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Background: Renal cell carcinoma (RCC) is the predominant type of malignant tumor in
kidney cancer. Finding effective biomarkers, particularly those based on the tumor immune
microenvironments (TIME), is critical for the prognosis and diagnosis of RCC. Increasing
evidence has revealed that long non-coding RNAs (lncRNAs) play a crucial role in cancer
immunity. However, the comprehensive landscape of immune infiltration-associated
lncRNAs and their potential roles in the prognosis and diagnosis of RCC remain largely
unexplored.

Methods: Based on transcriptomic data of 261 RCC samples, novel lncRNAs were
identified using a custom pipeline. RCC patients were classified into different immune
groups using unsupervised clustering algorithms. Immune-related lncRNAs were obtained
according to the immune status of RCC. Competing endogenous RNAs (ceRNA)
regulation network was constructed to reveal their functions. Expression patterns and
several tools such as miRanda, RNAhybrid, miRWalk were used to define lncRNAs-
miRNAs-mRNAs interactions. Univariate Cox, LASSO, and multivariate Cox regression
analyses were performed on the training set to construct a tumorigenesis-immune-
infiltration-related (TIR)-lncRNA signature for predicting the prognosis of RCC.
Independent datasets involving 531 RCC samples were used to validate the TIR-
lncRNA signature.

Results: Tens of thousands of novel lncRNAs were identified in RCC samples. Comparing
tumors with controls, 1,400 tumorigenesis-related (TR)-lncRNAs, 1269 TR-mRNAs, and
192 TR-miRNAs were obtained. Based on the infiltration of immune cells, RCC patients
were classified into three immune clusters. By comparing immune-high with immune-low
groups, 241 TIR-lncRNAs were identified, many of which were detected in urinary
samples. Based on lncRNA-miRNA-mRNA interactions, we constructed a ceRNA
network, which included 25 TR-miRNAs, 28 TIR-lncRNAs, and 66 TIR-mRNAs. Three
TIR lncRNAs were identified as a prognostic signature for RCC. RCC patients in the high-
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risk group exhibited worse OS than those in the low-risk group in the training and testing
sets (p < 0.01). The AUC was 0.9 in the training set. Univariate and multivariate Cox
analyses confirmed that the TIR-lncRNA signature was an independent prognostic factor
in the training and testing sets.

Conclusion: Based on the constructed immune-related lncRNA landscape, 241 TIR-
lncRNAs were functionally characterized, three of which were identified as a novel TIR-
lncRNA signature for predicting the prognosis of RCC.

Keywords: renal cell carcinoma, long non-coding RNAs, prognostic signature, cancer immunity, immune infiltration

INTRODUCTION

Kidney cancer is among the most common malignant tumors
worldwide, with an estimated nearly 0.4 million new cases (2.2%),
and the leading cause of cancer-related deaths (was nearly 0.2
million; 1.8% of the total cancer-related deaths) according to the
latest GLOBOCAN 2020 data (Sung et al., 2021). Renal cell
carcinoma (RCC) is the predominant type of malignant tumor
affecting the kidney, accounting for over 90% of malignant
tumors in this organ (Moch et al., 2016). Compared to early
or localized RCC, advanced disease has a poor prognosis, with a
5-years survival rate of less than 12% (Atkins and Tannir, 2018;
Rao et al., 2018). Recent studies have reported several prognostic
models for RCC. However, the Area Under Curve (AUC) values
were all less than 0.83 (Qi-Dong et al., 2020; Ma et al., 2021; Sun
et al., 2021; Yu et al., 2021). Therefore, a more efficient model is
urgently needed for predicting the prognosis of RCC.

Long non-coding RNAs (lncRNAs) are longer than
200 nucleotides and can not encode proteins. Recent studies
reported that lncRNAs are involved in multiple biological and
cancer-related processes, including tumorigenesis, progression,
and metastasis (Moran et al., 2012; Bhan et al., 2017; Peng et al.,
2017; Yao et al., 2019; Bao et al., 2020). Increasing evidence have
revealed that lncRNAs play crucial roles in cancer immunity
(Denaro et al., 2019; Wu et al., 2020). However, the
comprehensive landscape of immune infiltration-associated
lncRNAs and their potential roles in the prognosis and
diagnosis of RCC remain largely unexplored.

Based on raw transcriptomic data from RCC patients, we aim
to construct a comprehensive lncRNA landscape for RCC,
characterize the regulation in tumor immune
microenvironments (TIME), and construct a prognostic
signature for RCC.

MATERIALS AND METHODS

Data Sources and Expression Analysis
In our study, a total of 303 data from RCC patients were
downloaded from the Gene Expression Omnibus database
(GEO, http://www.ncbi.nlm.nih.gov/geo), including tissue and
urinary raw transcriptomics data, tissue miRNA data, and
clinical information. 261 tissue raw transcriptomics data were
used to identify novel lncRNAs. Tissue transcriptomics data and
miRNAs data were used to calculate tumorigenesis-related (TR-)

lncRNAs, TR-mRNAs, and TR-miRNAs by comparing tumors
with controls. All tumor samples were used to investigate the
immune infiltration, classify immune groupings, identify
tumorigenesis-immune-infiltration-related (TIR)-lncRNAs and
TIR-mRNAs. Raw transcriptomics data from urinary samples
were used to assess the release of tumor TIR-lncRNAs into the
urine in RCC. Tumor transcriptomics data with survival
information was regarded as the training set to construct the
prognostic model based on TIR-lncRNAs. The detailed
information of GEO datasets in our study were shown in Table1.

Besides, we also collected 531 data from kidney renal clear cell
carcinoma patients which were downloaded from The Cancer
Genome Atlas (TCGA) database, including tumor
transcriptomics data and clinical information. These data were
independent of the training set, which was regarded as the testing
set to validate the prognostic model. TPM (transcripts per
million) was used to normalize the gene expression level, and
log2 transformed (log2 (TPM+1)).

Raw transcriptome data were analyzed by FastQC v0.11.3 with
default parameters (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) and removed the adapters and low-quality
sequences by TrimGalore-0.6.0 with default parameters
(https://www.bioinformatics.babraham.ac.uk/projects/trim_
galore/). Clean reads were mapped by using STAR v.2.7.8a
(Dobin et al., 2013; Dobin and Gingeras, 2015) (set the
twopassMode as Basic), de novo assembled by using StringTie
v2.1.6, and merged by using the cuffmerge function of Cufflinks
v2.2.1 (Trapnell et al., 2010). The human reference genome
version hg38/GRCh38 was utilized. Reads counts and TPM
values were calculated by Kallisto v.0.46.2 (Bray et al., 2016)
with default parameters.

Identification of Novel lncRNAs in RCC
Based on assembled transcripts, we compared it with GENCODE
v38 (Frankish et al., 2019) and RefLncRNA (Jiang et al., 2019)
genes annotation by using the cuffcompare function of Cufflinks
(Trapnell et al., 2010), respectively. The assembled transcripts
were classified into four categories according to the “class code”
information, including “complete match” (=), “partial match” (j),
“contained” (c), and “not match”. Not matched transcripts (class
code included “i, x, u”) were further used to identify the reliable
novel lncRNAs by the following steps (Luo et al., 2021): ⅰ)
transcript length>=200; ⅱ) have more than one exon; ⅲ)
recurrence in at least two samples; ⅳ) identified as novel
lncRNAs in both CPC2(Coding Potential Calculator) (Kang
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et al., 2017) and CNCI (Coding Noncoding Index) (Sun et al.,
2013). The final lncRNAs catalog was obtained by combining the
RefLncRNA and novel lncRNAs directly.

Identification of TR-lncRNAs, TR-mRNAs,
and TR-miRNAs in RCC
To obtain TR-lncRNAs, TR-mRNAs, and TR-miRNAs, the
“DESeq2” package in R was used to analyze the transcripts
data and miRNAs data by comparing tumors with controls
with the cutoff criteria (adjusted p-value < 0.05 and | log2 fold
change | >1). Genes with low expression levels (i.e., which were
expressed only in one sample and the sum of expression levels of
all samples less than 10) were removed from the data.

Identification of Immune Groups,
IR-lncRNAs and TIR-lncRNAs in RCC
Single sample gene set enrichment analysis (ssGSEA) was
performed by “GSVA” packages in R to calculate the
enrichment scores of 28 types of immune cells in the tumor
microenvironment (Hänzelmann et al., 2013; Charoentong et al.,
2017). Tumors were further classified into different immune
groups by using the unsupervised clustering algorithm
(“ConsensusClusterPlus” packages in R). And then
ESTIMATE algorithms (“estimate” packages in R) were used
to confirm these immune groupings by calculating the immune
score, stromal score, and estimate score. By comparing the
immune-high group with the immune-low group, IR-lncRNAs
were calculated by “DESeq2” with the cutoff criteria (adjusted
p-value < 0.001 and | log2 fold change | >3). IR-mRNAs were
calculated by “DESeq2” with the cutoff criteria (adjusted p-value
< 0.05 and | log2 fold change | >1). Through the intersection
analysis, TIR-lncRNAs and TIR-mRNAs were obtained.

Construction of ceRNA Network
miRanda (John et al., 2004) (http://www.miRNA.org/) and
RNAhybrid (Krüger and Rehmsmeier, 2006) (http://bibiserv.
techfak.uni-bielefeld.de/rnahybrid/) was used to predict TIR-
lncRNAs and TR-miRNA interactions. ‘-sc’ set as 160 in
miRanda and set “-b 1 -e -25 -f 8,12 -u 1 -v 1 -s 3utr_human”
in RNAhybrid. The TIR-mRNAs and TR-miRNAs interactions
were predicted by miRWalk (Dweep et al., 2011; Dweep and
Gretz, 2015) (http://mirwalk.umm.uni-heidelberg.de/).
TargetScan (Agarwal et al., 2015) and miRDB (Liu and Wang,
2019; Chen andWang, 2020) databases were used to confirm this

prediction. The “psych” package in R was used to calculate the
correlation between lncRNAs and mRNAs. The positive
correlated pairs between lncRNA and mRNA were selected
with the cutoff criteria (adjusted p-value < 0.05 and
correlation coefficient >0.65). Based on the miRNA-mRNA,
miRNA-lncRNA, and mRNA-lncRNA pairs, the
lncRNA–miRNA–mRNA ceRNA network was constructed and
visualized by Cytoscape v3.8.2 software (Shannon et al., 2003).

Investigation of the Releasing of Tumor
TIR-lncRNAs Into the Urine
Raw urinary transcriptome data from RCC patients were quality
controlled, mapped, de novo assembled, and merged using the
same methods as tissue transcriptome data. The primary
assembled transcripts were used to compare with the TIR-
lncRNAs catalog, GENCODE v38 (Frankish et al., 2019), and
RefLncRNA (Jiang et al., 2019) genes annotation by using the
cuffcompare function of the Cufflinks package, respectively.

Construction and Validation of the
TIR-lncRNA Signature
In the training set, univariate Cox regression, LASSO regression,
and multivariate Cox regression analyses were performed by
“survival”, “survminer”, and “glmnet” packages in R to screen
prognosis-related TIR-lncRNAs and to construct a TIR-lncRNA
signature for predicting the prognosis of RCC. p < 0.05 was
considered to be related to the prognosis. The risk score for each
patient was calculated by the following formula. Log2-
transformed TPM was used.

Risk score � ∑
n

n�1
(Coefi × log2 transformed TPMlncRNA i)

RCC patients in the training set were divided into high-risk
and low-risk groups according to the median value of risk score.
Kaplan-Meier (K-M) survival analysis (“survival” and
“survminer” packages in R) was performed to compare the
survival rate between the high-risk and low-risk groups.
Receiver-operating characteristic (ROC) analysis (“pROC”
packages in R) was performed to evaluate the sensitivity and
specificity of the TIR-lncRNA signature.

In the testing set, the risk score was calculated for each patient
by the same formula as the training set. RCC patients in the
testing set were divided into high-risk and low-risk groups

TABLE 1 | Detailed information of GEO datasets.

GEO Source Data Tumors Controls

GSE167573 Tissue Raw transcriptome data with survival information 62 14
GSE126964 Tissue Raw transcriptome data 55 11
GSE151419 Tissue Raw transcriptome data 58 17
GSE143630 Tissue Raw transcriptome data 44 -
GSE151423 Tissue miRNA 26 6
GSE125442 Urine Raw transcriptome data 10 -
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according to the same cutoff as the training set. The K-M survival
analysis was performed to compare the survival rate between the
high-risk and low-risk groups.

Univariate and multivariate Cox regression analyses were used
to assess whether TIR-lncRNA signature was an independent
predictor for RCC patients among other clinical information,
including age, gender, tumor size, and cancer stage.

In addition, a nomogram score system was constructed using
the “rms” and “survival” packages in R, based on the TIR-lncRNA
signature, age, gender, tumor size, and pathological stage in the
training set, to predict the survival of RCC patients. Each variable
was allocated a point in the nomogram score system, adding up to
a total point for each sample that predicts 1-, 3-, and 5-years
survival (Iasonos et al., 2008).

Gene Functional Enrichment Analysis
To explore the functions of TR-lncRNAs and TIR-lncRNAs,
functional enrichment analyses were conducted using the
online databases KOBAS 3.0 (http://kobas.cbi.pku.edu.cn) and
“Metascape” (Zhou et al., 2019) (http://metascape.org).

Statistical Analysis
All statistical analyses were conducted using the R software
version 4.1.1. Forest-plot was plotted by “forestplot” packages
in R. Upset plot was plotted by “ComplexHeatmap” packages in

R. All comparisons for continuous variables were performed
using the two-tailed Wilcoxon test for two groups. For
categorical variables, Pearson’s Chi-squared test was used. The
FDR method in R was used to adjust the p-value outputted in
multiple comparisons. p-value or adjusted p-values < 0.05 were
considered as the significance level.

RESULTS

Construction of a Comprehensive lncRNA
Catalog for RCC Patients
In order to systematically investigate lncRNAs and their roles in
RCC immunity, raw transcriptome data from RCC tissues were
used to identify novel lncRNAs. The workflow was shown in
Figure 1. After quality control, reads alignment, de novo
transcriptome assembly, and merging, 157,119 primary genes
were obtained (Figure 2A). To assess the accuracy of the
assembly results, comparative analysis was performed using
reference protein-coding genes and RefLncRNA genes
annotation. More than 86% of the protein-coding genes were
verified, and over 50% were completely matched (Figure 2B). In
comparison, only 22.94% of the reference lncRNAs were verified
(Figure 2C). Based on the primary assembled transcripts that did
not match the reference genes, a custom pipeline was used to

FIGURE 1 | The overall workflow and study design showed the process of identifying novel lncRNAs, identifying TIR-lncRNAs, TIR-mRNAs, and TR-miRNAs,
constructing ceRNA network, assessing tumor lncRNAs shedding into the urine, constructing and validating the 3-TIR-lncRNAs classifiers to predict the prognosis of
RCC. RCC, renal cell carcinoma; lncRNAs, long noncoding RNAs; ROC, receiver-operating characteristic.
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identify reliable lncRNAs (see Methods 2.4). Finally, 44,507 novel
lncRNA genes were identified (Figure 2A).

To further characterize the novel lncRNAs, we analyzed their
transcript lengths, exon numbers, and expression profiles. The
mean transcript length was 1.4 k nucleotides and exon numbers
mainly ranged from 2-5, which were close to reference lncRNAs
(Figures 2D,E). These findings are consistent with those of
previous studies (Bo et al., 2021; Wang et al., 2021). The genes
expression levels of novel lncRNAs were significantly lower than
protein-coding genes in both tumors and controls (p < 0.001,
Figure 2F). There was no significant difference in genes
expression levels between the novel and reference lncRNAs
(p > 0.05, Figure 2F).

Identification of TR-lncRNAs
Based on the integrated lncRNA expression matrix, we calculated
the TR-lncRNAs between RCC tumors and controls. In total,
1,400 TR-lncRNAs (730 upregulated and 670 downregulated)
were identified, including 520 novel lncRNAs (Figures 3A–C,
Supplementary Table S1). Similarly, 1,269 TR-mRNAs (715
upregulated and 554 downregulated) were identified

(Supplementary Figures S1A–C, Supplementary Table S2).
To investigate the functions of the TR-lncRNAs, functional
enrichment analysis of the TR-mRNAs was performed.
Upregulated genes were mainly enriched in cytokine,
chemokine, and immune-associated pathways, including
cytokine-cytokine receptor interaction, chemokine signaling
pathway, and primary immunodeficiency (Figure 3D). In
comparison, the downregulated genes were mainly enriched in
metabolism-associated pathways, including glycine, serine and
threonine metabolism, and fatty acid metabolism (Figure 3E).

Immune Infiltration Analysis and
Identification of TIR-lncRNAs
To further explore immune infiltration-related lncRNAs and
their roles in the tumor microenvironment, we first calculated
the enrichment scores of 28 immune-cell types in each patient by
ssGSEA. Based on immune infiltration, an unsupervised
clustering algorithm was utilized to classify the RCC patients
into three clusters (Figures 4A–C). When k = 3, the classification
was more reliable than others (Figures 4A,B). The heatmap

FIGURE 2 | Identification and characterization of novel lncRNA. (A) The identification process of novel lncRNAs. (B) The statistics of assembled transcripts
matched to GENCODE v38 genes annotation. (C) The statistics of assembled transcripts matched to RefLncRNA genes annotation. (D) Density diagrams showed the
transcript length in protein-coding genes, reference lncRNAs, and novel lncRNAs (E) Bar plot showed exon numbers in protein-coding genes, reference lncRNAs, and
novel lncRNAs. (F) Boxplot showed transcript expression levels of protein-coding genes, reference lncRNAs, and novel lncRNAs in tumors and controls.
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showed normalized enrichment scores for the infiltration of
28 immune-cell types in each patient (Figure 4C). Compared
with the immune-low group, the immune-high group showed an
overall significantly higher degree of infiltration of immune cells,
including activated CD8 T cells, T-helper cells type 1 (Th1),
regulatory T cells, macrophages, and gamma delta T cells
(Figure 4D, Supplementary Figure S2). Similarly, the
immune-middle group exhibited a significantly higher degree
of infiltration of immune cells than those in the immune-low
group (Figure 4D). Interestingly, unlike other immune-cell types,
T-helper cell type 2 (Th2) showed a higher degree of infiltration
in the immune-middle group than that in the immune-high and
immune-low groups (Figure 4D). Eosinophils exhibited a lower
degree of infiltration in the immune-high group than that in the
immune-middle and immune-low groups (Figure 4D). These
findings may be related to the function of eosinophils recruited by
Th2 in pathways associated with allergic reactions and
inflammatory responses (Maggi, 1998). Immune grouping was
confirmed by comparing their immune, stromal, and estimate
scores. The scores of the immune-high and immune-middle
groups were significantly higher than those of the immune-
low group (Figure 4E). The immune-high group had a
significantly higher immune score than the immune-middle
group (Figure 4E). These findings suggested that immune
grouping could be used for subsequent analyses.

Integrative analysis of genes related to immune groups and
tumorigenesis revealed 241 TIR-lncRNAs and 752 TIR-mRNAs
(Figure 4F, Supplementary Tables S3, S4). TIR-lncRNAs were
primarily located on autosomal chromosomes and less frequently
on X chromosomes (Supplementary Figure S3). Interestingly, no
TIR-lncRNAs were present on the Y chromosome
(Supplementary Figure S3). As expected, the predominately
enriched pathways of TIR-lncRNAs were involved in immune
response- and tumorigenesis-associated pathways according to
GO enrichment analysis (Figure 4G, Supplementary Table S5).

Immune-Related ceRNA Network
Construction
To unveil the potential regulatory roles of the 241 TIR-lncRNAs, we
constructed a lncRNA/miRNA/mRNA ceRNA network. First, 192
miRNAs, including 88 upregulated and 104 downregulated
miRNAs, were identified by comparing RCC tumors with
controls, (Supplementary Figure S4, Supplementary Table S6).
The RNAhybrid and miRanda databases were used to predict the
interactions between the 192 TR-miRNAs and 241 TIR-lncRNAs,
revealing 180 miRNA-lncRNA pairs (Figure 5A), including 77
miRNAs and 68 lncRNAs. The miRwalk database was used to
predict the interactions between 192 TR-miRNAs and 752 TIR-
mRNAs, and the TargetScan and miRDB databases were used to

FIGURE 3 | Identification of TR-lncRNAs by comparing tumors with controls in RCC. (A) Histogram of TR-lncRNAs number in three GEO datasets. (B) Upset plots
of the distribution of upregulated lncRNAs in each dataset. (C) Upset plots of the distribution of downregulated lncRNAs in each dataset. (D) Bar plot showed GO
enrichment pathways of upregulated genes. (E) Bar plots showed GO enrichment pathways of downregulated genes.
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FIGURE 4 | Identification of TIR-lncRNAs and functional enrichment. (A) Sample clustering heatmap for k = 2 to 6, respectively. (B) The cumulative distribution
function (CDF) plots for k = 2 to 6. (C)Heatmap of normalized enrichment scores for infiltration of 28 immune-cell types. (D)Comparisons among the immune-high group,
the immune-middle group, and the immune-low group for seven immune-cell types. (E) Comparisons among the immune-high group, the immune-middle group, and
the immune-low group for immune score, stromal score, and estimate score. (F) Identification of TIR-lncRNAs and TIR-mRNAs. (G) Bar plots showed the main GO
enrichment pathways of TIR-lncRNAs.
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confirm these interactions. In total, 211 miRNA-mRNA pairs were
identified (Figure 5B), including 57 miRNAs and 93 mRNAs.
Subsequently, the miRNA-lncRNA and miRNA-mRNA pairs
were used to construct the lncRNAs-miRNA-mRNA ceRNA
network, which included 25 miRNAs (16 upregulated and 9
downregulated), 28 lncRNAs (9 upregulated and 19
downregulated), and 66 mRNAs (26 upregulated and 40
downregulated) (Figure 5C). Next, these screened lncRNAs were
used to survey relevantmRNAs based on their correlations. Based on
the correlation between lncRNAs and mRNAs, 6 lncRNAs, 7
miRNAs, and 7 mRNAs were identified as candidate relevant

RNAs (Figure 5D). GO enrichment analysis showed that the
ceRNA network was involved in pathways associated with kidney
morphogenesis and the regulation of ion transport.

A Large Part of Tumor TIR-lncRNAs Can Be
Released Into the Urine in RCC
Raw transcript data from RCC urinary samples were analyzed to
assess whether TIR-lncRNAs are released into urine. All TIR-
lncRNAs were detected in urine, although a large proportion
showed low expression levels (Figure 6A). TIR-lncRNAs showed

FIGURE 5 | Construction of immune-associated ceRNA network. (A) Venn diagram showed the overlapped miRNA-lncRNAs pairs predicted by miRanda and
RNAhybrid. (B) Venn diagram showed the overlapped miRNA-mRNAs pairs predicted bymiRWalk, Targetscan, andmiRDB database. (C) The ceRNA network consists
of 28 TIR-lncRNAs, 25 TR-miRNAs, and 66 mRNAs. LncRNAs, miRNAs, and mRNAs are respectively represented by rectangles, triangles, and ellipses. The red color
represented upregulated genes, and the blue color represented downregulated genes in the tumor tissues relative to control tissues. (D) The candidate relevant
RNAs were further screened based on the correlation between lncRNAs and mRNAs.
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a positive correlation between urinary and tissue samples (r2 = 0.192,
p = 9.987e-13. Figure 6B). To further evaluate the transcript features
in the urine, we performed de novo assembly analysis. A total of
1,554,672 genes were primary assembled in urine, which were
compared with reference genes annotation and catalog of
241 TIR-lncRNAs. Over 82% of the protein-coding genes and
15% of the reference lncRNAs were verified (Figures 6C,D).
Moreover, more than 55% of the TIR-lncRNAs were verified,
5.39% were completely matched, 10.37% were partially matched,
and 39.83% were contained (Figure 6E).

Efficient TIR-lncRNA Signature for
Predicting the Prognosis of RCC
To further explore the relationship between TIR-lncRNAs and
the prognosis of RCC patients, we constructed a prognostic
model for RCC. Univariate Cox regression was performed to

screen prognosis-related TIR-lncRNAs and 62 prognosis-related
TIR-lncRNAs with p < 0.05. The forest plot showed the p-value,
hazard ratio (HR), and 95% confidence interval (CI) of prognosis-
related TIR-lncRNAs (Figure 7A, two lncRNAs were not shown
in Figure 7A because they had large 95%CI values,
Supplementary Table S7). Subsequently, LASSO regression
analysis was performed to prevent the overfitting of the
prognostic signature. Twelve prognosis-related TIR-lncRNAs
were identified when the log-transformed lambda equal to
-3.31 (Figures 7B,C). Finally, using stepwise multiple Cox
regression analysis, three TIR-lncRNAs were identified and
used for modeling. The coefficient, p-value, HR, and 95% CI
values of the TIR-lncRNAs involved in the risk model are shown
in Figure 7D. The risk score for each patient was calculated based
on the coefficient and log2-transformed TPM of TIR-lncRNAs.

In the training set, RCC patients were divided into high-risk
and low-risk groups according to the median risk score

FIGURE 6 | Assessment of tumor TIR-lncRNAs releasing into the urine in RCC. (A)Bar plots showed the expression level (log2 transformed TPM) of TIR-lncRNAs in
tissue samples and urine samples. (B) Scatter plots showed the correlation of TIR-lncRNAs between tissue samples and urine samples. (C) The statistics of assembled
urinary transcripts matched to GENCODE v38 genes annotation. (D) The statistics of assembled urinary transcripts matched to RefLncRNA genes annotation. (E) The
statistics of assembled urinary transcripts matched to 241 TIR-lncRNAs annotation.
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(Figure 8A). Patients in the high-risk group showed higher
mortality rates than those in the low-risk group (p = 0.003,
Figure 8B). The heatmap of the expression levels of the three
TIR-lncRNAs revealed different expression levels between the
high-risk and low-risk groups (Figure 8C). ENSG00000204044.6
and ENSG00000224959.1 were highly expressed in the high-risk
group (Figure 8C), whereas ENSG00000226403.1 was highly

expressed in the low-risk group (Figure 8C). K-M analysis
revealed that RCC patients in the high-risk group exhibited
worse overall survival (OS) than those in the low-risk group
(p < 0.001, Figure 8D). The AUC of the risk score was 0.9 of OS
(Figure 8E).

An independent dataset involving 531 samples was used to
validate the TIR-related lncRNA signature. K-M analysis

FIGURE 7 | Construction of TIR-lncRNA signature in RCC. (A) The Forest plot showed the p-value, HR, and 95%CI of prognosis-related TIR-lncRNAs
calculated by univariate Cox regression analysis. (B) The distribution plot of the LASSO coefficient. Twelve variables were retained when log-transformed
lambda equal to -3.31. (C) Twelve variables were retained when the partial likelihood deviation reached the minimum (Log Lambda = -3.31). (D) The Forest plot
showed the coefficient, p-value, HR, and 95%CI of 3 prognosis-related TIR-lncRNAs calculated by multivariate Cox regression analysis.
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revealed that RCC patients in the high-risk group also
exhibited worse OS than those in the low-risk group (p <
0.001, Figure 8F). These findings suggested that the TIR-
lncRNA signature is efficient for predicting the prognosis
of RCC.

TIR-lncRNA Signature Was an Independent
Prognostic Factor
To explore whether the TIR-lncRNA signature was an
independent prognostic factor for RCC, univariate and
multivariate Cox regression analyses were performed to assess

the independence of TIR-lncRNAs from other clinical factors,
including age, gender, tumor size, and pathological stage in the
training and testing sets, respectively. In the training set, the HR
of the risk score and 95%CI were 2.7 and 1.6–4.6 in univariate
Cox regression analysis (p < 0.001, Figure 9A), and 2.709 and
1.381–5.314 in multivariate Cox regression analysis (p = 0.004,
Figure 9B), respectively. In the testing set, the HR of the risk score
and 95%CI were 1.6 and 1.3–1.9 in univariate Cox regression
analysis (p < 0.001, Figure 9C), and 1.645 and 1.256–2.155 in
multivariate Cox regression analysis (p < 0.001, Figure 9D),
respectively. These results suggested that the TIR-lncRNA
signature was an independent prognostic factor for RCC.

FIGURE 8 | Evaluation and validation of TIR-lncRNA signature in RCC. (A) The risk curve of each sample was reordered by risk score. The red and blue dots
represent high-risk and low-risk, respectively (B) Patients in the high-risk group showed higher mortality than those in the low-risk group. The red and blue dots represent
death and survival, respectively. (C)Heatmap showed scaled expression levels of prognosis-related TIR-lncRNAs in the low-risk and high-risk groups. (D) Patients in the
high-risk group (red) exhibited worse OS than those in the low-risk group (blue) in the training set. (E) The AUC values for forecasting OS status using the risk score
in the training set. (F) Patients in the high-risk group (red) exhibited worse OS than those in the low-risk group (blue) in the testing set.
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Construction of a Nomogram for Survival
Prediction of RCC
To improve the model’s clinical practicability, a nomogram score
system was constructed in the training set using the TIR-lncRNA
signature, age, gender, tumor size, and pathological stage to
predict 1-, 3-, and 5-years overall survival of RCC
(Supplementary Figure S5). The nomogram’s concordance
index (C-index) was 0.951, which increased the predictive
power of OS compared with the TIR-lncRNA signature
(C-index = 0.929).

DISCUSSION

In this study, immune-related lncRNA landscape was constructed,
and 241 TIR-lncRNAs were functionally characterized, three of which
were identified as a novel TIR-lncRNA signature for predicting the
prognosis of RCC. First, raw transcriptomic data from the GEO
database were used to identify novel lncRNAs. Subsequently, by
comparing tumors with controls, we calculated TR-lncRNAs, TR-
mRNAs, and TR-miRNAs. Then, an unsupervised clustering
algorithm was utilized to classify RCC patients into different
immune groups based on the infiltration level of immune cells.
TIR-lncRNAs and TIR-mRNAs were identified by comparing the
immune-high group with the immune-low group. A lncRNA/
miRNA/mRNA ceRNA network based on miRNA-lncRNA and
miRNA-mRNA pairs was constructed. In addition, a large part of
TIR-lncRNAs were detected in urinary samples from RCC patients.
Finally, three prognosis-associated TIR-lncRNAs were identified. To
evaluate and validate the predictive ability of the prognostic signature,
RCC patients were classified into high-risk and low-risk groups;
patients in the high-risk group had worse OS than those in the
low-risk group, with an AUC value of 0.9.

Patients were classified into three clusters based on the
infiltration score of immune cells in each patient. However, to

obtain immune-related lncRNAs, we only compared the
immune-high group with the immune-low group. The
immune-middle group was not used to calculate immune-
related lncRNAs. Compared with the immune-low group, the
immune-high group showed a significantly higher degree of
infiltration of immune-cell types (Figure 4D, Supplementary
Figure S2). However, the immune-middle group showed
fluctuations in some immune cells (Supplementary Figure
S2). For example, compared with the immune-high group, the
immune-middle group exhibited a significantly larger number of
immature dendritic cells, natural killer cells, effector memory
CD4 T cells, immature B cells, activated CD4 T cells, memory
B cells, and T-helper cell type 17. These results suggested that the
immune-middle group was not suitable to identify immune-
related lncRNAs.

Recent studies have focused on N6-methyladenosine (m6A)-,
glycolysis-redox-, or immune-related lncRNA signature for
predicting the prognosis of RCC. Yu et al. identified an m6A-
related lncRNA signature for predicting the prognosis of RCC,
with an AUC value of 0.80 (Yu et al., 2021). Ma et al. identified a
glycolysis-related lncRNA prognostic signature for RCC and the
AUC value was 0.82 (Ma et al., 2021). Dong et al. identified a
redox-related lncRNA signature of RCC and the AUC value was
0.82 (Qi-Dong et al., 2020). Sun et al. constructed an immune-
related lncRNA pair signature of RCC and the AUC value was
0.76 (Sun et al., 2021). In our prognostic model, we constructed a
tumorigenesis-related and immune infiltration-related lncRNA
signature for predicting the prognosis of RCC, with an AUC value
of 0.9. This value is higher than those of previous prognosis
models, supporting that our model is more efficient in predicting
the prognosis of RCC.

Our study had some limitations. On the one hand,
molecular-levels analyses are needed to further validate
novel lncRNAs. On the other hand, the mechanism of TIR-
lncRNAs in regulating protein-coding genes involved in RCC
immunity are need to be further explored.

FIGURE 9 | TIR-lncRNA signature was an independent prognostic factor for RCC. (A,B) The Forest plot showed the results of univariate Cox and multivariate Cox
regression analyses in the training set. (C,D) The Forest plot showed the results of univariate Cox and multivariate Cox regression analyses in the testing set.
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