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N6-Methyladenosine-related long noncoding RNAs play an essential role in many cancers’
development. However, the relationship between m6A-related lncRNAs and acute
myelogenous leukemia (AML) prognosis remains unclear. We systematically analyzed
the association of m6A-related lncRNAs with the prognosis and tumor immune
microenvironment (TME) features using the therapeutically applicable research to
generate effective treatment (TARGET) database. We screened 315 lncRNAs
associated with AML prognosis and identified nine key lncRNAs associated with m6A
by the LASSO Cox analysis. A model was established based on these nine lncRNAs and
the predictive power was explored in The Cancer Genome Atlas (TCGA) database. The
areas under the ROC curve of TARGET and TCGA databases for ROC at 1, 3, and 5 years
are 0.701, 0.704, and 0.696, and 0.587, 0.639, and 0.685, respectively. The nomogram
and decision curve analysis (DCA) showed that the risk score was more accurate than
other clinical indicators in evaluating patients’ prognoses. The clusters with a better
prognosis enrich the AML pathways and immune-related pathways. We also found a
close correlation between prognostic m6A-related lncRNAs and tumor immune cell
infiltration. LAG3 expression at the immune checkpoint was lower in the worse
prognostic cluster. In conclusion, m6A-related lncRNAs partly affected AML prognosis
by remodeling the TME and affecting the anticarcinogenic ability of immune checkpoints,
especially LAG3 inhibitors. The prognostic model constructed with nine key m6A-related
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lncRNAs can provide a method to assess the prognosis of AML patients in both adults and
children.

Keywords: acute myelogenous leukemia, N6-methyladenosine, tumor immune microenvironment, long noncoding
RNAs, prognostic model

INTRODUCTION

Acute myelogenous leukemia (AML) is a hematopoietic
malignancy characterized by numerous cytogenetic and
molecular aberrations. It accounts for 15%–20% of childhood
leukemia, approximately 33% of adolescents and young adults,
and 80% of adult leukemia (Creutzig et al., 2008; Molica et al.,
2019). Despite the considerable improvements achieved in
intensified treatment strategy, supportive care, and risk-
adapted patient stratification, the overall survival (OS) does
not exceed 70% and relapse rates range between 25% and 35%
(Lonetti et al., 2019). AML represents a clinical challenge because
of its poor prognosis, highlighting an urgent need to explore novel
therapeutic targets and new biomarkers for diagnosis and
prognosis (Jiang et al., 2021).

The discovery of epigenetic regulation has opened a new realm
of gene regulation in eukaryotes. There is increasing evidence
showing that N6-methyladenosine (m6A), the most prevalent
RNA modification, plays a critical role in RNA regulation (Deng
et al., 2018). The reversibility and dynamics features of RNAm6A
modification indicate its unique contribution to tumorigenesis
(Dai et al., 2018). Several studies have reported that m6A
modification is involved in the occurrence and development of
AML (citation). The overexpression of m6A methyltransferase
METTL14 and METTL3 in AML cells promoted the self-renewal
of leukemic stem cells and the development and maintenance of
AML (Barbieri et al., 2017; Vu et al., 2017; Weng et al., 2018).
WTAP, an oncogenic protein in AML, functions as a regulatory
subunit of the m6A methyltransferase complex (Bansal et al.,
2014). The m6A demethylase FTO also plays an oncogenic role in
AML (Li et al., 2017).

LncRNAs, a kind of noncoding RNAs with approximately
200 nt-100 kb nucleotides in length, regulate the translation,
shearing, and degradation of target mRNAs (Silva et al., 2010).
LncRNAs also serve as the preferred biomarkers in the diagnosis,
prognosis, and therapeutic approach to various types of diseases
(Silva et al., 2010). Previous studies have reported that lncRNA
dysregulation is associated with the prognosis of AML patients
(Sun et al., 2018; Feng et al., 2020). However, there is still a lack of
systematic evaluation of the prognostic value of lncRNAs in AML
in a large sample. It is known that m6A modifications play an
essential role in the dysregulation of lncRNAs in AML. However,
the modifying regulatory role of m6A regulators on lncRNAs and
the mechanism of association betweenm6A-related lncRNAs and
AML prognosis are still far from being elucidated, and an in-
depth understanding of the mechanisms of m6Amodifications of
lncRNAs in AML progression may help to identify relevant
prognostic biomarkers (Liu et al., 2020). In this study, we
analyzed the m6A-related lncRNA expression of AML patients
in the therapeutically applicable research to generate effective

treatment (TARGET) database and explored the relationship
between m6A-related lncRNAs and AML prognosis.
Furthermore, we constructed the prognostic model using the
keym6A-related lncRNAs identified in this process and evaluated
the predictive power of the model in The Cancer Genome Atlas
(TCGA) database.

Progression of AML is highly correlated with the physiological
state of the tumor microenvironment (TME) (Roma-Rodrigues
et al., 2019). It was reported that the immunosuppressive
environment favors the immune escape of AML cells (Nahas
et al., 2019). Immune checkpoint proteins are highly relevant to
the initiation of immunocyte signaling pathways, which could be
manipulated by tumor cells to escape immune response and form
a TME that is beneficial to neoplastic development (Topalian
et al., 2016; Osipov et al., 2019; Bonavita et al., 2020). Here, we
found that m6A-related lncRNAs might affect AML prognosis
through the immunocyte signaling pathway. Thus, we further
explored the association between m6A-related lncRNAs and
immune checkpoint proteins, tried to explain the mechanism
of m6A-related lncRNAs on the TME heterogeneity, and
searched for biomarkers that could serve as potential
immunotherapy targets.

MATERIALS AND METHODS

Acquisition of Gene Expression and Clinical
Data
The RNA sequencing data and the associated clinical data from
358 AML patient samples were downloaded from the TARGET
database (https://ocg.cancer.gov/programs/target), the download
date was March 20, 2021. After excluding 63 samples without
survival information, 295 AML patient samples data were used
for screening m6A-related lncRNAs, analyzing the relationship
between AML prognosis and immune cell infiltration, and the
construction of a prognostic model.

In addition, we downloaded RNA sequencing data of 151
AML patient samples and the clinical data of 200 AML patient
samples from the TCGA (The Cancer Genome Atlas) database
(https://www.cancer.gov/about-nci/organization/ccg/research/
structural-genomics/tcga) to verify the predictive effect of the
prognostic model. The download date was March 20, 2021.

The RNA sequencing data were transcribed fragments per
kilobase per million mapped reads (FPKM) normalized.

Annotation and Identification of Prognostic
m6A-Related lncRNAs
The m6A regulators, including METTL3, METTL14, METTL16,
WTAP, VIRMA [KIA1499], RBM15, RBM15B, and ZC3H13,
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erasers FTO and ALKBH5, and readers YTHDC1, YTHDC2,
YTHDF1, YTHDF2, YTHDF3, HNRNPC, FMR1, LRPPRC,
HNRNPA2B1, IGFBP1, IGFBP2, IGFBP3 and RBMX (Chen
et al., 2019; Jin et al., 2021), were acquired from the published
m6A-related literature, and lncRNAs were defined using the long
noncoding RNA annotation file of the GENCODE website
(GRCh38) (https://www.gencodegenes.org/human/).

Ribonucleic acid sequencing data were merged into an RNA
matrix file using the programming language Perl (http://www.perl.
org/). LncRNAs were identified by recognizing the ensemble IDs of
the genes, including lincRNA, antisense, processed transcript, sense
intronic, 3 prime overlapping ncRNAs, and sense overlapping. We
also extracted the expressionmatrix of 23m6A regulators fromAML
patients from the TARGET database for the following analysis.

The Pearson correlation analysis was implemented to identify
m6A-related lncRNAs (with the |Pearson R| > 0.4 and p < 0.001).
Taking the overall survival (OS) as the prognostic outcome
endpoints, we used the univariate Cox regression analysis to
screen m6A-related lncRNAs associated with AML prognosis.

Subgroup Identification Based on
Consensus Clustering and GSEA Between
Different Clusters
“ConsensusClusterPlus” and “limma” packages (Wilkerson and
Hayes, 2010; Ritchie et al., 2015) in R software were used to
classify AML patients into subtypes (cluster 1, cluster 2, and so
on) based on the expression patterns of lncRNAs screened by the
univariate Cox regression analysis. Kaplan–Meier curves and the log-
rank test were used to compare theOS between the different clusters to
determine the differential expression of prognosis-related lncRNAs.
Genome Set Enrichment Analysis (GSEA)was applied to the different
clusters. Kyoto Encyclopedia of Genes and Genomes (KEGG) gene
sets and phenotype tagswith high and low expression files were loaded
into the GSEA (v4.0.3; Broad Cambridge University Institute, MA,
https://www.gsea-msigdb.org/gsea/index.jsp) software.

Role of Immune Cell Infiltration and the
Tumor Microenvironment
After calculating the stromal score and immune scores by the
ESTIMATE (Estimation of Stromal and Immune cells in
Malignant Tumor tissues using Expression data) (version 2.15.3)
algorithm (https://sourceforge.net/projects/estimateproject/), we
obtained the ESTIMATE score by combining the two scores. Our
final index was to calculate the tumor purity based on the ESTIMATE
score (Yoshihara et al., 2013). According to the study conducted by
Aran et al., in 2015, a tumor purity over the minimum threshold of
60% means that the clustering results are reliable (Aran et al., 2015).
The Cell-type Identification by Estimating Relative Subpopulations of
RNA Transcripts (CIBERSORT) method (Newman et al., 2015) was
applied to assess the proportion of 22 immune cell subtypes in AML
patient samples to explore the differences in immune cell subtypes
among three clusters. Similarly, we compared the differences between
five immune checkpoints of three different subtypes. The expression
of immune checkpoints is closely related to immunotherapy. Five
immune checkpoints were derived from previous studies, including

programmeddeath 1 (PD-1) (Sharpe andPauken, 2018) and its ligand
1 (PD-L1) (Daassi et al., 2020), cytotoxic T-lymphocyte antigen 4
(CTLA-4) (Agdashian et al., 2019), mucin domain-containing
molecule-3 (TIM-3) (Wolf et al., 2020), and lymphocyte-activation
gene 3 (LAG3).

Construction and Validation of Prognostic
Models
LASSO Cox regression was used to further identify biomarkers
associated with AML prognosis (Friedman et al., 2010). Finally,
nine m6A-related AML prognosis-related lncRNAs were
obtained and the risk score for the prognosis of each AML
patient was calculated based on the expression of the nine
lncRNAs. The calculating formula is:

riskscore � ∑
n

i�1
coefipxi,

where coef i means the coefficients and xi is the FPKM value of
each m6A-related lncRNA.

AML patients in the TARGET database were divided into
high-risk and low-risk groups based on the median risk score.
Kaplan–Meier curves and log-rank tests were used to compare the
prognostic difference between the low-risk group and the high-
risk group. The time-dependent receiver operating characteristic
(ROC) curves and the area under curve (AUC) were measured by
the package “survivalROC” in R software, which was used to
evaluate the prognostic prediction accuracy of the model and 1/3/
5-year OS (Heagerty and Zheng, 2005). The 1/3/5-year OS of the
model was also calculated in the TCGA database to assess the
model’s predictive ability in adult AML patients.

Constructing a Predictive Nomogram and
Decision Curve
A nomogram is widely used to predict the prognosis of cancer. All
independent prognostic factors including gender, age, race, FAB
category, WBC at diagnosis (WBC), bone marrow leukemic blast
percentage (%) (BM), and peripheral blasts (%) (PB) were used to
build a nomogram and calculate a nomogram score to investigate
the probability of 1, 3, and 5 years OS (overall survival) of AML.
Finally, calibration curves were plotted to estimate the calibration
capability of the nomogram and a decision curve analysis was
used to evaluate the clinical usefulness of the nomogram.

Statistical Analysis
Most analyses were performed with R software (version 4.0.5,
http://www.R-project.org). Unless otherwise noted, p < 0.05 was
considered statistically significant.

RESULTS

Characteristics of Participants in This Study
Tables 1, 2 show the characteristics of the participants from the
TARGET and TCGA databases, respectively.
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Annotation and Identification of Prognostic
m6A-Related lncRNAs
Figure 1 is the flowchart of this study. From a total of 11,535
annotated lncRNAs and the expression matrix of 23 m6A-
associated genes, we identified 1,442 lncRNAs as significant
m6A-associated genes and found 315 lncRNAs significantly
associated with AML prognosis (p < 0.05), using the
univariate Cox regression analysis (Supplementary
Table S1).

Subgroup Identification Based on
Consensus Clustering and GSEA Between
Different Clusters
We performed consensus clustering on 295 AML samples and
divided the samples into three subgroups based on the maximum
AUC increment of CDF and the expression pattern of m6A-
related lncRNAs (Figures 2A–C). The Kaplan–Meier method
and the log-rank test were used to compare the prognosis of the
three clusters and the result showed that there are statistical
differences in the OS (Figure 2D) (p = 0.007). The survival curves
of cluster 1 and cluster 2 are almost the same, but there are
significant differences between cluster 3 and cluster 1 (p = 0.003)
or cluster 2 (p = 0.006). Thus, cluster 1 and cluster 2 were
considered better prognostic groups, whereas cluster 3 was
identified as the poor prognostic group.

The chi-square test was used between clusters and other
clinical parameters, including gender, age, Race, FAB category,
WBC at diagnosis (WBC), bone marrow leukemic blast

TABLE 1 | Baseline characteristics for 295 patients with AML in the TARGET
database (n = 295).

Characteristics Cases (%)

Gender
Female 137 (46.4)
Male 158 (53.6)

Age
0–3 66 (22.4)
3–6 31 (10.5)
6–14 111 (37.6)
14–24 87 (29.5)

Race
American Indian or Alaska native 2 (0.7)
Asian 9 (3.1)
Black or African American 33 (11.2)
Native Hawaiian or other Pacific Islander 3 (1.0)
White 218 (73.9)
Unknown 21 (7.1)
Other 9 (3.0)

FAB category
M0 8 (2.7)
M1 37 (12.5)
M2 73 (24.7)
M4 71 (24.1)
M5 54 (18.3)
M6 4 (1.4)
M7 9 (3.1)
NOS 17 (5.8)
Unknown 22 (7.4)

Ethnicity
Hispanic or Latino 53 (18.0)
Not Hispanic or Latino 232 (78.6)
Unknown 10 (3.4)

WBC at diagnosis
<50 158 (55.6)
≥50 137 (46.4)

Bone marrow leukemic blast percentage (%)
<70 119 (40.3)
≥70 176 (59.7)

Peripheral blasts (%)
<70 183 (62.0)
≥70 112 (38.0)

The interquartile spacing of age is 10.39 (3.74, 14.64). The minimum value of age is 0.03
and the maximum value of age is 23.51. 7 variables were taken as covariates, including
gender, age at diagnosis in days, race, FAB category, ethnicity, WBC at diagnosis, bone
marrow leukemic blast percentage (%), and peripheral blasts (%). “Gender” is taken as a
categorical variable; “Race” is taken as a categorical variable; “Age” is taken as a
categorical variable; “FAB category” is taken as a categorical variable; “WBC at
Diagnosis” is taken as a categorical variable; “Bone marrow leukemic blast percentage
(%)” is taken as a categorical variable; and “Peripheral blasts (%)” is taken as a categorical
variable.

TABLE 2 | Baseline characteristics for 200 patients with AML in the TCGA
database (n = 200).

Characteristics Cases (%)

Gender
Female 91 (45.5)
Male 109 (54.5)

Age
10~ 1 (0.5)
20~ 16 (8.0)
30~ 21 (10.5)
40~ 26 (13.0)
50~ 44 (22.0)
60~ 54 (27.0)
70~ 32 (16.0)
80~ 6 (3.0)

Race
Asian 2 (1.0)
Black or African American 15 (7.5)
Not reported 2 (1.0)
White 181 (90.5)

FAB category
M0 undifferentiated 19 (9.5)
M1 44 (12.5)
M2 44 (12.5)
M3 21 (10.5)
M4 42 (21.0)
M5 22 (11.0)
M6 3 (1.5)
M7 3 (1.5)
Not classified 2 (1.0)

Ethnicity
Hispanic or Latino 3 (1.5)
Not Hispanic or Latino 194 (97.0)
Not reported 3 (1.5)

Themedian age as well as the interquartile spacing is 57.50 (44.75, 67.00). Theminimum
value of age is 18 and the maximum value of age is 88. Five variables were taken as
covariates, including gender, age, race, FAB category, ethnicity. “Gender” was taken as
categorical variable; “Race” was taken as categorical variable; “Age” was taken as
categorical variable; “FAB category” was taken as categorical variable; and “Ethnicity”
was taken as categorical variable.
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percentage (%) (BM), peripheral blasts (%) (PB), and the cluster
to test for statistically significant differences in the composition
ratios between populations. The results were plotted in a heatmap
(Figure 2E). Red represents high lncRNA expression and blue
represents low lncRNA expression. The horizontal axis represents
295 AML patients and the vertical axis represents 315 lncRNAs.
We found that expressions of lncRNAs were low in all of cluster 1
samples and most of cluster 2, and expressions were high in a
small part of cluster 2 and all of cluster 3. Significant differences in
the FAB categories of AML were also found between the three
clusters. Comparison between three different clustering-related
clinical factors, the result of the FAB categories in the installment
in significant differences between the three clusters, and other
factors did not show statistical differences. The results indicated
that high m6A-related lncRNA expression is associated with poor
AML prognosis.

The GSEA result between clusters 1 and 3 showed that the
B-cell receptor signaling pathway, acute myeloid leukemia

pathway, and T-cell receptor signaling pathway were enriched
in cluster 1 (Figures 3A–C). The GSEA result between clusters 2
and 3 is similar to that between clusters 1 and 3. Because of that,
most of those signaling pathways were involved in the regulation
of immune checkpoint expression, leukemia-related pathways,
and cytokine-related regulation pathways. Therefore, we further
analyzed immunity, including immune checkpoint expression,
tumor immune cell abundance profiles, and TME scores to
investigate the differences between the three clusters
(Figures 3D–F).

Analysis of the Immune Status
The observation of enriched immune-related pathways
between three clusters drove us to further explore the
relationship between m6A-related lncRNAs and cancer
immunity. The ESTIMATE algorithm was used to calculate
immune scores and stromal scores. The estimate scores and
tumor purity were calculated by immune scores and stromal

FIGURE 1 | Flow chart.
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FIGURE 2 | Consensus clustering of m6A-related genes and differential analysis of different factors among different clusters. (A) Consensus clustering matrix for k
= 3. (B) Cumulative distribution function (CDF) for AML. Choose the curve with a smaller CDF descent slope among the curves with horizontal coordinates ranging from
0.1 to 0.9. (C) Area under the CDF curve in AML. Choose the cluster k whose CDF decreases less drastically and whose CDF value cannot be too small. (D)
Kaplan–Meier curves of the overall survival for patients with AML in three clusters (OS). (E) Heatmap and clinicopathological characteristics of AML subgroups
classified by 315 genetic prognostic features.
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scores for all AML samples. The results showed that estimate
scores and tumor purity were not statistically significant
between the three clusters whereas the tumor purity of all
three clusters was greater than 60% (Figures 4G,H). In
addition to that, the CIBERSORT algorithm was used to
calculate the contents of 22 different immune cell types
between three clusters. The contents of B cells naive, T cells
CD8, T cells CD4 naive, T cells CD4 memory resting, T cells
follicular helper, NK cells resting, NK cells activated,
macrophage M0, macrophage M2, dendritic cells activated,
and eosinophils were significantly different between the three
clusters. Monocytes, mast cells activated, eosinophils, T cells
CD4 memory resting, and B cells naive accounted for a large
proportion of immune infiltrating cells. B cells naive, T cells
CD8, NK cells activated, and macrophages M2 were higher in
the population with a better prognosis than in those with a
poor prognosis. The levels of T cells CD4 naive, NK cells
resting, and eosinophils were lower in those with excellent
prognosis than in those with poor prognosis (Figure 4A). In
the comparison between cluster 1 and cluster 3, and cluster 2
and cluster 3, we found statistically significant differences in
B cells naive, T cells CD4 naive, T cells CD4 memory resting,
and macrophages M2 (Figures 4B,C).

Immunotherapy targeting immune checkpoints holds great
promise for the clinical treatment of human cancers (Wan et al.,
2021). Therefore, we investigated the expression differences of
several genes encoding well-known immune checkpoint proteins
between three clusters. The results showed that the expression of

the LAG3 gene was statistically different among the three clusters
(p < 0.05) (Figure 4D): it was high in cluster 1 and cluster 2,
which had a better prognosis (p < 0.05) (Figures 4E,F).
Lymphocyte-activation gene-3 (LAG3, also named CD223) is a
cell surface molecule expressed on activated T cells. It plays a key
role in the immune checkpoint, which makes it a potential cancer
immunotherapeutic target. The results suggest that patients in
clusters 1 and 2 may be more sensitive to the immunotherapy
targeting LAG3.

Construction and Validation of the
Prognostic Model
The LASSO Cox regression analysis revealed that nine out of the
315 lncRNAs were with closely associated with AML prognosis
(Figures 5A,B), which were LINC00852 (p < 0.001, coefficient =
0.0256), AL157392.3 (p < 0.001, coefficient = 0.0278),
AC127459.1 (p < 0.001, coefficient = 0.0946), AC106820.3
(p < 0.001, coefficient = 0.0024), AC092757.2 (p = 0.004,
coefficient = 1.6278), AC124248.1 (p < 0.001, coefficient =
0.0054), AC145207.5 (p < 0.001, coefficient = 0.0008),
DNAAF4-CCPG1 (p < 0.001, coefficient = 0.0070), and
AC023908.3 (p < 0.001, coefficient = 0.1977) with all HR
greater than 1, as shown in Table 3. We included the risk
score, age, race, gender, WBC at diagnosis, bone marrow
leukemic blast percentage (%), peripheral blasts (%), and FAB
categories in the univariate and multivariate Cox regression
analyses to find correlates that might affect the prognosis of

FIGURE 3 | GESA between cluster 1 and cluster 3, and cluster 2 and cluster 3. (A–C) Comparison of cluster 1 with cluster 3. GSEA-enriched partial immune
signaling pathways. (D–F) Comparison of cluster 2 and cluster 3. GSEA-enriched leukemia and partial immune signaling pathway.
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AML in children. The results of univariate and multivariate Cox
regression analyses showed that only the risk score was an
associated factor affecting the prognosis of AML in children
(p < 0.05) (Figures 5E,F).

Patients were divided into high-risk and low-risk groups
based on the median risk score. Kaplan–Meier survival
curves showed that low-risk patients in the TARGET
database had better OS than high-risk patients
(Figure 5C). We analyzed whether clinically relevant
factors differed between the high-risk and low-risk
groups. We observed significant differences between the
high-risk and low-risk groups of patients regarding the
FAB categories (p < 0.05) and clusters (p < 0.05)
(Figure 6A). We also compared differences in risk scores
between different clinical subgroups. The results showed
statistically significant differences in risk scores between
clusters 1 and 3, clusters 2 and 3, WBC at diagnosis, bone
marrow leukemic blast percentage (%), and FAB categories
(Figures 6B–D) (Supplementary Figures S1A–D). Next, we
evaluated the risk score of each AML case in the TARGET

database and results showed that AML patients in the low-
risk group have a better survival status and a shorter
mortality status than the high-risk group (Figures 7A,C).
A time-dependent ROC analysis indicated that the AUC of
the risk score predicted OS at 1, 3, and 5 years were 0.701,
0.704, and 0.696, respectively (Figure 7E).

The prognostic model was then used in the TCGA database to
evaluate the predictive power for survival in adult AML patients.
Patients were also divided into high-risk and low-risk groups
based on the median risk score. The Kaplan–Meier survival
curves showed that low-risk patients in the TCGA database
had better OS than high-risk patients (Figure 5D). We also
found that AML patients in the low-risk group had better
survival status and shorter mortality than the high-risk group
(Figures 7B,D). A time-dependent ROC analysis showed that the
AUCs of the risk score for predicting OS at 1, 3, and 5 years were
0.587, 0.639, and 0.685, respectively (Figure 7F). Overall, the
aforementioned results suggest that the prognostic model had a
good predictive power in predicting the survival time of pediatric
patients with AML and adult patients.

FIGURE 4 | Immunological analysis among different clusters. (A) Content of 22 immune cell types in three clusters. (B) Content of 22 immune cell types between
cluster 1 and cluster 3. (C) Content of 22 immune cell types between cluster 2 and cluster 3. (D) Five immune checkpoint expressions in three clusters. (E) Five immune
checkpoint expressions between cluster 1 and cluster 3. (F) Five immune checkpoint expressions between cluster 2 and cluster 3. (G) Differences in the estimate score
between the three clusters. (H) Differences in tumor purity between the three clusters.
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Constructing a Predictive Nomogram and
Decision Curve
Nomograms and decision curves of 1, 3, and 5 years are shown in
Figures 8A–E. Based on the clinical information and risk score of
each patient, the probability of survival in 1, 3, and 5 years can be
calculated through the nomogram. Risk scores and FAB categories
were identified as significant factors for prognosis in patients with
AML on the nomogram. The calibration curve is shown in
Figure 8B. The 1-, 3-, and 5-year decision curves showed that

the nomogram score was the optimal predictor of survival for
pediatric AML patients, followed by the risk score.

DISCUSSION

Previous studies have found that m6A-regulated lncRNAs are
involved in the biological process of cancer progression.
Numerous studies have shown that m6A could modify
lncRNAs, which contribute to tumorigenesis in multiple cancer

FIGURE 5 | Construction of the risk model of m6A-related prognostic lncRNAs in AML. (A,B) LASSO regression was performed, calculating the minimum criteria.
(C) Kaplan–Meier curve showed that the high-risk group had a more inferior OS than the low-risk group in the TARGET database. (D) Kaplan–Meier curve showed that
the high-risk group had a more inferior OS than the low-risk group in the TCGA database. (E) Results of the univariate Cox regression analysis incorporating clinical
factors. (F) Results of the multivariate Cox regression analysis incorporating clinical factors.
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types, including proliferation, invasion, and metastasis (Chen et al.,
2020). m6A-related lncRNAs may serve as a more promising
prognostic marker in cancer. However, the potential role of
m6A-related lncRNAs in the prognosis of AML remains unclear.

In this study, we downloaded the expression data of 295 AML
patients from the TARGET database and identified 315 m6A-
related prognostic lncRNAs. Three prognostic sample clusters were
identified according to the expression pattern of m6A-related

TABLE 3 | Nine lncRNAs obtained by LASSO-Cox regression.

m6A-Related lncRNA Coefficient HR HR.95L HR.95H p-value

LINC00852 0.0256 1.1785 1.1014 1.2610 <0.001
AL157392.3 0.0278 1.2780 1.1636 1.4036 <0.001
AC127459.1 0.0946 1.9040 1.4660 2.4729 <0.001
AC106820.3 0.0024 1.7924 1.3240 2.4266 <0.001
AC092757.2 1.6278 7.8395 1.9561 31.4185 <0.001
AC124248.1 0.0054 1.0482 1.0206 1.0766 <0.001
AC145207.5 0.0008 1.1217 1.0764 1.1688 <0.001
DNAAF4-CCPG1 0.0070 1.0518 1.0282 1.0760 <0.001
AC023908.3 0.1977 4.0378 2.2002 7.4102 <0.001

FIGURE 6 | Risk score correlated with clinicopathological features and immune scores in AML. (A) Heatmap revealed a significant FAB category, age, BM, PB,
WBC, race, gender, immune score, and cluster between the high-risk and low-risk groups. (B–D) Risk score in different clinicopathological features. (B) Bone marrow
leukemic blast percentage (%). (C) WBC at diagnosis. (D) Cluster. Bone marrow leukemic blast percentage (%) (BM), peripheral blasts (%) (PB).
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lncRNAs and cluster 3 was associated with poor prognosis. GSEA
results showed that several vital immune-related signaling
pathways, such as the B-cell receptor signaling pathway and
T-cell receptor signaling pathway, were enriched in better
prognostic clusters (clusters 1 and 2). The content of 11 out of
the 22 immune cells was significantly different between the better
prognostic clusters (cluster 1 or cluster 2) and the poorer
prognostic cluster (cluster 3). Patients with good prognosis had
lower levels of T cells CD4 naive, NK cells quiescent, and
eosinophils than poor prognosis patients. In all populations,
monocytes were much more abundant than other cells. The
large proportion of acute myelomonocytic leukemia (M4) and
acute monocytic leukemia (M5) in the studied population may
have contributed to this outcome. In addition, we found that there
is not statistical difference between the three clusters for immune

scores, estimate scores, stromal scores, and tumor purity. When
measuring the effectiveness of predictive checkpoint inhibitor
drugs, it is only accurate if the extent of immune cell
infiltration into the tumor is clearly quantified. When this
aspect of tumor purity is unclear, estimates of the success of
immunotherapy may be too high or too low. TCGA initially set
a mass threshold that the tumor samples included in the cohort
consisted of at least 80% tumor cell nuclei, as determined by a
visual analysis. However, this threshold was later lowered to 60%.
Low tumor purity can have a devastating effect on the results of the
cluster analysis (Aran et al., 2015). Our calculations showed that
the tumor purity between all three clusters was greater than 60%
while there was no statistical difference, hence, we obtained that the
confounding effect between the subtypes was small. Different
immune cell types and contents can affect the development and

FIGURE 7 | Prognostic analysis and performance assessment of TARGET and TCGA databases. (A) Distributions of risk scores of AML patients in the TARGET
dataset. (B) Distributions of risk scores of AML patients in the TCGA dataset. (C) Distributions of the survival status of AML patients in the TARGET dataset. (D)
Distributions of survival status of AML patients in the TCGA dataset. (E) ROC curves of m6A-LPS for predicting the 1/3/5-year survival in the TARGET dataset. (F) ROC
curves of m6A-LPS for predicting the 1/3/5-year survival in the TCGA dataset.
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prognosis of AML. Jiang’s study predicted the prognosis of
pediatric AML patients by immune checkpoint, and the degree
of immune cell infiltration calculated in the study was similar to
that in our study. (Jiang et al., 2021). Tumor-infiltrating immune
cells are highly predictive of tumor progression and patient
survival. Therefore, the immune cell infiltration results we
obtained may provide some theoretical basis for precise
immune cell therapy for patients among different clusters.

Interestingly, we found that the population with a better
prognosis exhibited relatively high expression of the immune
checkpoint protein LAG3 and was more sensitive to
immunotherapy. Existing studies on immune-related treatments
for AML are also increasing. A study showed that tumor-
infiltrating CD8+ cytotoxic T-cells in AML had upregulated
inhibitory receptors such as programmed cell death 1 (PD-1),
cytotoxic T-lymphocyte antigen 4 (CTLA-4), T-cell
immunoglobulin and mucin domain-containing protein 3
(TIM-3), and lymphocyte-activation gene 3 (LAG3) (Ozkazanc
et al., 2016).We also found statistically significant differences in the
numbers of infiltrated cytotoxic T-cells in the three clusters. There
aremore infiltrated cytotoxic T-cells in cluster 2 than that in cluster
3. This may explain the higher expression of CTLA4 and LAG3 in
cluster 2. It was reported that immune checkpoint inhibitors
targeting PD1, PD-L1, and CTLA4 are clinically effective in
AML. However, there are not clinical reports on LAG3
inhibitor therapy on AML (Dama et al., 2019; Daver et al.,
2019). Our study may shed some new perspectives on the study
of LAG3 as a new immune checkpoint inhibitor for AML.

The LASSO Cox regression method confirmed that nine out of
315 m6A-related lncRNAs are valuable in constructing a
prognostic model for predicting OS in AML patients. AML
patients were divided into the low-risk and high-risk
subgroups based on the median risk score, and the high-risk
group had poor clinical outcomes. The nine m6A-related
lncRNAs are associated with AML prognosis. LINC00852,
identified with a role in promoting AML cell proliferation, was
highly expressed in the AML high-risk group. Several studies
reported that LINC00852 plays a role in the proliferative and
aggressive nature of osteosarcoma associated with the receptor
complex kinase AXL, a founding member of the TAM receptor
complex kinase family and that dysregulation of AXL by
chemotherapy may be resistant to Gas6 stimulation-induced
acute myeloid leukemia in AML cells (Li et al., 2020). Hong
et al. found that AXL-mRNA expression was upregulated in
relapsed drug-resistant AML specimens (Hong et al., 2008). In
the U937 cell line, chemotherapy drugs (doxorubicin, etoposide,
and cisplatin) induced the dose-dependent expression of AXL-
mRNA by increasing the methylation level of the AXL promoter
CCWGG. Ben-Batalla et al. found that AXL-mRNA was
expressed in 57% (64/112) of newly diagnosed middle-risk
AML cells with normal genetic karyotype and its expression
level was an independent prognostic factor for the overall
survival of patients (Ben-Batalla et al., 2013). AXL was closely
related to drug resistance and the poor prognosis of AML.
Targeting AXL could block the activation of the Gas6/AXL
pathway, inhibit the proliferation of AML cells, and overcome

FIGURE 8 | Decision curves and nomograms were included for all factors. (A) Nomogram with gender, race, BM, PB, WBC, age, FAB categories, and risk. (B)
Calibration curves for 1-, 3-, and 5-years. (C) Decision curve at one year (D) Decision curve at three years. (E) Decision curve at five years. Bone marrow leukemic blast
percentage (%) (BM), peripheral blasts (%) (PB).
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the resistance of FLT3-ITD + AML cells to FLT3 inhibitors. In
addition, our analysis showed that METTL14, WTAP, YTHDC2,
and FMR1 could be positively regulated by LINC00852. Evidence
from studies suggested that METTL14 regulates myelopoiesis and
leukemogenesis through the SPI1-MET-TL14-MYB/MYC
signaling axis, and the myeloid transcriptional regulator SPI1
negatively regulates METTL14 to induce them6Amodification of
oncogenes MYB and MYC, thereby inhibiting AML cell
differentiation and promoting cell self-renewal (Weng et al.,
2018). Therefore, LINC00852 is a promising prognostic
biomarker in AML patients.

AL157392.3 and AC145207.5 were also found to be highly
expressed in our study in the AML high-risk group. AML has
recently been shown to be regulated by glycolytic regulators,
thereby promoting leukemogenesis (Chen et al., 2014).
Glycolysis-related genes and transcription factors can mediate
the development of diseases in specific AML subtypes (Federzoni
et al., 2014; Robinson et al., 2020). AL157392.3 was found to be
significantly correlated with glycolysis in bladder cancer, low-
grade glioma, mesothelioma, pancreatic cancer, and uveal
melanoma (Ho et al., 2021). However, the mechanism of
AL157392.3 in the glucose metabolic pathway affecting the
prognosis of AML patients has not been investigated.
Therefore, we suggest that AL157392.3 may influence the
development of AML through the glycolytic pathway.
Moreover, AC145207.5 was only found to play a role in
developing hepatocellular carcinoma, but not in AML (Yu and
Zhu, 2021; Zhou et al., 2021). The other six lncRNAs were rarely
reported in cancers and further research should be conducted to
reveal their potential role in AML development. Interestingly,
seven lncRNAs were screened in a study to identify m6A-related
lncRNAs for prognosis in adult AML (Li et al., 2021). Since the
population we used was pediatric AML patients, this may have led
to different results from ours. The subsequent analysis in the
TCGA adult dataset showed that the prognostic model we
constructed in pediatric AML patients also has predictive
power in adult AML patients.

Nine lncRNAs were used to construct the AML prognostic
model. The areas under the ROC curves at 1, 3, and 5 years in the
TARGET database were 0.701, 0.704, and 0.696, respectively. We
also verified the model with the data from the TCGA database.
The prognostic model has a strong predictive ability in pediatric
AML patients. Further analysis of the TCGA data showed that
larger the area under the ROC curve with increasing time, the
stronger the predictive power of the prognostic model for adult
AML patients. The area under the ROC curve at five years was
close to 0.7. Similarly, in a study predicting the prognosis of AML
in children, the authors constructed a predictive model from the
TARGET database and validated it in the GEO of adult patients
(Jiang et al., 2021). In this study, heterogeneity of the lncRNAs
involved in this model between adults and children has not been
reported. In addition, we incorporated clinically relevant factors
into the column plots and decision curves and found that
nomogram scores and risk scores had a superior predictive
power for the survival of pediatric AML patients than any
other clinical factor.

Our study has some limitations. First, AML is a complex
disease caused by multiple factors. Because of the excessive
absence of some factors, for example, cytogenetic indicators
were not evaluated in our study. Second, the description of the
potential mechanisms of cancer genes was based on
experimental evidence only for LINC00852. The study of
the other eight lncRNAs needs to be further confirmed in
future by in vitro and in vivo experiments. Then, the
processing of blood specimens and the collection of
population data will vary among different databases,
inevitably introducing errors that may affect the analysis
results. Finally, our experimental data were obtained from
publicly available databases and pediatric databases lack
relevant cohort validation, and our study should next
include more prospective pediatric cohort studies.
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