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With the rapid development of single molecular sequencing (SMS) technologies such as
PacBio single-molecule real-time and Oxford Nanopore sequencing, the output read
length is continuously increasing, which has dramatical potentials on cutting-edge
genomic applications. Mapping these reads to a reference genome is often the most
fundamental and computing-intensive step for downstream analysis. However, these long
reads contain higher sequencing errors and could more frequently span the breakpoints of
structural variants (SVs) than those of shorter reads, leading to many unaligned reads or
reads that are partially aligned for most state-of-the-art mappers. As a result, these
methods usually focus on producing local mapping results for the query read rather
than obtaining the whole end-to-end alignment. We introduce kngMap, a novel k-mer
neighborhood graph-based mapper that is specifically designed to align long noisy
SMS reads to a reference sequence. By benchmarking exhaustive experiments on both
simulated and real-life SMS datasets to assess the performance of kngMap with ten
other popular SMS mapping tools (e.g., BLASR, BWA-MEM, and minimap2), we
demonstrated that kngMap has higher sensitivity that can align more reads and
bases to the reference genome; meanwhile, kngMap can produce consecutive
alignments for the whole read and span different categories of SVs in the reads.
kngMap is implemented in C++ and supports multi-threading; the source code of
kngMap can be downloaded for free at: https://github.com/zhang134/kngMap for
academic usage.
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1 INTRODUCTION

Single molecular sequencing (SMS) developed by Pacific Biosciences and Oxford Nanopore
Technologies has been increasingly applied in DNA sequencing studies since its emergence
(Ono et al., 2012; Rhoads and Au, 2015). Compared to next-generation sequencing (NGS), SMS
can produce considerably longer reads with less sequencing bias and lower cost (Yang et al., 2017;
Marchet et al., 2019). Recently, the N50 andmaximum lengths of the reads generated by theMinION
nanopore sequencer can achieve more than 100 kbp and 1 Mbp, respectively (Chen et al., 2021). Such
long read lengths offer new solutions to bioinformatic questions that are hard to be resolved by NGS,
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such as the de novo genome assembly, genome resequencing,
structural variant (SV) discovery, and transcriptome analysis
(Stöcker et al., 2016; Wei and Zhang, 2018; Liu et al., 2019;
Cao et al., 2021).

Read mapping is to find the possible genomic origins of reads
by aligning them against a reference genome. It has become one
of the most basic and computing-intensive step in downstream
pipelines for SMS dataset analysis (Zhang et al., 2018). However,
since the SMS reads have a higher error rate (~15%) than the NGS
reads, most of the read mapping methods developed for NGS
short read data, such as Bowtie (Langmead et al., 2009), SOAP3
(Liu et al., 2012), CloudBurst (Michael, 2009), and FEM (Zhang
et al., 2018), are not suitable to handle with SMS reads. Thus, a
growing number of long noisy readmapping approaches specially
designed for SMS long reads have been proposed during the past
decade.

Broadly speaking, most existing mapping methods or tools for
SMS reads adopt the typical seed-chain-align strategy (Liu et al.,
2016a). In brief, they first find the matched k-mers (also called
seeds) of query reads to the reference genome; then, the candidate
regions (also called alignment skeleton) for aligning in the query
read and the reference genome are chosen based on the seeds.
Finally, the local subsequences surrounding the seeds are base-to-
base aligned to compose the final read alignment with the seeds.
Based on the index technique of seed searching, SMSmappers can
be categorized into three groups: Burrows–Wheeler Transform
full-text minute-space (BWT-FM) index-based (Langmead and
Salzberg, 2012), hash table index-based, and short read aligner-
based methods.

BWT-FM index-based methods find the matched seeds by
constructing the BWT-FM index of the reference genome; such
methods include BLASR (Chaisson and Tesler, 2012), BWA-
MEM (Li, 2013), lordFAST (Haghshenas et al., 2018), and
smsMap (Wei et al., 2020). BLASR (Chaisson and Tesler,
2012) initially builds the BWT-FM index of the genome to
find short exact matches; then, the candidate aligned region is
generated by using sparse dynamic programming (SDP), and the
final detailed alignment within the area defined by SDP is
performed by dynamic programming. BWA-MEM (Li, 2013)
first searches the supermaximal exact matches according to the
BWT-FM index of the reference and detects a group of seeds that
are colinear and close to each other by a chaining algorithm,
which then extends the seed with a banded affine-gap-penalty
dynamic programming. lordFAST (Haghshenas et al., 2018)
selects the candidate alignment regions in the genome using
the longest matches identified by the BWT-FM index; then, the
base-to-base alignment between consecutive seeds is obtained by
performing dynamic programming. Recently, the smsMap (Wei
et al., 2020) mapper proposed by us also utilizes the BWT-FM
index to quickly find the matches in the reference genome and
then locates the best starting positions in genome and query read
by defining a credibility function. Finally, the detailed alignment
result is obtained with the column reduction banded alignment
method.

Hash-based mapping methods search the matched seeds
through a hash table index of the genome. YAHA (Faust and
Hall, 2012) utilizes a hash table index to store the k-mer locations

in the reference and then extends seeds to generate fragments that
contain contiguous matching bases between the query sequence
and the reference genome. Next, it combines the fragments to
select potential regions for alignment; lastly, it completes the full
alignment by applying a modified version of Smith–Waterman
algorithm to the unmatched regions. rHAT (Liu et al., 2015) starts
to build the regional hash table (RHT) of the genome; then, the
matches of the k-mers within the query read are retrieved through
RHT and a direct acyclic graph is built to compose the skeleton of
the alignment. At the end, unaligned pairs of segments in the
skeleton are aligned with the banded Smith–Waterman
algorithm. GraphMap (Ivan et al., 2016) implements the
q-gram seeding strategy that allows for fast lookup of inexact
matches by constructing a hash index of the reference sequence,
which then generates alignment anchors through a fast graph-
based ordering of seeds and extends anchors to achieve final
alignments. minimap2 (Li, 2018) indexes minimizers in a hash
table that allows for fast lookup of exact matches and then
identifies colinear anchor sets; final base-level alignments are
obtained by applying dynamic programming to regions between
adjacent anchors. conLSH (Chakraborty and Bandyopadhyay,
2020) computes context-based locality-sensitive hashing values of
genomes to facilitate seed search and then generates a series of
sites for candidate alignment after extension; finally, it produces
the best possible alignment results by applying the sparse
dynamic programming-based approach. Later, S-conLSH
(Chakraborty et al., 2021), an improved version of conLSH,
was developed by introducing the spaced context-based
locality-sensitive hashing for mapping long noisy SMS reads.

Short read aligner-based methods retrieve matches by using
extant mappers of short reads. For example, LAMSA (Liu et al.,
2016b) first looks for long approximate matches through short
read aligner GEM (Marco-Sola et al., 2012), finds a set of possible
alignment skeletons, and fills the gaps within the skeletons to
generate valid alignments for the whole read. NGMLR (Sedlazeck
et al., 2018) identifies similar segments in read and genome by
short aligner of NextGenMap (Sedlazeck et al., 2013); then, it
extracts the sub-sequences in read and reference to compute a
pairwise sequence alignment using a convex gap cost model.
Lastly, it reports the set of linear alignments with the highest joint
score as the mapping results.

With the rapid development of SMS sequencing technologies,
read length is continuously increasing; these longer reads could
more frequently span the breakpoints of SVs than those of shorter
reads (Kolmogorov et al., 2019; Ren et al., 2021). This may greatly
influence read alignment since most state-of-the-art mappers do
not consider the SV events, or few methods were designed for
handling relatively small variants. Meanwhile, when the matched
seeds are diversely distributed in some read parts caused by high
sequencing errors, most extant aligners are incapable of obtaining
the alignment of the read, leading to many unaligned reads or
reads that are partially aligned. As a result, these methods usually
focus on producing local mapping results for the query read
rather than obtaining the whole end-to-end alignment, leading to
a low mapping sensitivity.

To address the aforementioned issues, in this study, we
propose a k-mer neighborhood graph mapper (named
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FIGURE 1 | Schematic representation of stages in kngMap. (A) Building a searching index of the reference genome. (B) Constructing a k-mer d-neighborhood
graph where matched k-mers (also called anchors) are viewed as vertices and each pair of matched k-mers is connected by a direct edge based on the positions in
genome and the query read. (C) Building and refining the high quality of alignment skeletons by designing a chaining approach. (D) Classifying the unaligned gaps
between pairs of consecutive anchor matches in the selected chain into several categories of SV events and handling each of themwith a specific alignment method
according to its category. (E) Generating the detailed base-to-base alignment by performing dynamic programming between consecutive anchor matches in the
selected chain.
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kngMap), a novel long-read mapping algorithm which is
specifically designed to improve mapping sensitivity and deal
with SV events. Overall, kngMap works in four main stages. It
initially constructs a searching index for the reference genome to
quickly find matched k-mers for query reads. Such matches are
then used to construct a k-mer d-neighborhood graph where
matched k-mers are viewed as vertices and each pair of matched
k-mers is connected by a direct edge. Third, a high quality of
alignment skeleton is identified by designing a chaining
approach. At the end, each unaligned gap in the alignment
skeleton is classified into several categories of SV events and
filled with a specific alignment method according to its category.
The whole read alignment is accomplished by integrating the
skeletons and the alignments of the gaps. We benchmarked
kngMap on simulated dataset reads with different types of SVs
and real-life datasets generated from PacBio SMRT and Oxford
Nanopore platforms. The experimental results demonstrated that
kngMap has superior ability in terms of base-level sensitivity and
end-to-end alignment, which can produce consecutive
alignments for the whole read; meanwhile, it can deal with
different categories of SVs in the reads.

2 METHODS

The main motivation of kngMap is to efficiently improve
mapping sensitivity and simultaneously have a superior ability
of dealing with SVs for long reads generated by SMS sequencing
technologies. The underlying design principle is to effectively find
one high-quality alignment skeleton in the reference genome for
each read, even though the read contains SVs and more
sequencing errors, before the costly procedure of base-to-base
alignment to the reference genome. An overview of the kngMap
algorithm is depicted in Figure 1. kngMap mainly includes four
stages: 1) building a searching index of the reference genome in
advance, which is used to quickly findmatched k-mers for a query
read Figure 1A; 2) constructing a k-mer d-neighborhood graph
where matched k-mers are viewed as vertices and each pair of
matched k-mers is connected by a direct edge based on the
positions in genome and the query read Figure 1B; 3) building
and refining the high quality of the alignment skeleton by
designing a chaining approach Figure 1C; and 4) classifying
the unaligned gaps between pairs of consecutive matched k-mers
in the alignment skeleton into several categories of SV events and
handling each of them with a specific alignment method
according to its category Figure 1D. A more detailed
illustration of each step is provided later.

2.1 Constructing Reference Genome Index
In order to quickly find the occurrence positions of a k-mer
(subsequence with length of k) in the reference genome, a lookup
index for the reference genome is usually needed to be built.
Currently, two superior index techniques, BWT-FM index
(Lippert, 2005) and hashing table (Ning et al., 2001), are
successfully used by most extant mapping methods (Lindner
and Friedel, 2012). BWT-FM index allows long reference
genome to be searched efficiently with low memory usage

(Hayashi and Taura, 2013). Hash table takes linear time to
find the positions in the genome when a certain k-mer is
given (Berlin et al., 2015). Compared with BWT-FM index,
the indexing speed based on the hash table is faster (Li, 2016;
Prezza et al., 2016), but it will consume more computational
memory. Both index techniques have their own advantages (Alser
et al., 2021). Therefore, kngMap utilizes these two strategies [the
BWT-FM technique implemented in combined-index
(Haghshenas et al., 2018) and the hash index implemented in
minimizers (Li, 2016)] to construct the index for the reference
genome (the default index module is hash).

2.2 Generating k-Mer d-Neighborhood
Graph
Once the index of the reference genome is constructed, all the
matches of the k-mers and their matched positions for a query
read can be retrieved through the genome index; these matches
are subsequently used to form a k-mer d-neighborhood graph.
Specifically, given a set of long reads, kngMap constructs the
d-neighborhood anchor graph for each read at a time in two steps
as follows:

Step 1: Extracting the Matched k-Mers
KngMap extracts all k-mers for one query read and finds the
matched positions through the reference genome index built
in the aforementioned stage. Each of the matches [also called
anchors in some references (Chaisson and Tesler, 2012;
Haghshenas et al., 2018)] of the k-mers can be denoted as
a tuple:M(x, y, l), where x and y are the matched positions on
the read and the reference genome, respectively, and l is the
length of the match (here l = k). In other words, M(x, y, l)
indicates that the substring interval [x − k + 1, x] on the
reference matches the interval [y − k + 1, y] on the query
exactly.

Step 2: Generating the Anchor d-Neighborhood Graph
A d-neighborhood anchor graph is formed according to the
list of anchors ordered by their positions on the reference
genome and then on the read. In this graph, each anchor is
viewed as nodes; two nodes (Vi → Vj) are connected with a
direct edge if the pair of vertices meets the following
condition:

{Vi(x) − Vj(x)≤ d, x is the node position in the genome
Vi(y) − Vj(y)≤ d, y is the node position in the query read

,

(1)
where Vi(x) is the position of node i in the reference genome,
Vj(x) is the position of node j in the query read, and d is a
constraint parameter which is applied to model the maximum
distance between two anchors in the alignment for a read. The
edge direct (from Vi to Vj) denotes that Vi is the ancestor (also
called precursor or predecessor) node of Vj. The setting of
parameter d is motivated by the fact that, given a certain error
rate, the distance between two anchors on the read can be
modeled by a geometric distribution (Chaisson and Tesler,
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2012). In kngMap, this property is utilized to describe the
maximum allowed distance on the read between two vertices
connected by an edge in considering the error rate of the read.
Theoretically, two continuous k-mers in an error-free read
are also matched in the continuous positions in the genome
(Supplementary Figure S1). However, in fact, with the
sequence errors derived from SMS sequencing, they can be
matched with two discontinuous positions in the genome
(Supplementary Figure S2), and the distance between these
two discontinuous positions is usually lower than d. Under
this circumstance, d can prevent a lot of unnecessary
connections; furthermore, it can facilitate building the
skeleton in the next step due to the fact that some vertices
are lack of precursors. Here, we set d � λ × L(r), which is a
variable value that depends on the length of the query read,
where λ (default value is 1.2) is an empirical value according
to the length ratio (defined as the length of the aligned region
in reference divided by the length of the aligned region in
read) distribution of the aligned results shown in
Supplementary Figure S3. With the setting of d, it has a
high probability that the distance between two neighboring
true positive nodes can be successfully connected with
an edge.

2.3 Generating the Skeleton of Alignment
Building the skeleton of alignment is a core step for a
mapping algorithm since it will dramatically facilitate the
base-to-base alignment. The alignment skeleton (Liu et al.,
2021) is a set of nonoverlapping anchors that have the highest
possibility to form the candidate aligned region in the read
and reference genome. In consideration of the potential
breakpoints within reads, we proposed a specific chaining
strategy to find the skeleton of alignment in the following two
steps:

Step 1: Generate the Initial Alignment Skeleton
KngMap finds the optimal path connecting from Vstart to Vend,
which maximizes the total number of matched bases as the
skeleton of alignment. This is implemented by scoring the
vertices in the d-neighborhood graph with the following
recurrence equation:

score(Vi) �
⎧⎨⎩ max

Vj∈pre(Vi)
{score(Vj) + α}, if pre(Vi) ≠∅

0, otherwise
, (2)

where score(Vi) is the score assigned to the vertice Vi in the
graph, pre(Vi) is the precursor set of Vi, and α (default value
is 1) is the reward score between the two vertices linked with
an edge. With Eq. 2, each vertex can find a precursor
maximizing its score, and the node (Vend) with the highest
score among all nodes is regarded as the ending node. As a
result, the path from Vend to a starting node (Vstart

backtracking from Vend to a node without precursor)
formulates the initial alignment skeleton.

From Eq. 2, we can see that the parameter of reward score (α)
is set with a constant value; this is critical to deal with some
regions containing SV events (e.g., longer insertion and deletion

gaps) or high sequencing errors, especially when the lengths of
these regions are long. By setting to a constant value, two anchors
can successfully span the region with SV or high sequencing
errors, as shown in Supplementary Figure S4; otherwise, two
chains will be generated if a low score is assigned to an anchor
when the distance between this anchor and its ancestor is too
large (Li, 2018). Therefore, with a constant scoring parameter α, it
can make sure that the edge connecting the two matches flanking
the SV or regions with high errors can be detected. Thus, the
scoring scheme in Eq. 2 helps recover longer insertions and
deletions.

Step 2: Refining the Alignment Skeleton
Next, kngMap refines the skeleton by pruning the initial
alignment skeleton. This pruning process aims to avoid
some false positions caused by sequencing errors or repeat
regions. As shown in Figure 1C, the skeleton is generated by
the previous step. Obviously, the two ending anchors in
Figure 1C should not be considered for downstream detail
alignment. Thus, an increased refining procedure is carefully
designed to deal with such situations. In the skeleton,
kngMap only chooses the chains (a subset of the anchors
in the initial skeleton) with the highest increased score using
the following equation:

arg max
Vi, Vj

{score(Vi) − score(Vj)}, Vi(x) − Vj(x)< l, (3)

where l is the constraint length parameter (default value l =
len(r)), which guarantees that the increased score is
calculated in a fixed window length in the path. This
setting is motivated by observing that the anchors of a
read alignment are fallen in the region with a length of l,
which is found by the statistics based on the alignment results
(Supplementary Figure S5). After the pruning, the two
nodes that have the maximum increased scores are
selected as the final starting and ending nodes (denoted as
V′start and V′end), and the path between V′start and V′end is
regarded as the final refined skeleton of alignment.

2.4 Filling the Gaps Between Anchors
With the refined skeleton of alignment, the numbers of pairs of
unaligned segments can be directly partitioned by the anchors,
which is shown in Supplementary Figure S6. In order to obtain
the whole base-to-base alignment of the read, kngMap
distinguishingly performs a detailed alignment between each
pair of unaligned segments. As illustrated in Supplementary
Figure S6, the skeleton (from M1 to M7) partitions the read
and the reference into eight paired segments. Each pair of
unaligned segments, that is, (SRi, SGi), i = 1, 2, 3, 4, 5, 6, 7,
will be categorized into one of the following conditions, which
carefully take the SV into consideration according to the length of
segments.

1) Match case: |L(SRi) − L(SGi)|≤ L(SRi) × μ.
2) Deletion case: L(SRi) − L(SGi)< L(SRi) × μ.
3) Insertion case: L(SRi) − L(SGi)> L(SRi) × μ.
Here, SRi and SGi are the paired partitioned subsequence in the

read and genome, respectively, L(SRi) is the length of SRi, L(SGi) is
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the length of SGi, and μ is a user-defined parameter categorizing
the cases. The parameter of μ is used to model specific categories
of SVs and the default value of μ is set with 2, which is an
empirical value based on the alignment statistics (Supplementary
Figure S7). A schematic illustration of the three categories of
unaligned segments is shown in Figure 2.

KngMap then fills the paired segments within the skeletons to
solve the breakpoints of SVs and generate valid alignments for the
whole read. Each of the gaps is filled by one of the following
strategies according to its category. For the match case, as shown
in Figure 2A, kngMap directly performs an end-to-end alignment
based on the NW (Needleman–Wunsch) algorithm between the read
segment (SRj) and the reference genome segment (SGj) to fill the gap;
an example of dealing with this match case is also provided in
Figure 2A. For a deletion case (Figure 2B), there is a potential
deletion in SRj; moreover, we do not know if the SV position exists. In
order to effectively deal with such cases, a semi-global alignment is
performed, which is beneficial for handling multiple breakpoints
within SGj. For the example in Figure 2B, there are two deletions
within the SRj; the semi-global alignment can effectively recognize
them since it can find the most similar regions in SGj for SRj. In the
implementation of the semi-global alignment, the genome segment
(SGj) was chosen to be the target sequence and read segment (SRj) to be
the query sequence as the alignment gaps at the query start and end
are not penalized. Similarly, for an insertion case (Figure 2C), there is
a potential insertion in SRj, and we do not know if its positions exist.
For this case, the semi-global alignment is also applied to recognize the
insertion. The read segment (SRj) was chosen to be the target sequence

and genome segment (SGj) to be the query sequence in the
implementation of the semi-global alignment.

2.5 Extending the Boundaries of the
Skeletons
All the operations mentioned previously fill the inner gaps of
the skeleton, which are anchored by two matched k-mers. For
the outer boundaries of the refined skeleton, that is, the two
pairs of unsigned segments at the starts and ends of the skeletons as
shown in Supplementary Figure S8, kngMap assumes that these
boundaries of the genomic region is SV-free and directly extends the
boundaries by performing a modified global alignment to obtain the
base-to-base alignment. To be more specific, for the alignment
between the suffix of the read and the reference following the last
anchor, kngMap first extracts the SRend as the query sequence and the
SGend (with two times length than SRend) as the target sequence. Then,
the modified global alignment (similar to the global NW alignment
method but with a small twist gap at the query end that is not
penalized) is performed for SRend and SGend; the modified global
alignment can find out how well SRend fits at the beginning of
SGend. A toy example of it is illustrated in Supplementary Figure
S8. Similarly, the alignment between the prefix of the read and the
reference prior to the first anchor can be computed in an identical
fashion. Finally, the whole read alignment is accomplished by
integrating the skeletons and the alignments of the gaps Figure 1E.
Overall, the pseudo-code for the kngMap method procedure is
described in Algorithm 1:

FIGURE 2 | Schematic illustration of the three categories of unaligned segments in the read and genome. (A)Match, (B) deletion, and (C) insertion. In the figure, the
light blue, yellow, and green bars present the read, the reference genome, and the anchored k-mers, respectively. The dashed lines connecting the anchored k-mers
indicate the matched positions of the k-mers on the reference genome and the read. The classification conditions are based on the lengths of pair of unaligned segments.
The second and third rows give an example on how to generate the alignment for each case.
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Algorithm 1. kngMap Algorithm.

3 RESULTS

The performance of kngMap was evaluated against 10 state-of-
the-art long read aligners: BLASR (v) (Chaisson and Tesler,
2012), minimap2 (v2.12-r829) (Li, 2018), BWA-MEM
(v0.7.17-r1194) (Li, 2013), GraphMap (v0.5.2) (Ivan et al.,
2016), rHAT (v0.1.2) (Liu et al., 2015), NGMLR (v0.2.7)
(Sedlazeck et al., 2018), lordFAST (v0.0.9) (Haghshenas et al.,
2018), smsMap (Wei et al., 2020), conLSH (v0.0.1) (Chakraborty
and Bandyopadhyay, 2020), and S-conLSH (v0.0.1) (Chakraborty
et al., 2021). All methods were benchmarked on simulated and
real-life SMS sequencing datasets. All the experiments were
performed on a Linux machine server running Ubuntu 14.04
system equipped with two twelve-core (two threads per core)
Intel Xeon Gold 5118 CPU @ 2.30GHz and 256 gigabytes (GB)
RAM. The run command lines and parameters of each mapping
tools are available in Supplementary Table S1.

It is to be noted that with the rapid development of SMS
sequencing technology, more than 99% of the raw sequencing
data produced by the SMS sequencing platform has a read length
of 1,000 bp or longer (Haghshenas et al., 2018). Herein, reads with
lengths shorter than 1,000 bp were filtered so that the remaining
reads that have 1,000 bp or longer are aligned in the following
experiments.

3.1 Experiment on Simulated Datasets
3.1.1 Simulation Without Structural Variations
We first adopted the simulated sequence datasets without
structural variations (SVs) to evaluate the performance of
kngMap algorithm against the aforementioned mapping
methods. The simulated datasets were generated by PBSIM2
(Ono et al., 2020), a new simulator that can capture the
characteristics of errors in reads for both PacBio and

Nanopore sequencer. The H. sapiens (CHM1) genome
sequences were downloaded from NCBI (assembly accession:
GCA_000306695.2) and fed into PBSIM2 software using default
error parameters (8% deletions, 7% insertions, and 1%
substitutions). As a result, 100,000 simulated sequences with
an average read length of 10,157 bp were generated by
PBSIM2. The detailed running commands of PBSIM2 and
some statistics of simulated datasets can be found in
Supplementary Tables S2 and S3.

For the simulated dataset, we know exactly the true mapped
region and bases in the reference genome for each read, so the
correctly mapped reads (CMRs) and correctly mapped bases
(CMBs) were applied to investigate the overall quality of the
alignments. A read r is called CMR if this read is aligned to the
derived genome with the correct strand, and the overlap between
the aligned subsequence on the reference and the true mapping
subsequence has at least p bases (p = 0.9 × len(r), where len(r) is
the read length of r). A base is called CMB if it is located within T
bp (here T = 5) of the corresponding truth position on the
genome. We further compared the aligned coverage (proportion
of aligned bases for one read) to assess the alignment for different
methods. A method with higher aligned coverage means that it
can align more bases to the reference genome for a read. In
addition, base-level sensitivity and precision (Marco-Sola et al.,
2012) are used to evaluate the performance of different mappers
for the simulated sequence dataset. Sensitivity is defined as the
number of correct matched bases divided by the total number of
bases, and precision is defined as the number of correct matched
bases divided by the number of mapped bases.

Based on the aforementioned metric definition, Table 1 shows
the evaluation result of kngMap, rHAT, smsMap, lordFAST,
BLASR, BWA-MEM, GraphMap, minimap2, NGMLR,
conLSH, and S-conLSH on the simulated datasets without
structural variations. As can be seen from Table 1, kngMap
not only correctly mapped more reads than any other mapper but
also correctly aligned 99.82% of the total number of bases, which
improves the sensitivity by 0.1%–2.4% over its competitors,
except the conLSH and S-conLSH methods. For the base
sensitivity and precision in Table 1, we can observe that
kngMap still performed the best, indicating that most bases
are correctly mapped in the alignments generated by kngMap.
It is worth noting that the alignment results of conLSH and
S-conLSH are obviously worse than those of other methods, so we
do not show the results of these two methods in the following
comparisons.

Importantly, kngMap achieved 100% aligned coverage,
demonstrating that all mapped reads by kngMap are
completely aligned, while the alignment by other aligners
cannot cover the whole sequence, which means that these
methods always output local mapping results and cannot
obtain the end-to-end alignment for the whole read. After
checking the details of the alignments, soft clipping at the
starting or ending of sequences is usually produced by other
methods. These results in aligned coverage explain that kngMap
has a higher base-level sensitivity. This 100 percent coverage
achieved by kngMap is beneficial for SMRT data analysis since
higher aligned coverage is a key requirement for mapping tools
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and downstream mapping-based applications (Schmieder and
Edwards, 2012; Laver et al., 2015).

In addition, we inspected the reads of the simulated human
dataset which were incorrectly aligned by kngMap and found that
255 (88.29%) of the reads have a higher similarity than the
original similarity simulated by the PBSIM2. To give an
example, Supplementary Material (named as S9_46798.txt)
reports the alignment result for one simulated read with a
length of 6,692 bp; the mapped alignment identity obtained by
kngMap is 90.74%, while the simulated identity generated by
PBSIM2 is 87.50%, which is lower than the similarity produced by
kngMap. Therefore, this further indicates that kngMap can find
the most similar mapped region in the reference sequence for
each query read.

3.1.2 Simulation in the Presence of Structural
Variations
For assessing the ability of handling SVs for different methods, a
simulated sequence dataset with different types of SVs was
generated. Specifically, 16 SVs (i.e., five insertions, eight
deletions, and three inversions) with different sizes were first
added into the reference chr1 (chromosome 1 of CHM1) genome
by the RSVSim (Bartenhagen and Dugas, 2013) simulator, an R
package tool for the simulation of SVs with various sizes and SV
types in any genome available as the FASTA file. Then, the chr1
genome of CHM1 with SVs was fed into PBSIM2 to produce the
final simulation read set. Among the simulated reads, a total of
129 reads cover the SV breakpoints. The detailed SVs and its
breakpoints are listed in Supplementary Table S4.

Here, we provide the number of mapped reads that span SVs
(#SVs) to evaluate the performance of different mapping tools.
For one mapped read, if the start and end alignment coordinates
in the genome cover the actual simulated breakpoints, we
consider this read spanning SVs. Specifically, each of the
breakpoints described by the ground truth in the genome can
be denoted as a tuple: BPT

i (PGT
start, PG

T
end), i � 1, 2, / , NT

BP,
where PGT

start and PG
T
start are the starting and ending positions of

the breakpoint on the reference genome, respectively, andNT
BP is

the total number of ground truth breakpoints. Similarly, each of
the alignment coordinates mapped by a mapping tool for a
simulated read with SV can be denoted as a tuple:

MCi(MGstart, MGend), i � 1, 2, / , NSV
read, where MGstart

and MGend are the starting and ending mapped coordinates
on the reference genome, respectively, and NSV

read is the total
number of reads covering the SV breakpoints (NSV

read = 129).
With the ground truth breakpoints and the mapped

coordinates obtained by a mapping tool, we can assess the
number of ground truth breakpoints being recovered. For a
certain read, a ground truth breakpoint, BPT

i (PGT
start, PG

T
end),

is considered being recovered, only if there is at least one mapped
coordinate, MCi(MGstart, MGend), meeting the following
condition:

{MGstart <PGT
start

MGend >PGT
end

. (4)

Finally, the number of ground truth breakpoints being
recovered from our kngMap and other seven mapping
programs is listed in Table 2, from which we can see that
kngMap can map more reads with SVs on the genome than
the other approaches, which demonstrate that our kngMap is
capable to handle the SV-spanning reads.

3.2 Experiment on Three Real Datasets
In this experiment, three datasets (generating from PacBio SMRT
and Oxford Nanopore platforms) of A. thaliana, E. coli UTI89,
andH. sapiens (CHM1) were used to benchmark kngMap against
other methods on real sequencing data. Among these datasets, A.
thaliana andH. sapiens (CHM1) were generated from the PacBio
SMRT platform, and E. coli UTI89 was generated from the
Oxford Nanopore MinION sequencer. The availability of these
datasets and their reference genomes are provided in
Supplementary Tables S5 and S6, respectively, and the detail
statistics (e.g., read number and length distributions) related to
these datasets are given in Supplementary Figure S7. In the
absence of true mapping locations for these real-life datasets, the
mappers were compared based on different metrics as follows.

First, the number of mapped reads, the number of mapped
bases, the number of matched bases, and the alignment score are
used to evaluate the performance of different mapping methods.
The number of mapped reads (read-level) and bases (base-level)
are two important metrics to evaluate mapping sensitivity for

TABLE 1 | Mapping results of different mapping tools on the simulated human dataset. This dataset contains 10,000 reads and 1.015 billion bases. The best results are
labeled with a bold typeface.

Method CMR CMB Aligned coverage
(%)

Sensitivity (%) Precision (%)

kngMap 99,711 1,013,921,165 100 99.82 99.82
rHAT 99,516 1,008,128,007 99.95 99.25 99.59
smsMap 98,747 993,435,787 99.98 97.80 97.80
lordFAST 99,709 1,012,991,874 99.99 99.73 99.85
BLASR 99,648 1,010,806,725 99.72 99.51 99.77
BWA-MEM 99,603 1,010,085,677 99.88 99.44 99.63
GraphMap 98,594 1,001,398,553 99.99 98.85 98.72
minimap2 99,698 1,013,427,775 99.89 99.77 99.90
NGMLR 97,207 990,054,543 99.83 97.47 98.67
conLSH 105 1,207,640 99.74 0.11 0.12
S-conLSH 2,349 115,168 99.98 0.01 0.01
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long read alignment since it could still be lack of information for
downstream analysis if reads are unmapped or only partially
aligned (Peng et al., 2015). The number of mapped bases is
usually viewed as a metric in base-level sensitivity. The number of
matched bases and the alignment score can reflect the quality of
the reported alignments for each method (Haghshenas et al.,
2018). Specifically, for each mapping of a read, the matched base
is defined as the base which is mapped to the identical one in the
reference genome, the alignment score is calculated with scoring
parameters: match = +1, mismatch (including insertion, deletion,
substitution, and unmapped/clipped cases) = −1, gap opening =
−1, and gap extension = −1, and the sum of alignment scores of all
mapped reads was calculated for each method. Table 3 reports
the mapping results of nine methods for the A. thaliana dataset.
Obviously, it can be seen that kngMap mapped the most reads
and aligned the most bases, that is, kngMap mapped 21,182 reads
and 185,924,663 bases, improving sensitivity by 3.5% and 4.3%

over the closest competitor (lordFAST) in terms of mapped reads
and mapped bases, respectively, and even more compared with
other tools. For the matched bases and alignment score, kngMap
still performed the best; more precisely, kngMap reports a 6.02
million higher number of matched bases and 4.32 million higher
alignment score compared to the best runner-up (i.e., lordFAST).
These results indicate that kngMap can not only provide more
sensitive alignments in read-level and base-level sensitivity than
other mappers but also achieved the best quality of the
alignments. Similar results (Supplementary Tables S8 and S9)
were replicated in two other real datasets (E. coli UTI89 and H.
sapiens) as well.

Next, we investigated the consecutive alignments, which can
reflect the details of the alignments (Liu et al., 2015). To compare
the consecutiveness of the alignments, we set four covering
thresholds (i.e., c1 � 80%, c2 � 85%, c3 � 90%, and c4 � 95%)
to inspect the aligned proportion of the read which has at least

TABLE 2 | Number of mapped reads that span SV breakpoints for different mapping methods.

kngMap smsMap lordFAST BLASR BWA-MEM GraphMap minimap2 NGMLR

#SVs 122 97 119 114 87 119 115 103

Note: rHAT tool always appears as segmentation fault (core dumped) information for the simulated reads with SVs, so we did not show the results of rHAT.

TABLE 3 |Number of mapped reads, mapped bases, mappedmatched bases, and the alignment score of nine methods on the real A. thaliana dataset. The best results are
labeled with a bold typeface.

Method Mapped reads Mapped bases Matched bases Alignment score

kngMap 21,182 185,924,663 170,116,753 144,880,696
rHAT 21,139 161,930,990 149,098,181 104,998,955
smsMap 21,170 185,937,988 162,348,708 131,169,015
lordFAST 21,156 179,616,861 165,787,986 138,853,327
BLASR 20,951 170,669,368 156,421,685 122,279,677
BEA-MEM 20,987 168,716,088 157,879,323 125,312,363
GraphMap 20,088 175,859,786 161,472,579 139,464,799
minimap2 20,748 169,541,803 158,229,925 127,139,769
NGMLR 18,918 155,650,064 144,968,837 117,202,862

FIGURE 3 | Consecutiveness alignment of different methods on the A. thaliana dataset. The percentage values labeled on the horizontal axis are the thresholds of
the proportion of covered bases, that is, ci (i = 1,2,3,4), for considering if the alignment result for a read is consecutive. The vertical axis bars indicate the proportions of
reads consecutively mapped by different mappers. kngMap always achieved 100% consecutive alignments with all thresholds, while GraphMap achieved 99.91%,
99.88%, 99.84%, and 99.77% consecutive alignment at 80%, 85%, 90%, and 95% coverage thresholds, respectively. Therefore, kngMap is superior to
GraphMap in providing better consecutive alignments. Each bar also corresponds to a value line in Supplementary Table S10.
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one alignment covering at least ci (i = 1,2,3,4) proportion of the
whole read. If one alignment covers more than ci of the read, the
alignment is defined as the consecutive alignment at threshold ci.
Figure 3 describes the results of the consecutive alignment for
nine methods, and the detailed values shown in Figure 3 can be
seen in Supplementary Table S10. From Figure 3, we can clearly
see that kngMap and smsMap always achieved 100% consecutive
alignments at all thresholds, indicating that kngMap and smsMap
can achieve the end-to-end alignment for each read, whichwill facilitate
downstream analysis in practice since each mapped read is completely
aligned and not split aligned. GraphMap also achieved high consecutive
alignment, while other methods, especially BWA-MEM and NGMLR,
tend to produce more reads that have a large proportion of bases being
clipped. Similar results can be found in Supplementary Figures S9 and
S10 for the real dataset of E. coli andH. sapiens. The consecutive results
in Figure 3 and Supplementary Figures S9 and S10 demonstrate that
kngMap can provide better consecutive alignments, which is the main
reason for the higher base-level sensitivity of kngMap.

Furthermore, the agreement between different methods based
on their alignment results was measured. Supposing that
alignments x1 and x2 are two alignment results obtained by
two mapping methods for a query read, we define that x1 has
an agreement with x2 if and only if the mapped region on the
reference genome covered by x1 overlaps with at least 90% of the
mapped region on the reference genome covered by x2. Figure 4
describes some toy examples to illustrate the covering and non-
covering alignments. As a result, the agreement alignments
between each pair methods on the A. thaliana dataset are
shown in Table 4. Each row in Table 4 denotes the
percentage of the alignments produced by the corresponding
method that covers alignments generated by other tools listed in
the column. For example, among all mapped reads for kngMap
and minimap2 in Table 4, kngMap covers 91.85% of the
alignments produced by the minimap2 method, while
minimap2 only covers 78.82% of the alignments generated by
kngMap. Supplementary Tables S12 and S13 report the

FIGURE 4 | Examples of covering and non-covering alignment results. x1, x2, x3, and x4 are different alignment results reported by four mapping methods for the
same query read. The dotted line indicates the mapped region in the reference genome sequence for the corresponding alignment result. In this figure, x1 and x2
alignments cover each other as they span the mapped regions on the reference genome that have at least 90% overlap. The alignments x1 and x2 cover x3 alignment but
not the x4 alignment, while x3 does not cover x1 and x2 alignments. On the other hand, the alignment x4 does not cover either alignment x1, x2, or x3.

TABLE 4 | Agreement of different alignment methods for the real A. thaliana dataset.

kngMap rHAT smsMap lordFAST BLASR BWA-MEM GraphMap minimap2 NGMLR

kngMap - 79.98 76.72 84.59 72.16 77.03 87.59 78.82 74.21
rHAT 87.58 - 79.80 85.49 79.91 84.39 86.22 85.85 79.82
smsMap 89.07 79.30 - 85.67 78.23 77.44 86.38 79.12 74.36
lordFAST 88.32 81.45 78.29 - 75.25 80.00 86.63 81.14 75.58
BLASR 90.08 84.27 89.22 89.41 - 90.11 88.85 91.96 82.58
BWA-MEM 90.71 83.85 84.66 89.99 84.78 - 89.06 91.36 83.02
GraphMap 92.94 83.99 79.67 88.28 75.95 80.82 - 82.44 78.25
minimap2 91.85 84.93 85.06 90.03 86.47 91.61 89.68 - 83.75
NGLMR 95.62 89.91 89.42 93.46 90.55 94.44 94.59 96.34 -

TABLE 5 | Performance of each pair methods on the A. thaliana dataset for which their alignments do not agree.

kngMap rHAT smsMap lordFAST BLASR BWA-MEM GraphMap minimap2 NGMLR

kngMap - 4,014 (90.15) 4,852 (9.46) 3,054 (11.66) 5,497 (24.74) 4,496 (31.60) 1,414 (−1.22) 3,893 (31.91) 3,101 (40.99)
rHAT 2,524 (−30.04) - 4,270 (−14.97) 2,917 (−19.06) 3,975 (−7.57) 3,070 (−11.22) 1809 (−27.80) 2,537 (15.07) 2034 (15.03)
smsMap 2,230 (−6.06) 4,258 (67.14) - 2,920 (7.33) 4,299 (22.66) 4,503 (21.20) 1700 (−6.05) 3,907 (20.95) 3,089 (30.72)
lordFAST 2,383 (1.60) 3,812 (97.58) 4,591 (10.61) - 4,996 (28.68) 4,016 (33.68) 1742 (−0.29) 3,553 (36.91) 2,921 (40.55)
BLASR 1997 (−5.83) 3,212 (50.74) 2,258 (−3.29) 2,184 (9.02) - 2004 (3.31) 1,407 (−3.33) 1,508 (0.59) 1,609 (35.75)
BWA-MEM 1869 (1.55) 3,311 (56.90) 3,218 (2.43) 2053 (14.00) 3,092 (6.06) - 1,330 (2.40) 1,570 (6.17) 1,489 (38.46)
GraphMap 1,388 (1.79) 3,164 (94.77) 4,083 (9.49) 2,336 (15.95) 4,765 (25.09) 3,785 (33.64) - 3,341 (33.88) 2,918 (39.92)
minimap2 1,630 (2.58) 3,062 (57.86) 3,098 (2.53) 2041 (15.33) 2,765 (2.83) 1737 (5.80) 1,249 (−0.14) - 1,490 (39.72)
NGLMR 819 (−21.91) 1899 (52.86) 2000 (−5.35) 1,229 (5.48) 1780 (−8.57) 1,407 (−10.16) 742 (−19.50) 641 (−24.43) -
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agreement between different methods on E. coli and H. sapiens
datasets, respectively. We can see that the mapping results of
kngMap have a high coverage of the alignments obtained by other
mapping methods.

Finally, we compared the performance of the tools on reads for
which their alignments do not agree. The number of disagreeing
alignments and average identity difference between the two methods
for the inconsistent alignments are listed in Table 5. The numbers in
each row indicate the number of reads for which the corresponding
method reports alignments that do not cover alignments outputted by
the other methods listed in the column. The positive/negative
percentage in parentheses means that the average identity of the
disagreeing alignments for the corresponding method is higher/lower
than the average identity of the disagreeing alignments for the other
methods listed in the column. For instance, there are 1,997 reads for
which BLASR does not cover the alignments of kngMap. For those
reads, BLASR produced alignments with an average of 5.83% lower
identity than kngMap. On the contrary, there are 5,497 reads for
which kngMap does not cover BLASR’s alignments. For those reads,
on average, kngMap alignments have 24.74% higher identity than
those of BLASR. This indicates that kngMap can find more similar
alignments than BLASR. The performance of the tools on E. coli and
H. sapiens reads is provided in Supplementary Tables S13 and S14.
With a lack of the true mappings for the real dataset, the information
in Table 5 and Supplementary Tables S13 and S14 are some extra
support for the fact that the alignments of our kngMap are reliable.

4 DISCUSSION

For SMS read mapping, the seed-chain-align procedure (Lin and
Hsu, 2020), as is used bymost mappingmethods, is a classical and
effective strategy to obtain the superior alignment results since it can
help to seek the alignment skeleton consisting of matched segment
pairs between the long SMS read and the reference genome. Generally,
the seed-chain-align procedure can be summarized as three phases:
first, matched k-mers are found as seeds in one read and in the
reference sequence. Then, a group of seeds that are colinear or close to
each other is chained as the candidate alignment skeleton. Finally, the
non-seed fragments within the alignment skeleton are being extended
to generate the base-level alignment. In the stage of generating the
alignment skeleton, these methods are usually difficult to capture the
matches with long distance, especially for the read parts with SVs and
high sequencing errors since that there are few or no matched k-mers
in the parts. Thus, most methods failed to generate the alignment
skeleton of the query read or just build an alignment skeleton that
covers a small part of the read. As a result, these methods cannot
obtain the alignment result or just report a localmapping result for the
query read, other than obtaining the whole end-to-end alignment,
leading to low mapping sensitivity and aligned coverage.

To address the aforementioned challenge, here, we developed
kngMap to increase the mapping sensitivity and with 100%
aligned coverage for long noisy alignment. kngMap is also a
seed-chain-align method using the hashing index technique,
compared with other methods. There are three main key
features of kngMap: 1) kngMap proposes a scoring strategy in
the chaining procedure to choose a group of anchors to form the

initial alignment skeleton for each read, even in the situation that
the read contains SVs or some regions that matched seeds are
dispersedly distributed caused by high sequencing errors; 2)
defining an increased credibility function to refine the alignment
skeleton, and then a high quality of alignment skeleton is subsequently
obtained; and 3) for each of the gaps within the skeleton, kngMap
classifies it into one of three categories and implements a specific
alignment strategy to fill the corresponding gaps. The scoring strategy
and increased credibility function ensures that kngMap can effectively
find the alignment skeleton for every query read, even in the situation
that the matched seeds are dispersedly distributed in the reference
genome. Thus, kngMap can obtain higher mapping sensitivity, that is,
align more reads and bases. The last feature can guarantee that the
whole end-to-end alignment is obtained, not local alignment achieved
by other methods. Therefore, the aligned coverage of kngMap is
higher than that of other methods. In addition, in order to further
evaluate the performance of the kngMap for a higher error rate up to
~15%, we applied the PBSIM2 simulator to generate another two
simulated datasets with 20% (parameter: --accuracy-mean 20) and
25% (parameter: --accuracy-mean 25) error rates; the other parameter
settings are similar to those given in Supplementary Table S2.
Supplementary Table S14 shows the evaluation result of kngMap,
rHAT, smsMap, lordFAST, BLASR, BWA-MEM, GraphMap,
minimap2, and NGMLR on the simulated datasets with 20% error
rate. As can be seen from Supplementary Table S14, kngMap
correctly mapped the maximum number of reads and bases to the
reference genome. Importantly, kngMap achieved 100% aligned
coverage, demonstrating that all mapped reads by kngMap are
completely aligned. For the base sensitivity and precision in
Supplementary Table S14, we can see that kngMap still
performed the best, indicating that most bases are correctly
mapped in the alignments generated by kngMap. Similar mapping
results can be found in Supplementary Table S15 with simulated
dataset with 25% error rate. Therefore, these results in Supplementary
Tables S14 and S15 demonstrate that our kngMap is more robust to
sequencing errors, and it can obtain bettermapping results for a higher
error rate up to ~15%.

The massive amount of long noisy read data produced by SMS
technologies brings some challenges to existing mapping approaches.
In addition to accuracy, computational complexity is another
important issue that needs to be considered. The time complexity
of kngMap has four main components: 1) In the phase of constructing
the reference genome index, it needs to extract all k-mers of the
reference genome sequences to build the hash table index; thus, the
maximum complexity is in the order ofO(G), whereG is the length of
the genome sequences. 2) In the phase of generating k-mer
d-neighborhood graph, it needs to retrieve all the matches of the
k-mers for each query read, so the maximum complexity is O(N*L),
whereN is the number of reads, and L is the average read length. 3) In
the phase of generating the skeleton of alignment, it needs to
recurrently calculate the score of each node, so the maximum
complexity is O(N*M), where M is the average number of matched
k-mers for all reads. 4) In the phase of filling the gaps between anchors,
it needs to obtain the detailed base-to-base alignment, so themaximum
complexity isO(K*Q2), whereK is the average number of gaps,Q is the
average length of gaps, andQ<<L. In summary, the total complexity for
kngMap is O(G+N*L+N*M+K*Q2). Since Q<<L, kngMap has a time
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complexity of the order ofG and L. In order to graphically evaluate the
computational efficiency of our kngMap, we compared kngMap with
other mapping tools on the realH. sapiens datasets. Figure 5 shows the
relative running time (wall-time) by using the nine tools. In terms of
computational efficiency, we can see that the speed of kngMap is almost
as fast as minimap2 and is several folds faster than other mapping
methods. For example, kngMap is overall about 2-folds faster than
rHAT and 6- to 9-folds faster than smsMap, lordFAST, BLASR, BWA-
MEM, and GraphMap mappers. The speed comparison result
described in Figure 5 indicates that kngMap is efficient to align
SMS reads.

5 CONCLUSION

Since the infancy of SMS technologies (e.g., PacBio and Oxford
Nanopore MinION) that produce longer but higher sequencing
error reads, mapping these reads to a reference genome is often
the most basic and computing-expensive step for downstream
genome sequence analysis. Developing novel long read mapping
tools is on demand for improving the mapping sensitivity and
effectiveness of SMS read alignment.

In this study, we present kngMap, a new, fast, and highly
sensitive mapping algorithm for long noisy reads. Mainly, kngMap
contains three key characteristics: 1) kngMap proposes a scoring
strategy in the chaining procedure to choose a group of anchors to
form the initial alignment skeleton for each read. 2) kngMap designs an
increased credibility function to refine the alignment skeleton. The
scoring strategy and increased credibility function progressively ensure
that kngMap can locate the aligned region for every query read, even in
the situation that the matched seeds are dispersedly distributed in the
reference genome. 3) For each of the gaps within the skeleton, kngMap
classifies it into one of three categories and implements a specific
alignment strategy to fill the corresponding gaps, which can help to
robustly handle potentially different types of SVs in the reads. kngMap
was benchmarked on simulated and real datasets across various
genomes with other state-of-the-art mappers. The experimental
results demonstrated that kngMap has higher accuracy and
sensitivity that can correctly map more sequences and bases to the

reference genome and achieves 100% aligned read coverage ratio;
meanwhile, it also has good ability to span different types of SVs
within the reads.
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