the Bayesian BGBLUP method (a sub-model of model M5,
that is implemented under a RKHS method in BGLR) but under the
six models (M1 to M6) that can be implemented in this library. The
kernels apart from one sub-model of model M5 (BGBLUP) are
implemented not using as input directly the kernel, but with the
square root of the kernel for this reason is possible to be implemented
with all the sixmodels.While the sparse kernels were implemented in
a similar fashion but using the method explained above, proposed of
Cuevas et al. (2020) and for this reason, also it is possible to be
implemented with the six models here evaluated (M1, . . . , M6).

In Figure 6, we also provide the prediction accuracies in terms of
MSE for models M4 and M5 with the Arc_cosine_1 kernel for six
compression levels (0.5, 0.4, 0.3, 0.2, 0.1 and 0). It is important to
point out that in Figure 6, the complement of the compression levels
are given on the x-axis, which means the proportion of the columns
(subsampling of lines without replacement; see Cuevas et al., 2020) of
the complete (dense) kernel that are used as independent variables.
We can observe in Figure 6 that the best prediction performance for
model M5 was obtained with the compression level at 50%, that is,
when themodel was trained with only half of the total columns of the
complete kernel. However, the worst performance in model M5 was
with a compression level of 10% (LinesProportion of 0.9). On the
other hand, in model M4, the best and worst prediction performance
in terms of MSE was observed under compression level of 0.4
(LinesProportion of 0.6) and 0 (LinesProportion of 1) respectively.
The R code for reproducing the results given in Figure 6 are provided
in Supplementary Appendix SF.

Figure 6 for the Arc_cosine_1 sparse kernel, it is shown that even
with the largest compression level, there is not a relevant loss in
prediction accuracy. However, when the compression level is larger,
less time (in hours) is required for the training process, and the
reduction in time of execution is almost linear (Figure 7A for model
M4 and Figure 7B for model M5 both for the Arc_cosine_1 sparse
kernel). We can also observe in these Figures (Figures 7A,B) that the
time required for the training process inmodelM5 is significantly less
than the time required for model M4.

Figure 8 shows the prediction performance in terms of MSE for
models M4 andM5 but now with the Gaussian kernel using the same
six compression levels (0.5, 0.4, 0.3, 0.2, 0.1 and 0). For model M5, we
did not observe any significant loss in terms of prediction performance
with the six levels of compression levels evaluated. In model M5, we
can observe that the best prediction performance was obtained with
the largest compression level (0.5; LinesProportion of 0.5), but
between the remaining compression levels we did not observed
significant differences. The R code for reproducing the results
given in Figure 8 are provided in Supplementary Appendix SF.

FIGURE 6 | Prediction performance across environments (Global) in
Maize data in terms of Mean Square Error (MSE) of models M4 and M5 using
the sparse Arc_cosine_1 kernel with six proportions of compression levels:
0.5, 0.4, 0.3, 0.2, 0.1 and 0, which correspond to using only the following
proportions: 0.5, 0.6, 0.7, 0.8, 0.9 and 1 of the original lines (LinesProportion)
for computing the kernels. M4 denotes the random forest model and M5
denotes the Bayesian regression model. The complement of level of
compression level is equal to the proportion of lines used to compute the
sparse kernel, that is, level of compression = 1 minus proportion of lines used
to compute the sparse kernel.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 8876438

Montesinos López et al. An R Library for Sparse Kernel Methods for Genomic Prediction

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

It is observed in Figure 8 that even with the large proportion of
compression level, we did not experience a significant loss in
prediction accuracy. When the compression level was larger, less
time was required for the training process (Figures 7C,D). While the
trend is not totally linear under model M4 and Gaussian sparse
kernel, it is still clear that a significant reduction in time is achieved
when the compression level increases. On the other hand, under
model M5 with the Gaussian sparse kernel, a linear reduction is
observed in the time required for training when the compression level
is increased. This is particularly interesting since we can translate into
significant savings of computational resources without a significant
loss of prediction accuracy. Furthermore, Figure 7D also shows that
model M5 requires considerably less time for the training process in
comparison to the model M4 (Figure 7C).

The information provided in this Figure 7, illustrates that with the
use of sparse kernels it is possible to gain a significant reduction in
time for the implementation of the prediction models by means of
dense kernels (without any level of compression). For example,

Figure 7 shows that the larger the level of compression the larger
the reduction in computational resources. However, as observed in
Figures 6, 8 caution must be exercised when determining the level of
compression, because when this is large the level of accuracy could be
negatively affected (will reduce the prediction performance).
However, Figures 6, 8 depicted that even with level of
compression of 50% genomic prediction accuracy is not
dramatically affected. In general, M4 and M5 with sparse
Gaussian kernel enhance the genome-based prediction accuracy of
as compared with sparse kernel for all compression levels.

DEFAULT SETTINGS FOR THE
ALGORITHMS

The default setting for those algorithms that require a tuning
process (M1, M2, M3, M4 and M6) is the “Grid_search”
strategy of tuning, but this only works when you specified

FIGURE 7 | Time in hours for implementing two sparse kernels (Arc_cosine_1 and Gaussian) with the maize data set as a function of the proportion of the
compression level (0.5, 0.4, 0.3, 0.2, 0.1 and 0), which corresponds to using only the following proportions: 0.5, 0.6, 0.7, 0.8, 0.9 and 1 of the original lines
(LinesProportion) for computing the sparse kernels since level of compression = 1 minus proportion of lines used to compute the sparse kernel. (A) corresponds to M4
and Arc_cosine_1 sparse kernel. (B) corresponds to M5 Arc_cosine_1 sparse kernel. (C) corresponds to M4 and Gaussian sparse kernel. (D) corresponds to M5
Gaussian sparse kernel. M4 denotes the random forest model and M5 denotes the Bayesian regression model.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 8876439

Montesinos López et al. An R Library for Sparse Kernel Methods for Genomic Prediction

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

at least for one of the hyper-parameters with more than two
values to be evaluated, that is, a grid with a least two values for
at least one hyperparameter. Also, for the tuning process by
default is implemented an inner (nested) K-fold cross
validation with K = 5 by default. When the Bayesian
optimization is selected for the tuning process by default
are explored 10 iterations. In Table 4 are given the default
hyperparameters for each or the six models.

DISCUSSION

Data is playing an unprecedented role in the twenty-first century.
For this reason, many companies consider data science as a
fundamental component to extract useful knowledge, make better
decisions, reduce losses, analyze market trends and increase profits.
Likewise, it is playing an essential role in increasing the rate of

scientific and technological discoveries. For these reasons, the
demand for Data Scientists continues increasing and is expected
to grow by 27.9% by 2026, according to the US Bureau of Labor
Statistics (Rieley, 2018). However, to satisfy this growing demand,
people with different backgrounds need to be trained in this area
rather rapidly. In this vein, more open source and user-friendly
software such the SKM library are need to extract useful knowledge
more efficiently from raw data. Even though there aremany tools for
implementing supervised machine learning methods in the R
statistical software, they are still insufficient to cover the broad
spectrum of needs, as there are many complex tasks that are not
covered by existing tools.

For example, our library (SKM), in addition to grid search for
hyperparameter tuning, also included the Bayesian optimization
method, which is a sequential design strategy for global
optimization of black-box functions that does not presume any
functional forms. It is generally employed to optimize functions
that are expensive to evaluate. Bayesian optimization, contrary to a
grid search that performs an exhaustive evaluation over each point of
the grid of values given for each hyperparameter, needs very few
evaluations as starting points, and based on the knowledge at hand, it
can indicate which point should be evaluated next. Bayesian
optimization makes these decisions with something called
acquisition functions, which are heuristics for how desirable it is
to evaluate a point based on our present model. At every step, the
Bayesian optimization method determines the best point to evaluate
according to the acquisition function by optimizing it (Mockus,
2012). The model is then updated, and this process is repeated to
determine the next point to evaluate.

In order for machine learning algorithms to be able to successfully
perform a grid search, very large amount of values for each
hyperparameter is required, and as such, this method is frequently
rendered impractical since the required computational resources are
substantial. For this reason, our library (SKM) is novel since it can be
implemented for hyperparameter tuning with the Bayesian
optimization algorithm, which is well suited when the function
evaluations are expensive.

We do not expect the proposed SKM library to replace libraries
like mlr3 and scikit-learn, since these libraries will continue to be
suitable options for thosewho seek a complete solution for a particular
machine learning implementation. Nonetheless, our library (SKM)

FIGURE 8 | Prediction performance across environments (Global) in
Maize data in terms of Mean Square Error (MSE) of models M4 and M5 using
the sparse Gaussian kernel with six proportions of compression levels: 0.5,
0.4, 0.3, 0.2, 0.1 and 0, which correspond to using only the following
proportions: 0.5, 0.6, 0.7, 0.8, 0.9 and 1 of the original lines (LinesProportion)
for computing the sparse kernels, since level of compression = 1 minus
proportion of lines used to compute the sparse kernel. M4 denotes the
random forest model and M5 denotes the Bayesian regression model.

TABLE 4 | Default hyper-parameters for each of the models that can be implemented in the SKM library.

Model Name Default Hyper-parameter values

M1 Generalized boosted machines trees_number = 500, max_depth = 1
node_size = 10, shrinkage = 0.1
sampled_records_proportion = 0.5

M2 Generalized linear models alpha = 1; with alpha between 0 and 1 (for Elastic net Regression) and alpha = 0 for Ridge regression and alpha equal to 1 for
Lasso Regression

M3 Support vector machines kernel = “linear”, degree = 3, gamma = 1/NCOL(x), coef0 = 0 and cost = 1
M4 Random forest trees_number = 500, node_size = 5, node_depth = NULL and sampled_x_vars_number = NULL
M5 Bayesian regression models Not applied since are not required hyperparameters since run with the default values of the BGLR library
M6 Deep neural networks learning_rate = 0.001, epochs_number = 500, batch_size = 32, layers = list (list (neurons_number = 50,

neurons_proportion = NULL, activation =
“relu”, dropout = 0, ridge_penalty = 0, lasso_penalty = 0)), output_penalties = list (ridge_penalty = 0, lasso_penalty = 0),
optimizer = “adam”, shuffle = TRUE, early_stop = FALSE
early_stop_patience = 50

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 88764310

Montesinos López et al. An R Library for Sparse Kernel Methods for Genomic Prediction

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

will be a great alternative for its simplicity, as it can be used with six
conventionalmachine learning algorithmswith some kernelmethods,
and thus, help to better capture non-linear patterns in the data.

Additionally, to the best of our knowledge, this is the first library
that permits kernels to be implemented with six conventional
machine learning methods in a very simple way, which can help
increase the prediction performance when the input data contains
non-linear patterns. Furthermore, the SKM package permits the
implementation of approximate kernels (here called spare kernels),
which can help reduce the computational resources for data sets of
large dimensions, without a significant reduction in accuracy. In
comparison to typical kernels that reduce the input size to the number
of observations, sparse kernels can reduce the input size to even less
than the number of observations and in this way, save more
computational resources for its implementation. It must be noted
that since the building process of the kernels is first done in an
independent process, this computed kernel can be implemented with
any machine leaning method.

While the proposed SKM library only allows multivariate
responses for continuous outcomes to be trained under the
Bayesian framework and generalized linear models, it also allows
multivariate continuous, binary and categorical outcomes to be
trained under by the random forest method. Nevertheless, only
deep neural networks allows multivariate responses for continuous,
binary, categorical and count to be trained. Contrarily, only univariate
models can be trained under generalized boosted machines and
support vector machines. As we previously stated, the six models
can be implemented with seven kernels. These kernels are Linear,
Polynomial, Sigmoid, Gaussian, Exponential, Arc-Cosine 1 and Arc-
Cosine L (with L = 2, 3 . . .), which is useful for when the
dimensionality of the input is larger than the training samples,
greater computational resources are needed; however, using any of
these kernels reduces the number of training samples which, in turn,
reduces the computational resources needed, thus permitting non-
linear patterns to be captured more efficiently.

With the illustrative examples provided, the library can
implement supervised machine learning methods for binary,
categorical, count and continuous response variables, with the
advantage that the user does not need to specify the type of
response to be implemented; by providing the response variable
as a factor, the library will understand whether it will implement a
binary or categorical model depending on the number of
categories of the response variable. On the other hand, if the
response variable is converted to numeric values, the library will
implement a count or continuous model.

CONCLUSION AND FUTURE WORK

This new package will benefit both machine learning practitioners and
researchers who want to implement predictive models in a simple way
with state-of-the art methods for tuning hyperparameters like Bayesian
optimization.We also expect people from different disciplines who are
not programming experts to be able to take advantage of the simplicity
of SKM to enter into the machine learning world.

The kernelize function in SKM is of special interest since this is the
first package that allows kernels to be used with different machine

learning algorithms as a new approach of workingwith complex non-
linear and high dimensional data.

This new package is not intended to provide a full data science
solution, but rather, new machine learning algorithms can be
included in future versions along with more metric functions,
model benchmarking, data input and other data science related tools.

With the plant breeding examples provided, we illustrated
how this library can implement six machine learning algorithms
and seven types of kernel methods in the context of genomic
prediction. Moreover, we illustrated that the implementation of
sparse kernels can save significant computation resources without
a significant loss in prediction accuracy. Finally, in the
appendices, we provided all the codes so that users from
different backgrounds and areas of interest can
easily implement all the models and tools provided in the
SKM library.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the first author and/or the corresponding authors
and can be found in: https://github.com/osval78/SKM_Library_
Examples.

AUTHOR CONTRIBUTIONS

OAML, AML, and JC had the original idea and BM and AP
assisted in writing the R codes. All the authors participated writing
the first version and reviewing several of improved versions.

FUNDING

We are thankful for the financial support provided by the Bill
& Melinda Gates Foundation [INV-003439, BMGF/FCDO,
Accelerating Genetic Gains in Maize and Wheat for
Improved Livelihoods (AG2MW)], the USAID projects
USAID Amend. No. 9 MTO 069033, USAID-CIMMYT
Wheat/AGGMW, AGG-Maize Supplementary Project, AGG
(Stress Tolerant Maize for Africa), and the CIMMYT CRP
(maize and wheat).

ACKNOWLEDGMENTS

We acknowledge the financial support provided by the
Foundation for Research Levy on Agricultural Products (FFL)
and the Agricultural Agreement Research Fund (JA) in Norway
through NFR grant 267806.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2022.887643/
full#supplementary-material

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 88764311

Montesinos López et al. An R Library for Sparse Kernel Methods for Genomic Prediction

https://github.com/osval78/SKM_Library_Examples
https://github.com/osval78/SKM_Library_Examples
https://www.frontiersin.org/articles/10.3389/fgene.2022.887643/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.887643/full#supplementary-material
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al. (2015).
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
Available: https://www.tensorflow.org/.

Allaire, J., and Chollet, F. (2016). Keras: R Interface to Keras. https://keras.rstudio.
com (Accessed 07 11, 2018).

Crossa, J., Campos, G. d. l., Pe´rez, P., Gianola, D., Burgueño, J., Araus, J. L., et al.
(2010). Prediction of Genetic Values of Quantitative Traits in Plant Breeding
Using Pedigree andMolecular Markers. Genetics 186 (2), 713–724. doi:10.1534/
genetics.110.118521

Cuevas, J., Crossa, J.,Montesinos-López, O. A., Burgueño, J., Pérez-Rodríguez, P., and de
Los Campos, G. (2017). Bayesian Genomic Prediction with Genotype ×
Environment Interaction Kernel Models Environment Interaction Kernel
Models. G3 Genes, Genomes, Genet. 7 (1), 41–53. doi:10.1534/g3.116.035584

Cuevas, J., Crossa, J., Soberanis, V., Pérez-Elizalde, S., Pérez-Rodríguez, P., Campos, G. d.
l., et al. (2016). Genomic Prediction of Genotype × Environment Interaction Kernel
Regression Models. Plant Genome 9 (3), 1–20. doi:10.3835/plantgenome2016.03.
0024

Cuevas, J., Montesinos-López, O. A., Martini, J. W. R., Pérez-Rodríguez, P., Lillemo, M.,
and Crossa, J. (2020). Approximate Genome-Based Kernel Models for Large Data
Sets Including Main Effects and Interactions. Front. Genet. 11, 567757. doi:10.3389/
fgene.2020.567757

Cuevas, J., Montesinos-López, O., Juliana, P., Guzmán, C., Pérez-Rodríguez, P.,
González-Bucio, J., et al. (2019). Deep Kernel for Genomic and Near Infrared
Predictions in Multi-Environment Breeding Trials. G3 Genes|Genomes|Genetics 9
(9), 2913–2924. doi:10.1534/g3.119.400493

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization Paths for Generalized
Linear Models via Coordinate Descent. J. Stat. Softw. 33 (1), 1–22. doi:10.18637/jss.
v033.i01

Greenwell, B., Boehmke, B., Cunningham, J., and Developers, G. (2020). Gbm:
Generalized Boosted Regression Models. Available: https://CRAN.R-project.org/
package=gbm.

Ishwaran, I., Kogalur, U. B., Blackstone, E. H., and Lauer,M. S. (2008). Random Survival
Forests. Ann. Appl. Stat. 2 (3), 841–860. doi:10.1214/08-aoas169

Kuhn, M. (2016). Caret: Classification and Regression Training. R package version 6.0-
71. Available: https://github.com/topepo/caret/.

Kuhn, M., and Wickham, H. (2020). Tidymodels: A Collection of Packages for
Modeling and Machine Learning Using Tidyverse Principles. Available: https://
www.tidymodels.org.

Lang, M., Binder, M., Richter, J., Schratz, P., Pfisterer, F., Coors, S., et al. (2019). mlr3: A
Modern Object-Oriented Machine Learning Framework in R. Joss 4 (44), 1903.
doi:10.21105/joss.01903

Lang,M. (2017). Checkmate: Fast Argument Checks for Defensive R Programming.R J.
9 (1), 437–445. doi:10.32614/RJ-2017-028

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., and Leisch, F. (2019). Misc
Functions of the Department of Statistics. Probability Theory Group (Formerly:
E1071), TU Wien. R package version 1.7- 2 https://CRAN.R-project.org/package=
e1071.

Mockus, J. (2012). Bayesian Approach to Global Optimization: Theory and Applications.
Berlin, Germany: Springer Science & Business Media.

Montesinos-López, O. A., Montesinos-López, A., Hernandez-Suarez, C. M., Barrón-
López, J. A., and Crossa, J. (2021a). Deep-learning Power and Perspectives for
Genomic Selection. Plant Genome 14 (3), e20122. doi:10.1002/tpg2.20122

Montesinos-López, A., Montesinos-López, O. A., Montesinos-López, J. C., Flores-
Cortes, C. A., de la Rosa, R., and Crossa, J. (2021b). A Guide for Kernel
Generalized Regression Methods for Genomic-Enabled Prediction. Heredity 126
(4), 577–596. doi:10.1038/s41437-021-00412-1

Montesinos-López, O. A., Montesinos-López, A., and Crossa, J. (2022b). “Overfitting,
Model Tuning and Evaluation of Prediction Performance,” in Multivariate
Statistical Machine Learning Methods for Genomic Prediction. Editors
O.A. Montesinos López, A. Montesinos López, and J. Crossa (Cham,
Switzerland: Springer International Publishing), 2022, 109–139.

Montesinos-López, O. A., Montesinos-López, A., and Crossa, J. (2022a). “Reproducing
Kernel Hilbert Spaces Regression and Classification Methods,” in Multivariate
Statistical Machine Learning Methods for Genomic Prediction. Editors

O.A. Montesinos López, A. Montesinos López, and J. Crossa (Cham,
Switzerland: Springer International Publishing), 2022, 251–336.

Osborne, M. A., Garnett, R., and Roberts, S. J. (2009). Gaussian Processes for
Global Optimization. Oxford, UK: Learning and Intelligent
Optimization, 1–15.

Ott, T., Palm, C., Vogt, R., and Oberprieler, C. (2020). GinJinn: An Object-
detection Pipeline for Automated Feature Extraction from Herbarium
Specimens. Appl. Plant Sci. 8 (6), e11351. doi:10.1002/aps3.11351

Pandas development team (2020). Pandas-dev/pandas. Pandas. Zenodo. doi:10.
5281/zenodo.3509134

Pedregosa, F., Gael Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Olivier Grisel, O., et al. (2011). Scikit-learn: Machine Learning in python.
Mach. Learn. PYTHON 12, 2825–2830.

Pérez, P., and de los Campos, G. (2014). Genome-wide Regression and
Prediction with the Bglr Statistical Package. Genetics 198 (2), 483–495.
doi:10.1534/genetics.114.164442

R Core Team (2021). R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Computing.
Available: https://www.R-project.org/.

Rieley, M. (2018). Big Data Adds up to Opportunities in Math Careers. Beyond
Numbers Employ. Unempl. 7 (8). https://www.bls.gov/opub/btn/volume-7/
big-data-adds-up.htm.

Shahin, I., Nassif, A. B., and Hamsa, S. (2020). Novel Cascaded Gaussian
Mixture Model-Deep Neural Network Classifier for Speaker Identification
in Emotional Talking Environments. Neural Comput. Applic 32 (7),
2575–2587. doi:10.1007/s00521-018-3760-2

Souza, M., Cuevas, J., de Oliveira, C. E. G., Pérez-Rodríguez, P., Jarquín, D.,
Fritsche-Neto, R., et al. (2017). Genomic-Enabled Prediction in Maize
Using Kernel Models with Genotype × Environment Interaction. G3
(Bethesda) 7 (6), 1995–2014. doi:10.1534/g3.117.042341

Wang, R., Aung, M. S. H., Abdullah, S., Brian, R., Campbell, A. T., Choudhury,
T., et al. (2016). “CrossCheck,” in UbiComp 2016 - Proceedings of the 2016
ACM International Joint Conference on Pervasive and Ubiquitous
Computing, Heidelberg, Germany, September 12-16, 2016 (Association
for Computing Machinery, Inc), 886–897. doi:10.1145/2971648.2971740

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R.,
et al. (2019). Welcome to the Tidyverse. Joss 4 (43), 1686. doi:10.21105/joss.
01686

Wickham, H., François, R., Henry, L., and Müller, K. (2015). Dplyr: A
Grammar of Data Manipulation. R Package Version 0.4.3 http://CRAN.
R-project.org/package=dplyr.

Williams, C. K. I., and Seeger, M. (2001). “Using the NyströmMethod to Speed
up Kernel Machines,” in Advances in Neural Information Processing
Systems. Editors T.K. Leen, T.G. Diettrich, and V. Tresp (Cambridge,
MA: MIT Press), 13, 682–688.

Yan, Y. (2016). RBayesianOptimization: Bayesian Optimization of
Hyperparameters. R package version 1.1.0. [Online]. Available: https://
CRAN.R-project.org/package=rBayesianOptimization.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Montesinos López, Mosqueda González, Palafox González,
Montesinos López and Crossa. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 88764312

Montesinos López et al. An R Library for Sparse Kernel Methods for Genomic Prediction

https://www.tensorflow.org/
https://keras.rstudio.com
https://keras.rstudio.com
https://doi.org/10.1534/genetics.110.118521
https://doi.org/10.1534/genetics.110.118521
https://doi.org/10.1534/g3.116.035584
https://doi.org/10.3835/plantgenome2016.03.0024
https://doi.org/10.3835/plantgenome2016.03.0024
https://doi.org/10.3389/fgene.2020.567757
https://doi.org/10.3389/fgene.2020.567757
https://doi.org/10.1534/g3.119.400493
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://CRAN.R-project.org/package=gbm
https://CRAN.R-project.org/package=gbm
https://doi.org/10.1214/08-aoas169
https://github.com/topepo/caret/
https://www.tidymodels.org
https://www.tidymodels.org
https://doi.org/10.21105/joss.01903
https://doi.org/10.32614/RJ-2017-028
https://CRAN.R-project.org/package=e1071
https://CRAN.R-project.org/package=e1071
https://doi.org/10.1002/tpg2.20122
https://doi.org/10.1038/s41437-021-00412-1
https://doi.org/10.1002/aps3.11351
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1534/genetics.114.164442
https://www.R-project.org/
https://www.bls.gov/opub/btn/volume-7/big-data-adds-up.htm
https://www.bls.gov/opub/btn/volume-7/big-data-adds-up.htm
https://doi.org/10.1007/s00521-018-3760-2
https://doi.org/10.1534/g3.117.042341
https://doi.org/10.1145/2971648.2971740
https://doi.org/10.21105/joss.01686
https://doi.org/10.21105/joss.01686
http://CRAN.R-project.org/package=dplyr
http://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=rBayesianOptimization
https://CRAN.R-project.org/package=rBayesianOptimization
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	A General-Purpose Machine Learning R Library for Sparse Kernels Methods With an Application for Genome-Based Prediction
	Introduction
	Machine Learning Algorithms
	Sparse Kernels
	Evaluation Metrics
	Installation
	Illustrative Examples
	Wheat Data
	Maize Data

	Default Settings for the Algorithms
	Discussion
	Conclusion and Future Work
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

