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Background: N6 methyladenosine (m6A)-related noncoding RNAs (including

lncRNAs and miRNAs) are closely related to the development of cancer.

However, the gene signature and prognostic value of m6A regulators and

m6A-associated RNAs in regulating sarcoma (SARC) development and

progression remain largely unexplored. Therefore, further research is required.

Methods: We obtained expression data for RNA sequencing (RNA-seq) and

miRNAs of SARC from The Cancer Genome Atlas (TCGA) datasets. Correlation

analysis and two target gene prediction databases (miRTarBase and LncBase

v.2) were used to deduce m6A-related miRNAs and lncRNAs, and Cytoscape

software was used to construct ceRNA-regulating networks. Based on

univariate Cox regression and least absolute shrinkage and selection

operator (LASSO) Cox regression analyses, an m6A-associated RNA risk

signature (m6Ascore) model was established. Prognostic differences

between subgroups were explored using Kaplan–Meier (KM) analysis. Risk

score-related biological phenotypes were analyzed in terms of functional

enrichment, tumor immune signature, and tumor mutation signature. Finally,

potential immunotherapy features and drug sensitivity predictions for this

model were also discussed.

Results: A total of 16 miRNAs, 104 lncRNAs, and 11 mRNAs were incorporated

into the ceRNA network. The risk score was obtained based on RP11-283I3.6,

hsa-miR-455-3p, and CBLL1. Patients were divided into two risk groups using

the risk score, with patients in the low-risk group having longer overall survival

(OS) than those in the high-risk group. The receiver operating characteristic

(ROC) curves indicated that risk characteristic performed well in predicting the

prognosis of patientswith SARC. In addition, lowerm6Ascorewas also positively

correlated with the abundance of immune cells such as monocytes and mast

cells activated, and several immune checkpoint genes were highly expressed in

the low-m6Ascore group. According to our analysis, lower m6Ascore may lead

OPEN ACCESS

EDITED BY

Ruth Roberts,
ApconiX, United Kingdom

REVIEWED BY

Kunqi Chen,
Fujian Medical University, China
Wan-Xin Peng,
Zhejiang University, China

*CORRESPONDENCE

Kai Wang,
wangkaimath@sina.com

SPECIALTY SECTION

This article was submitted to Genetics of
Common and Rare Diseases,
a section of the journal
Frontiers in Genetics

RECEIVED 11 March 2022
ACCEPTED 12 September 2022
PUBLISHED 12 October 2022

CITATION

Li H, Lin D, Wang X, Feng Z, Zhang J and
Wang K (2022), The development of a
novel signature based on the m6A RNA
methylation regulator-related ceRNA
network to predict prognosis and
therapy response in sarcomas.
Front. Genet. 13:894080.
doi: 10.3389/fgene.2022.894080

COPYRIGHT

© 2022 Li, Lin, Wang, Feng, Zhang and
Wang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 12 October 2022
DOI 10.3389/fgene.2022.894080

https://www.frontiersin.org/articles/10.3389/fgene.2022.894080/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.894080/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.894080/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.894080/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.894080/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.894080/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.894080/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.894080/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.894080&domain=pdf&date_stamp=2022-10-12
mailto:wangkaimath@sina.com
https://doi.org/10.3389/fgene.2022.894080
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.894080


to better immunotherapy response and OS outcomes. The risk signature was

significantly associated with the chemosensitivity of SARC. Finally, a nomogram

was constructed to predict the OS in patients with SARC. The concordance

index (C-index) for the nomogram was 0.744 (95% CI: 0.707–0.784). The

decision curve analysis (DCA), calibration plot, and ROC curve all showed

that this nomogram had good predictive performance.

Conclusion: This m6Ascore risk model based on m6A RNA methylation

regulator-related RNAs may be promising for clinical prediction of prognosis

and might contain potential biomarkers for treatment response prediction for

SARC patients.
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Introduction

Sarcomas (SARC) are comprised of an extensive,

heterogeneous, and biologically diverse group of malignant

tumors all of which are derived from mesenchymal cells (Hui,

2016). It has more than 100 different subtypes that can occur in

any part of the body. Although there are more than 100 subtypes,

sarcomas can be divided into two main types including soft-

tissue sarcomas (STSs, accounting for 80%) and three major

subtypes of bone sarcomas (BSs, including the osteosarcomas,

chondrosarcomas, and Ewing’s (EW) sarcomas) (Doyle, 2014;

Hui, 2016; Alavi et al., 2018; Ferguson and Turner, 2018; Hatina

et al., 2019). SARC are characterized by a low incidence rate

(approximately 1% of all malignancies in adults and 10–15% of

all malignancies in pediatric cancers) but a poor prognosis in

most cases (Hui, 2016; Siegel et al., 2019). Despite advances in the

treatment of STS and osteosarcoma, with comprehensive

treatment strategies including surgery, chemotherapy,

radiotherapy, and targeted therapy, the survival rate of

patients with advanced STSs and BSs needs to be improved

(Zhu et al., 2019a; Zhang et al., 2021a; Eaton et al., 2021).

Although it is difficult to determine the survival for each

subtype of sarcoma due to the heterogeneity of the disease,

the 5-year survival rates for patients with STS and for patients

with bone sarcomas are generally larger than (>) 80% and about

70%, respectively. However, 5-year survival rates of the patients

developing advanced-stage STS or various bone sarcomas are less

than (<) 20% and between 22% and 57%, respectively (Bone

Cancer, 2021; SarcomasTissue, 2021; SEER, 2021). In addition,

about 50% of STS patients and about 90% of BS patients end up

with distant metastasis, which remains a major cause of death

and a barrier to effective treatment (Bacci et al., 1998; Italiano

et al., 2011). Sarcomas have a poor prognosis due to their

aggressive growth and high risk of metastasis (Aung et al.,

2019). Therefore, further investigations into the pathogenesis

of sarcomas and identification of the novel prognostic

biomarkers that facilitate the improvement of therapy and

prognosis of sarcomas are urgently needed.

N6-methyladenosine (m6A) is the prevalent modification in

eukaryotic mRNAs, whose reversible methylation may have a

profound impact on gene expression regulation (Niu et al., 2013),

and plays a critical role in RNA processing. m6A RNA

methylation is dynamically regulated by the corresponding

m6A regulators, which are well classified into three subtypes,

namely, “methylases—writer,” “demethylases—erasers,” or “m6A

binding proteins—readers” depending on different functions

(Yang et al., 2018; Chen et al., 2019a; Barbieri and

Kouzarides, 2020). Increasing evidence has revealed the

correlation between m6A and human cancers, including

ovarian cancer (Li et al., 2021a), hepatocellular carcinoma (Li

et al., 2021b), and colorectal cancer (Ji et al., 2020). The literature

has also indicated that m6A-related genes might serve as novel

prognostic biomarkers for different cancers, and that the

m6A-related risk score may assist in risk assessment and

prognostic stratification (Li et al., 2021c; Xu et al., 2021). The

m6A regulators are also linked with the progression and

prognosis of SARC. In recent years, there have been some

studies on the role of m6A methylation regulators in

sarcomas. For instance, WTAP, which is highly expressed in

osteosarcoma tissues and associated with the worse prognosis of

osteosarcoma patients, was found to potentially promote

osteosarcoma progression by inhibiting HMBOX1 in an

m6A-dependent manner in vitro and in vivo (Chen et al.,

2020). Hou et al. (2020) evaluated the relationship between

copy number variations (CNVs) and mutations of m6A

regulatory factors and the prognosis of patients with soft-

tissue sarcomas by using The Cancer Genome Atlas (TCGA)

database. Their analysis indicated that CNVs and mutations of

KIAA1429, YTHDF3, and IGF2BP1 were independent risk

factors predicting OS and DFS. Zhang et al. (2021a)

constructed and validated a signature based on m6A-related

lncRNAs which could function as independent prognosis-

specific predictors in STS, thereby providing novel insights

into the roles of m6A-related lncRNAs in STS. Noncoding

RNAs (ncRNAs), such as long noncoding RNAs (lncRNAs)

and microRNAs (miRNAs), function as key regulators of gene
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expression, and the competitive endogenous RNA (ceRNA)

network is a transcriptional regulatory network at the

molecular level, consisting of lncRNA, miRNA, and mRNA

(Salmena et al., 2011; Zhu et al., 2019b; Cava et al., 2019).

More and more studies have shown that the competing

endogenous RNAs (ceRNAs) have been suggested to be

involved in essential biological processes and play crucial roles

in the initiation and development of neoplasms, and they

potentially serve as diagnostic and prognostic markers or

therapeutic targets (Qi et al., 2015). At present, the

mRNA–miRNA–lncRNA network is mostly studied in the

ceRNA network. Recent studies have shown novel roles of the

ceRNA network in thyroid cancer, colon adenocarcinoma,

gastric cancer, hepatocellular carcinoma, and lung

adenocarcinoma (Chang et al., 2020; Hu et al., 2020; Nie

et al., 2020; Yang et al., 2020; Zhang et al., 2021b). In

addition, a previous study has constructed a ceRNA network

and predicted the prognosis of soft-tissue sarcoma recurrence

(Huang et al., 2019). Gao et al. (2021) identified differentially

expressed mRNAs (DEGs), lncRNAs (DELs), and miRNAs

(DEMs) in sarcomas by comparing the gene expression

profiles between sarcoma and normal muscle samples in Gene

Expression Omnibus (GEO) datasets. Through target gene

prediction, a lncRNA–miRNA–mRNA–ceRNA network that

contained 113 mRNAs, 69 lncRNAs, and 29 miRNAs was

constructed, which might provide insights into further

research on the molecular mechanism and potential prognosis

biomarkers. Yang et al. (2022) applied starBase and Cytoscape to

construct a competing endogenous RNA (ceRNA) network based

on m6A-related prognostic lncRNA signature and revealed the

prognostic role of m6A-related lncRNAs in osteosarcoma and

identified them as potential biomarkers for predicting the

prognosis of patients with osteosarcoma. Although most

studies have established prognostic models for patients with

sarcoma based on the relationship between m6A and

noncoding RNA, the biomarkers included in the models are

relatively single, and the starting point and perspective of each

study are different. So far as we know, the m6A-related ceRNA

network and gene signature including three types of potential

biomarkers of m6A regulator- and m6A-related noncoding RNAs

(lncRNAs and miRNAs) in the regulation of soft-tissue sarcoma

(STS) development and progression and prognostic values are

largely unexplored. This study is based on the direction to launch

a series of explorations on sarcoma.

In this study, based on transcript, somatic mutation, and

clinical data obtained from The Cancer Genome Atlas (TCGA)

and cBioPortal databases, we conducted extensive analysis.

First, the correlation between the expression of 21 widely

reported key m6A RNA methylation regulators and the

prognosis of SARC was analyzed. Second, a regulatory

network of lncRNA (predicted by the LncBase v.2 database)–

miRNA (predicted by miRTarBase)–m6A regulators, including

16 miRNAs, 11 m6A regulators, and 104 lncRNAs, was

constructed. In addition, using LASSO Cox regression

analysis, a risk score model based on miRNA and lncRNA

and m6A regulators in the ceRNA network was established to

predict the prognosis, immune landscape, and chemosensitivity

of SARC patients. Then, the risk score model was evaluated

through the ROC curve. These may be potential biomarkers or

therapeutic targets of SARC in the future. To further explore the

potential relationship between m6Ascore and

clinicopathological data, we developed a clinical m6Ascore

nomogram to predict the prognosis of sarcoma patients.

Materials and methods

Acquisition of information of patients with
SARC

All datasets used in this study were publicly available, and the

detailed workflow for risk model construction and subsequent

analyses is shown in Figure 1. The RNA sequencing (RNA-seq)

transcriptome information (including mRNA, lncRNA, and

miRNA expression data), patient clinical information, and

somatic mutation status data were obtained from The Cancer

Genome Atlas (TCGA)(query) (https://portal.gdc.cancer.gov/)

and cBioPortal websites (http://www.cbioportal.org/). Patients

with unclear survival time, survival status, and

clinicopathological characteristics were excluded. Only patients

with overall survival (OS) times of more than or equal to 30 days

were included in the dataset.

Selection of m6A genes and m6A-related
lncRNAs and miRNAs

According to other published studies, 21 m6A genes were

investigated in this study, including writers (METTL3,

METTL14, CBLL1, VIRMA [KIAA1429], RBM15, RBM15B,

ZC3H13, and WTAP), readers (YTHDC1, YTHDC2, YTHDF1,

YTHDF2, YTHDF3, IGF2BP1, HNRNPA2B1, HNRNPC, FMR1,

LRPPRC, and ELAVL1), and erasers (ALKBH5 and FTO). Using

the STRING (version 11.0, http://string-db.org/) database, we

retrieved the interactions of the 21 m6A RNA methylation

regulators and visualized the interactions. The Pearson

correlation analysis was used to elucidate the correlation

between different m6A RNA methylation regulators. We

downloaded the profiles of lncRNAs, miRNA, and m6A genes

from TCGA database. Thereafter, the Pearson correlation

analysis was conducted to screen the m6A gene-related

lncRNAs and miRNAs in SARC samples. LncRNAs with

correlation coefficients >0.4 and p < 0.001 were regarded as

m6A-related lncRNAs, while miRNAs with correlation

coefficients <–0.15 and p < 0.05 were regarded as m6A-related

miRNAs.
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Construction of the m6A-associated
ceRNA network

All miRNAs that were negatively correlated with the

21 selected m6A regulators (METTL3, METTL14, CBLL1,

VIRMA [KIAA1429], RBM15, RBM15B, ZC3H13, WTAP,

YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3, IGF2BP1,

HNRNPA2B1, HNRNPC, FMR1, LRPPRC, ELAVL1, ALKBH5,

and FTO) were obtained from TCGA-SARC dataset (Pearson

correlation coefficient < –0.15 and p < 0.05). Then, the related

miRNAs possessing potential binding sites with the 21 selected

m6A regulators were simultaneously predicted using the

miRTarBase database (http://mirtarbase.cuhk.edu.cn/), and the

intersection with the results from the analysis in the previous step

was collected. Meanwhile, all lncRNAs were obtained from

TCGA-SARC dataset and further screened according to their

Pearson correlation coefficients (Pearson correlation

coefficient >0.4, p < 0.05) with 21 selected m6A regulators.

Next, the related lncRNAs possessing potential binding sites

with the interactive m6A-related miRNAs were predicted

using the LncBase v.2’s experimental module (http://carolina.

imis.athena-innovation.gr/), and the intersection with the results

from the analysis in the previous step was obtained. Finally, the

lncRNA–miRNA–m6A regulator ceRNA network based on the

foundation of the interactions between m6A-related lncRNA and

m6A-related miRNA and between m6A-related miRNA and m6A

regulators was created and visualized using the “ggalluvial” R

package.

Establishment of the m6A-associated risk
model

First, by means of the “survival” package in R, univariate Cox

regression analysis was utilized to explore the correlation

between the genes in the ceRNA network and overall survival

(OS) of SARC patients to determine the prognostic-related

biomarkers. Then, we used the “glmnet” R package to

perform LASSO regression analysis on the genes screened in

the univariate Cox regression analysis. Finally, the genes that can

be used as independent prognostic factors of OS were screened

using multivariate Cox regression analysis, and their regression

coefficients (β) were calculated. The following formula was used

to calculate the prognostic risk score of each patient:

Risk score = β (mRNA1) * expr (mRNA1) + β (mRNA2) *

expr (mRNA2) + . . . + β (mRNAn) * expr (mRNAn) + β
(miRNA1) * expr (miRNA1) + β (miRNA2) * expr (miRNA2)

+ . . . + β (miRNAn) * expr (miRNAn) + β (lncRNA1) * expr

FIGURE 1
Flow chart of this study.
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(lncRNA1) + β (lncRNA2) * expr (lncRNA2) + . . . + β
(lncRNAn) * expr (lncRNAn).

At the same time, the cut-off point of risk score was picked

using the “survminer” R package which divided patients into

high- and low-risk groups. Subsequently, the Kaplan–Meier

survival analysis and log-rank test were used to evaluate the

difference in the overall survival (OS) between the risk score

groups. Finally, to reflect the prediction ability of the risk score

model, we generated the area under the curve (AUC) of the time-

dependent receiver operating characteristic (tROC) curves

(“riskRegression” package in R) and calculated the area under

the curve (AUC) for 1-year, 3-year, and 5-year overall

survival (OS).

Analysis of tumor immune signatures and
function enrichment for m6Ascore

Tumor immune signatures were evaluated in two aspects:

1) immune checkpoints and 2) the levels of infiltrating

immune and immune and stromal scores were calculated

using CIBERSORT, TIMER, ssGSEA, and ESTIMATE

algorithms. Parts of the results are available at the

Genomic Data Commons (GDC, https://gdc.cancer.gov/)

and Tumor IMmune Estimation Resource (TIMER2.0,

http://timer.cistrome.org/). The gene set enrichment

analysis (GSEA) was utilized to understand the biological

processes involved in the high- and low-risk groups.

Hallmarks in GSEA were used to identify predefined gene

sets. A pathway with a |normalized enrichment score

(NES)| >1.5, a p-value < 0.05, and a false discovery rate

(FDR) < 0.05 was considered to be significant, as described in

the Results section.

Analysis of the tumor mutation status in
the low- and high-risk groups

The information of somatic mutations in TCGA samples

was downloaded from cBioPortal database and TCGA

database. The tumor mutational burden (TMB) is defined

as the total number of gene mutations per million bases,

including the total number of gene-coding errors, base

substitutions, and gene insertions or deletions. The TMB

value of each patient was calculated using the Perl

programming language. Significantly mutated genes between

the low- and high-m6Ascore groups and the interaction effect

of gene mutations were analyzed using “maftools” R packages.

The statistical test for the proportion of mutation was

evaluated by the two-side Chi-squared test, and

p < 0.05 was considered to be significant.

Prediction of therapeutic sensitivity in
patients with different m6Ascore

We studied the predictive capacity of m6Ascore in responding

immunotherapy and 138 drugs of chemotherapies/targeted

therapies. Based on the public pharmacogenomics database,

Genomics of Drug Sensitivity in Cancer (GDSC, https://www.

cancerrxgene.org), the 50% inhibiting concentration (IC50) values

of the 138 drugs were calculated using the “pRRophetic”R packages.

The potential response of patients to immunotherapy was inferred

by the tumor immune dysfunction and exclusion (TIDE) algorithm.

Generally, a lower TIDE score predicts a better response to

immunotherapy. The results of TIDE module analysis of patients

with SARC from TCGA dataset were downloaded from the TIDE

website (http://tide.dfci.harvard.edu/).

Construction of a predictive nomogram

First, we developed univariate and multivariate Cox

regression analyses of the m6Ascore risk signature and

other clinicopathological characteristics to confirm the

independence of the m6Ascore risk signature. Then, we

used the aforementioned factors to establish a nomogram

using the “rms” and “regplot” R packages to predict the

prognosis of patients with sarcoma. Finally, ROC, C-index,

calibration curve analysis, and DCA curves were used to

determine whether our established nomogram was suitable

for clinical use.

Statistical analysis

The continuous data are expressed as the mean (standard

deviation, SD). The categorical data are expressed as frequency

and percentage. The relativity between m6Ascore risk signature

and immune checkpoint molecules, and TMB were analyzed

using the Spearman or Pearson correlation analysis. The Chi-

squared test was used to compare different proportions. The

differences in proportions of the immune-infiltrating cells,

immune checkpoint gene expression, TMB, IC50, and TIDE-

related signatures between high- and low-risk groups were

compared using the Wilcoxon rank-sum test (Mann–Whitney

U test). The Kaplan–Meier survival analysis and log-rank tests

were used to analyze the differences in OS between different risk

score groups. The univariate and multivariate Cox regression

analyses were performed to screen the independent predictors for

OS. In all statistical results, except for the special instructions, a

two-tailed p-value less than 0.05 indicated statistical significance.

All analyses were performed using R software (version 3.6.2,

https://www.r-project.org/).
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Results

Prognostic analysis of m6A-associated
genes in SARC

A total of 255 patients with primary sarcoma had completed

clinical data, including 117 (45.9%) males and 138 (54.1%) females,

with the mean age being 60.7 ± 14.7. The detailed demographic and

clinicopathological data of these SARC patients are shown in

Table 1. With the STRING database used to understand the

interaction between the 21 m6A RNA methylation regulators, a

PPI network was obtained (Figure 2A), which indicated that all

enrolled 21 studied genes exhibited gene–gene interactions. In

addition, we examined the relationship between 21 regulators

through the Pearson correlation test and observed that all m6A

RNA methylation regulators were generally positively correlated

(Figure 2B). YTHDC1 showed a positive correlation with ZC3H13

(correlation coefficient: 0.8) and METTL14 (correlation coefficient:

0.8). YTHDF3 showed a positive correlation with KIAA1429

(correlation coefficient: 0.8). HNRNPA2B1 showed a positive

correlation with ELAVL1 (correlation coefficient: 0.8). Next,

according to the aforementioned criteria, we analyzed the

prognostic role of the 21 m6A-associated genes in SARC in a

total of 245 patients with OS and RNA-seq data. We performed

univariate and multivariate Cox regression analyses to explore

whether these genes were associated with the prognosis of SARC

patients. The results of univariate Cox regression revealed that

METTL3 (p = 0.032) and CBLL1 (p = 0.048) were risk genes for

SARC (Figure 3A). The multivariate Cox regression results revealed

that bothCBLL1 (p= 0.033) andRBM15 (p= 0.023) were risk factors

for OS. It also revealed thatALKBH5 (HR (hazard ratio) = 0.669, p =

0.021, and 95% CI (confidence interval) [0.475–0.942]) may be a

protective gene for OS (Figure 3B).

Identification of key upstream miRNAs of
21 m6A genes

The potential upstream miRNAs of 21 m6A genes were

predicted using the experimentally verified microRNA–target

gene interaction database miRTarBase. Ultimately, it found that

720 miRNAs interacted with 20 m6A genes (writers: METTL3,

METTL14, CBLL1, KIAA1429 [VIRMA], RBM15B, ZC3H13, and

WTAP; readers: YTHDC1, YTHDC2, YTHDF1, YTHDF2,

YTHDF3, IGF2BP1, HNRNPA2B1, HNRNPC, FMR1, LRPPRC,

and ELAVL; and erasers: ALKBH5 and FTO), while no upstream

miRNA interacted with one m6A gene (RBM15) in the database

(Supplementary Table S1). Next, the matrix expressions of

21 m6A genes and 2,064 miRNAs were abstracted from

TCGA database. We defined the miRNAs that were

significantly related to one of the 21 m6A genes (Pearson R <
-0.15 and p < 0.05) as m6A-related miRNAs. Finally,

144 miRNAs were discerned as m6A-related miRNAs

(Supplementary Table S2). Also, the predicted miRNAs were

then intersected with these m6A-related miRNAs to select the

27 m6A-related miRNAs (key miRNAs) that interacted with

12 m6A genes. Cytoscape was used to construct an

miRNA–mRNA regulatory network, including

30 miRNA–mRNA pairs (Figure 4).

Identification of upstream lncRNAs of key
miRNAs in patients with SARC

Based on the ceRNA hypothesis that lncRNAs can compete

with mRNAs for miRNA binding, thus playing a vital role in the

process of tumor development and progression (Nie et al., 2020),

this study further used the experimental module of LncBase

TABLE 1 Main clinicopathological characteristics of the 255 SARC
patients.

Characteristic Number of
patients (N = 255)

Age

Mean (SD) 60.7 (14.7)

Sex, n (%)

Female 138 (54.1%)

Male 117 (45.9%)

Race, n (%)

Asian 6 (2.4%)

Black or African American 18 (7.1%)

White 223 (87.5%)

Unknown 8 (3.1%)

Cancer status, n (%)

Tumor free 128 (50.2%)

With tumor 98 (38.4%)

Unknown 29 (11.4%)

Radiation therapy, n (%)

Yes 68 (26.7%)

No 176 (69.0%)

Unknown 11 (4.3%)

Cancer type, n (%)

Dedifferentiated
liposarcoma

59 (23.1%)

Desmoid/aggressive
fibromatosis

2 (0.8%)

Leiomyosarcoma 100 (39.2%)

Malignant peripheral nerve
sheath tumor

9 (3.5%)

Myxofibrosarcoma 25 (9.8%)

Synovial sarcoma 10 (3.9%)

Undifferentiated pleomorphic
sarcoma/malignant fibrous
histiocytoma/high-grade
spindle cell
sarcoma

50 (19.6%)
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database (http://carolina.imis.athena-innovation.gr/diana_

tools/web/index.php?r = Lncbasev2%2Findex-experimental),

an online database, to predict the upstream lncRNAs that

may interact with the 27 key miRNAs (hsa-miR-124-3p, hsa-

miR-455-3p, hsa-miR-34a-5p, hsa-miR-214-5p, hsa-miR-124-

5p, hsa-miR-302a-5p, hsa-miR-3202, hsa-miR-125a-3p, hsa-

miR-224-3p, hsa-miR-4999-5p, hsa-miR-6766-5p, hsa-miR-

6808-3p, hsa-miR-3133, hsa-miR-6885-3p, hsa-miR-1298-3p,

hsa-miR-5692c, hsa-miR-378f, hsa-miR-378b, hsa-miR-5693,

hsa-miR-3612, hsa-miR-6515-3p, hsa-miR-361-5p, hsa-miR-

5008-3p, hsa-miR-6865-3p, hsa-miR-193b-3p, hsa-miR-23c,

and hsa-miR-196b-5p), and a total of 1,552 lncRNAs were

obtained (Supplementary Table S3). Then, the matrix

expressions of 21 m6A genes and 14,789 lncRNAs were

abstracted from TCGA database. We defined the lncRNAs

that were significantly related to one of the 21 m6A genes

(Pearson R > 0.4 and p < 0.001) as m6A-related lncRNAs.

Finally, 1,028 lncRNAs were discerned as the m6A-related

lncRNAs (Supplementary Table S4). Also, the predicted

lncRNAs were then intersected with these m6A-related

lncRNAs to select the m6A-related lncRNAs (n = 104) that

interacted with 16 m6A-related miRNAs. Cytoscape was used to

construct an lncRNA–miRNA regulatory network, including

189 lncRNA–miRNA pairs (Figure 5).

FIGURE 3
Correlation between the expression levels of m6A-related genes and overall survival (OS) rates in SARC patients (N = 245). (A)Univariate analysis
of m6A-related genes associated with OS; (B) and multivariate analysis of m6A-related genes associated with OS.

FIGURE 2
Interactions and correlations among m6A RNA methylation regulators in SARC. (A) PPI network was constructed to evaluate the interactions
among m6A RNA methylation regulators; and (B) Pearson correlation analysis was used to analyze the correlations among m6A RNA methylation
regulators.
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Construction of an m6A-related
competing endogenous RNA (ceRNA)
network

Based on the results mentioned previously, the miRNA–mRNA

and lncRNA–miRNA were selected to establish an m6A-associated

ceRNA network that contained 104 lncRNAs, 16 miRNAs, and

11 mRNAs (Figure 6). We searched the lncRNAs and miRNAs in

our study in the m6A-Atlas database (Tang et al., 2021), RMBase

v2.0 (Xuan et al., 2018) andWHISTLE (Chen et al., 2019b) database,

which were used to predict m6A methylation sites in these RNAs.

The search results (Supplementary Tables S6, S7) showed that most

lncRNAs in this study had potential methylation sites. However, we

did not retrieve the potential m6A methylation sites of miRNAs in

these libraries. Detailed information of the ceRNA network is listed

in Supplementary Table S5.

Construction of a risk model according to
m6A-related RNAs in SARC patients

A total of 244 patient samples were included in the whole

dataset. A total of 16 miRNAs, 104 lncRNAs, and 11 m6A

regulators (mRNAs) in the ceRNA network were selected as

candidate biomarkers for the following step analysis. The result

of univariate survival analysis showed that five m6A-related

lncRNAs (RP11-46C24.7, RP11-283I3.6, SLC25A21-AS1,

RP11-81A1.6, and RP11-346C20.4), two m6A-related miRNA

(hsa-miR-455-3p and hsa-miR-124-3p), and one m6A regulator

(CBLL1) were associated with SARC prognosis (p < 0.1). Among

these biomarkers, hsa-miR-455-3p (miRNA), hsa-miR-124-3p

(miRNA), and CBLL1 (mRNA) were considered as risk

biomarkers (HR > 1). Subsequently, to obtain the most useful

predictive features, LASSO Cox regression analysis was

performed on eight genes (Figures 7A,B). Based on the final

Cox regression model results (Table 2), we selected 3 genes (hsa-

miR-455-3p, CBLL1, and RP11-283I3.6) with p < 0.1 to construct

the risk score model. Furthermore, we calculated the risk score

(m6Ascore) of each sample based on the risk score model, and

the formula was shown as follows:

Risk score = (0.09964) * hsa-miR-455-3p + (0.84723) *

CBLL1 + (−0.35103) * RP11-283I3.6.

Patients with SARC were divided into the low-risk or high-

risk groups with the optimal cutoff (2.492404) of the risk score.

The Kaplan–Meier (KM) curve analysis result showed that the

low-risk group had a better prognosis than the high-risk group

FIGURE 4
MiRNA–mRNA interaction network of m6A genes.
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(p = 0.00038) (Figure 7C). The distribution of risk score between

low-risk and high-risk groups is depicted in Figure 7D, and a

survival status map was plotted to demonstrate the status for each

sample using TCGA sarcoma dataset values. A time-dependent

ROC curve was performed to evaluate the sensitivity and

specificity of the risk score. The m6A-related signature’s AUC

values were 0.638 (0.515, 0.761), 0.663 (0.578, 0.749), and 0.679

(0.585, 0.773), respectively, for an OS of 1, 3, and 5 years (Figures

7E–G). This indicates that our risk score model could be used to

predict SARC patient survival.

m6Ascore was associated with the SARC
immune landscape

Our study explored the relationship between m6Ascore and

the biological process of SARC, for which we conducted GSEA.

GSEA using TCGA data of the hallmark gene sets indicated that

in the two cohorts, DNA repair, E2F targets, G2M checkpoint,

mitotic spindle, mTORC1 signaling, MYC targets v1, MYC

targets v2, oxidative phosphorylation, protein secretion, and

unfold protein response were significantly enriched in the

high-risk group (the top ten pathways are shown in

Figure 8A), while the angiogenesis was significantly enriched

in the low-risk group (the one pathway is shown in Figure 8A; red

line). This finding provided insights into the potential biological

processes and signaling pathways modulated by m6A-related

RNAs in SARC.

The expression of immune checkpoints was used to predict

immunotherapeutic benefits in multiple malignancies. Next, the

study was aimed to explore whether m6Ascore could predict

immunotherapeutic benefits in SARC patients. We analyzed the

correlation between the high- and low-m6Ascore groups and

50 immune checkpoints. The expression of CD44 and

VTCN1 was increased in the high-m6Ascore group, while the

expression of TMIGD2, TNFRSF18, TNFRSF25, TNFRSF4,

TNFRSF8, and NRP1 was increased in the low-m6Ascore

group (Figure 8B). A chord chart was used to display the

correlation between m6Ascore and immune checkpoint

molecules. The results showed that m6Ascore was negatively

correlated with the expression of TMIGD2, TNFRSF18,

TNFRSF25, TNFRSF4, TNFRSF8, and NRP1 (Figure 8C),

indicating that the poor prognosis of high-m6Ascore patients

might be due to the tumor immunosuppressive

microenvironment. We also investigated the differences in the

distribution of infiltrating immune cells between the high-risk

FIGURE 5
MiRNA–lncRNA regulatory network associated with m6A genes in SARC.
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and low-risk groups using CIBERSORT, ESTIMATE, ssGSEA,

and TIMER algorithms. ESTIMATE score and immune cell

types, which were differentially infiltrated between the low-

and high-risk groups, are presented in Figure 8D. To analyze

the composition of immune cells in different m6Ascore

subgroups, we used the Wilcoxon rank-sum test to compare

the distribution of immune cells in different m6Ascore

subgroups. The results showed that only in CIBERSORT

algorithm, the abundance of immune cells including

macrophages M0 (p < 0.05) and T-cell CD4 memory

activated (p < 0.05) was highly infiltrated in the high-

m6Ascore subgroup, while monocytes (p < 0.05) and mast

cells activated (p < 0.05) were more abundant in the low-

m6Ascore subgroup (Figure 8E). Totally, these findings

suggest that there are significant associations between

m6Ascore and the tumor immune landscape in SARC.

Mutation status in SARC patients in the
high- and low-m6Ascore groups

To investigate m6Ascore-related mechanisms in SARC, somatic

mutations data were also analyzed. The frequency of mutations in

top 20 genes between the two groups is shown in Figure 9A. A

significant mutually exclusive phenomenon was observed among

mutations of these genes (Figure 9B). Subsequently, differentially

mutated genes between the two groups were detected, and the

“maftools” package analysis result showed that CSMD1was the only

one significant differentially mutated gene detected between the

high- and low-m6Ascore cohorts (Figure 9C). The

CSMD1 mutation burden in the low-m6Ascore subtype was

significantly higher than that in the high-m6Ascore subtype.

We further found that there was no significant correlation

between m6Ascore and TMB (Figure 10A). Also, there was no

significant difference in TMB between the patients with high

m6Ascore and those with low m6Ascore (Figure 10B). However,

we found that low TMB was associated with good OS (Figure 10C,

log–rank test, p = 0.0045). Subsequently, we explored whether the

combination of m6Ascore and TMB could be a more powerful

predictive biomarker for prognosis. We integrated m6Ascore and

TMB to stratify all the samples into the high-TMB/low-m6Ascore,

low-TMB/low-m6Ascore, high-TMB/high-m6Ascore, and low-

TMB/high-m6Ascore groups. As shown in Figure 10D,

significant differences were found among all groups (log-rank

test, p < 0.0001), and patients in the high-TMB/high-m6Ascore

group exhibited poor OS. These results together strongly

demonstrated that the risk score was positively correlated with

tumor malignancy. Next, the “maftools” R package was used to

analyze and summarize the mutation data. The top 20 driver genes

with the highest alteration frequency between the aforementioned

subgroups are shown in Figure 10E.

FIGURE 6
Construction of a network of lncRNA–miRNA–m6A
regulators.
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m6Ascore prediction of response to
chemotherapy and immunotherapy

To find the potency of m6Ascore as a biomarker for predicting

the response of SARC patients to drugs (including chemotherapy,

targeted therapy, and immunotherapy), we used the “pRRophetic”

algorithm to estimate the therapeutic response based on the half-

maximal inhibitory concentration (IC50) available in the Genomics of

Drug Sensitivity in Cancer (GDSC) database for each sample. We

inferred the IC50 values of the 138 drugs in TCGA-SARC patients.

Finally, we found that 69 compoundswere screened out for significant

differences in the estimated IC50 values between the two groups, and

the high-risk group wasmore sensitive to these compounds including

ATRA, cyclopamine, JNK inhibitor, PD173074, and QS11,while the

low-risk group was more sensitive to the remaining compounds

(Supplementary Figures S1–S3). Figures 11A-N display the top

14 compounds that might be used for further analysis in patients

with SARC. In terms of response to immunotherapy, we used the

TIDE algorithm to assess the potential clinical efficacy of

immunotherapy in different m6Ascore subgroups. The TIDE

algorithm assessed expression signatures of T-cell dysfunction and

T-cell exclusion to assess tumor immune evasion and integrated them

into the TIDE total score. In addition, the TIDE module was used to

analyze multiple signatures to estimate tumor immune evasion, such

as MDSC, M2 TAM, or CAF signatures. In our results (Figure 11O),

the high-m6Ascore subgroup had a relatively higher T-cell exclusion

score (p < 0.05), but there was no difference in the T-cell dysfunction

scores between the two subgroups (p > 0.05). For other features

produced by TIDE, although there was no significant difference in

M2 TAM and CAF features between the two groups, the low-risk

group had a relatively lower trend, and a lower proportion of MDSC

was associated with the low-risk group (p < 0.05). These results

suggest that SARC patients in the high-risk group may have a higher

potential for the immunosuppressive TME status and be less

responsive to ICI therapy. These findings identified the promising

role of this risk signature as a predictor for chemotherapy and

immunotherapy efficacy in the treatment of SARC patients.

Construction and evaluation of the
nomogram predicting OS based on the
m6A-related signature

To confirm whether the m6A-related signature for OS was

an independent prognostic factor, univariate and multivariate

Cox regression analyses were performed (Table 3). As the

results showed, in the univariate Cox regression analysis,

m6Ascore, age, and cancer status were significantly

associated with the OS of sarcoma patients. Then,

m6Ascore, age, and cancer status were identified as

independent prognostic factors of sarcomas via multivariate

Cox regression analysis. All these independent factors were

combined to establish a nomogram for predicting the 1-, 3-,

and 5-year OS (Figure 12A). As shown in Figure 12A,

m6Ascore contributes more to the total score than other

variables. The 1-, 3-, and 5-year OS rates of patients

declined as the total score increased. The C-index of the

nomogram model reached 0.744 (95% CI: 0.707–0.784).

The calibration plots showed that the nomogram model

predicted the overall survival of patients with SARC well

(Figure 12B). We compared the clinical net benefit of the

nomogram through DCA curves. The nomogram

demonstrated a larger net benefit within most of the

threshold probabilities (Figures 12C–E), indicating that the

nomogram had high potential clinical utility for predicting

prognosis in patients with SARC. Finally, Figures 12F–H show

the predictive potential of the nomogram using time-

dependent ROC curves. The area under the ROC curve

(AUC) of the nomogram model for OS was 0.693 at 1 year,

0.772 at 3 years, and 0.834 at 5 years.

TABLE 2 Cox proportional hazard regression analysis and LASSO of eight genes.

Gene Univariate Cox regression analysis LASSO coefficient Multivariate Cox regression
analysis

HR 95% CI P HR 95% CI P

hsa-miR-455-3p 1.13 1.03–1.23 0.013 0.09173461 1.11 1.00–1.22 0.040

RP11-46C24.7 0.64 0.45–0.91 0.014 −0.23437212 0.78 0.50–1.20 0.251

RP11-283I3.6 0.67 0.45–0.98 0.039 −0.31135641 0.70 0.47–1.06 0.091

SLC25A21-AS1 0.74 0.55–0.99 0.040 −0.10453847 0.89 0.60–1.33 0.575

CBLL1 1.60 1.00–2.54 0.048 0.75233906 2.33 1.43–3.81 0.001

RP11-81A1.6 0.75 0.56–1.01 0.057 −0.15084732 0.84 0.56–1.25 0.388

RP11-346C20.4 0.74 0.54–1.02 0.066 —

hsa-miR-124-3p 1.21 0.98–1.50 0.075 0.06160625 1.08 0.86–1.36 0.531

HR, hazard ratio; CI, confidence interval.
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Discussion

In the present study, the prognostic significance of 21 m6A

RNA methylation regulators in SARC was first explored. The

study showed that only CBLL1 was found to be an independent

risk factor for OS by univariate and multivariate Cox regression

analyses. Numerous studies have shown that m6A regulator-

related signatures and m6A regulator-related miRNA or lncRNA

signatures may serve as prognostic biomarkers in patients with

various types of cancer (Li et al., 2021c; Jin et al., 2021; Xu et al.,

2021). However, the expression and functional roles of m6A RNA

methylation regulators and their associated regulatory networks

in the occurrence and progression of SARC have not been widely

discussed. Therefore, in this study, bioinformatics was used to

analyze the existing sequencing datasets of integrated sarcoma,

and miRNAs and lncRNAs related to m6A regulators were

obtained through correlation analysis, and the upstream

miRNAs and lncRNAs of m6A regulators were determined

using miRTarBase and LncBase v.2 databases, respectively.

The two parts of the results of miRNAs and lncRNAs were

intersected to key miRNAs and lncRNAs, respectively. Finally, a

lncRNA–miRNA–m6A regulator ceRNA network was

FIGURE 7
Risk model fromm6A-related genes. (A-B) LASSO Cox regression analysis of eight m6A-related genes; (C) overall survival analysis for patients in
high/low-risk groups; (D) distributions of risk score, different patterns of survival status, and survival time between the high- and low-risk groups;
(E-G) and time-dependent ROC curves at 1, 3, and 5 years based on the m6A-related gene signature.
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constructed, which contained 104 lncRNAs, 16 miRNAs, and

11 m6A regulators. We should pay more attention to screening

out key lncRNAs, miRNAs, and m6A regulators that can predict

OS. Therefore, considering all these genes in the ceRNA network,

we performed univariate Cox regression analysis to identify genes

associated with clinical prognosis in sarcoma patients. Eight

genes were found to be significantly associated with clinical

outcomes in sarcoma. Finally, LASSO regression analysis and

multivariate Cox regression analysis were performed, and three

genes (RP11-283I3.6, hsa-miR-455-3p, and CBLL1) were

FIGURE 8
Function enrichment analysis for m6Ascore and immune landscape of different m6Ascore subgroups. (A) GSEA of samples with high or low
m6Ascore. Top ten significant pathways associated with high m6Ascore (p < 0.05 and FDR-adjusted q < 0.05, NES > 1.5). Significant pathways in the
red module are associated with lowm6Ascore (nominal p < 0.05 and FDR adjusted q < 0.05, NES < 1.5); (B) comparison of immune checkpoint gene
expression levels between the low-m6Ascore group and the high-m6Ascore group. *p < 0.05; **p < 0.01; ***p < 0.001; (C) correlation chord
chart shows the mutual correlation between m6Ascore and several prominent immune-checkpoint-relevant genes (CD44, VTCN1, TMIGD2,
TNFRSF18, TNFRSF25, TNFRSF4, TNFRSF8, and VTCN1); (D) heatmap for immune responses based on CIBERSORT, ESTIMATE, ssGSEA, and TIMER
algorithms among the high- and low-risk group; and (E) beeswarm plot for infiltration levels of immune cells in high- and low-risk samples through
the CIBERSORT. The statistical difference between the two groups was compared by theWilcoxon rank-sum test. *p < 0.05; **p < 0.01; ***p < 0.001.
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identified as prognostic biomarkers for SARC, and the three

genes were included in the risk scoring model for predicting OS

for SARC.

By searching for these genes in the PubMed database, it is

found that the mechanisms of hsa-miR-455-3p and CBLL1 in

tumor progression or studies related to tumor progression have

been reported. The aberrant expression of hsa-miR-455-3p and

its prognostic value have been widely reported in various types of

human cancers. In our study, hsa-miR-455-3p served as a risk

biomarker for SARC, consistent with the results of

bioinformatics analysis by Wang et al. (2019), which showed

that the differential expression level of miR-455-3p was the most

significant in gliomas. Subsequently, its expression in glioma

patients was examined. Consistent with the results of

bioinformatics analysis, the expression level of miR-455-3p

was significantly upregulated in glioma tissues compared with

normal tissues. Cox regression analysis further identified miR-

455-3p as an independent prognostic indicator of overall survival

in glioma patients. hsa-miR-455-3p is overexpressed in skin basal

cell carcinoma (BCC) (Sand et al., 2012). However, the

expression of miR-455-3p is obviously decreased in the tissues

and cells of hepatocellular carcinoma (HCC). This miRNA can

impair HCC cell malignancy via suppression of insulin growth

factor receptor expression, thereby disrupting glycolysis (Hu

et al., 2019; Jiang et al., 2019). Gao et al. (2018), Yang et al.

(2017), and Shang et al. (2021) reported that low expression of

miR-455-3p in non-small-cell lung cancer, esophageal squamous

cell carcinoma (ESCC), and pancreatic cancer (PAAD) tissues

was strongly associated with poor prognosis. miR-455-3p acts as

a tumor suppressor in esophageal squamous cell carcinoma

(ESCC) and inhibits cell proliferation and invasion by

targeting FAM83F. miR-455-3p is involved in increasing the

FIGURE 9
Mutation patterns of SARC patients. (A) Mutational patterns of 169 SARC patients in the low- and high-m6Ascore groups displayed by the
oncoplot; (B) interaction effect of genes mutating differentially in patients in the low- and high-m6Ascore groups; and (C) forest plot of genes
mutating differentially in patients of the low- and high-m6Ascore groups.
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expression of HOXC4, promoting transcriptional disorders in cancer.

The miR-455-3p–HOXC4 axis is expected to be closely related to the

metastasis and prognosis of human pancreatic cancer. Yi et al. (2020)

and Sun et al. (2020) together showed that the expression ofmiR-455-

3p was decreased in osteosarcoma tissues and cell lines. Patients with

high miR-455-3p expression had satisfactory survival rates. miR-455-

3p is a potential clinical therapeutic target and prognostic biomarker

inhibiting proliferation, migration, and invasion and enhancing

apoptosis. However, Hisaoka et al. (2011) showed that, compared

to normal skeletal muscle, hsa-miR-455-3p was significantly

FIGURE 10
Relationship of the m6Ascore signature with TMB. (A) correlation between the m6Ascore signature and TMB depicted by scatter plots; (B)
comparison of TMB between the high- and low-m6Ascore groups; (C) KM survival curves for the high- and low-TMB groups stratified at the optimal
cutoff in TCGA-SARC cohorts (log-rank test, p = 0.0045); (D) Kaplan–Meier survival analysis for four groups stratified by combining the TMB and the
m6Ascore signature in TCGA-SARC cohort; and (E)waterfall plot of tumor somatic mutation established by stratifying with m6Ascore and TMB.
Each column represents an individual patient. Group1, high TMB /high m6Ascore, green; Group2, high TMB/low m6Ascore, red; Group3, low TMB/
high m6Ascore, purple; and Group4, low TMB/low m6Ascore, yellow. The mutational types include frame shift del, frame shift ins, in-frame del, in-
frame ins, missense mutation, multi-hit, nonsense mutation, and splice site.
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upregulated in synovial sarcomas, suggesting that the molecule has a

potential oncogenic role, which calls for further investigation to

develop a better understanding of the oncogenic mechanisms. Our

finding is consistent with this study.CBLL1 plays an important role in

tumorigenesis. Hui et al. (2019) found thatCBLL1was upregulated in

non-small-cell lung cancer (NSCLC) tissues compared to the adjacent

nontumor tissues, and the high expression of CBLL1 was associated

with the tumor size in NSCLC tissues. Their results confirmed that

CBLL1 promoted the proliferation by promoting G1/S cell cycle

transition in NSCLC cells. Moreover, CBLL1 knockdown inhibited

cell invasion via increased E-cadherin protein expression and

decreased expression of MMP2 and MMP9 in NSCLC cell lines.

Previous studies found thatCBLL1, an E3 ubiquitin ligase, inhibits ER

pathway activity by binding to an ER co-activator and then further

inhibits the proliferation and differentiation of BC cells (Makdissi

et al., 2009). Zheng et al. (2021) confirmed that higher CBLL1

expression was associated with a better prognosis in BC than

lower CBLL1 expression. Functional analysis showed that CBLL1

FIGURE 11
Correlation betweenm6Ascore and therapy. (A–N) IC50 of some chemotherapeutic drugs are in the high- and low-risk patients. *p <0.05; **p <
0.01; ***p < 0.001; (O) TIDE prediction difference in the high- and low-risk patients. *p < 0.05; **p < 0.01; ***p < 0.001.
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was related to the ESR1-related pathway, apoptosis-related pathway,

cell cycle pathway and immune-related pathway in BC. Although

there is no report on the correlation between the expression of RP11-

283I3.6 and CBLL1 and SARC progression, based on our results, we

speculate that they may be potential biomarkers for sarcoma

prognosis. The mechanism of action of these genes in sarcoma is

unclear and requires further follow-up studies. Subsequently, based on

this risk score feature, we divided all SARC patients into the high-risk

and low-risk groups, andKM survival analysis showed that patients in

the low-risk group had significantly higher OS than those in the high-

risk group. The time-dependent AUC indicated that the risk scoring

model had good predictive performance for OS.

The molecular heterogeneity features between high- and low-risk

patients were further analyzed. GSEA showed that DNA repair, E2F

targets, G2M checkpoint, mitotic spindle, mTORC1 signaling, MYC

targets v1, MYC targets v2, oxidative phosphorylation, protein

secretion, and unfold protein response were significantly enriched

in the high-risk specimens. Meanwhile, activation of angiogenesis was

detected in low-risk specimens. The tumor immune

microenvironment comprising stromal cells and immune cells

correlates with immunotherapy response (Zhou et al., 2020).

Components of the immune microenvironment are key

determinants of prognosis and response to immunotherapy (Das

et al., 2020). Immunotherapy is an emerging new approach to

treating a variety of cancers, including sarcomas. Exploring which

patient can benefit from immunotherapy remains a great challenge.

Here, the association between immune cell infiltration and this risk

score was comprehensively analyzed using the CIBERSORT,

ESTIMATE, ssGSEA, and TIMER algorithms in the present study.

Compared with patients in the high-risk group, the low-risk patients

had higher levels of monocytes and mast cells activated and decreased

levels of macrophages M0 and T-cell CD4 memory activated

infiltration. The infiltration of M0 macrophages is positively related

to poor clinical outcomes in human malignancies, including STS,

which is in accordance with the findings of our study (Zhu and Hou,

2020). Thus, the worse clinical outcomes of the high-risk groupmay be

associated with infiltrating immune cellular populations. In addition,

expression levels of several immune checkpoints, including TMIGD2,

TNFRSF18, TNFRSF25, TNFRSF4, TNFRSF8, and NRP1, were also

higher in the low-risk group. These data were indicative of this risk

signature being closely related to immunotherapy. m6Ascore may be

used as an indicator independent of TMB expression to predict the

efficacy of ICB. Tumor mutational burden (TMB) has been identified

as a biomarker of immunotherapy response (Hellmann et al., 2018a;

Hellmann et al., 2018b), where higher TMB predicts higher benefits

from immunotherapy (Hellmann et al., 2018a). However, the

prognostic value of TMB varies across cancer types according to a

pan-cancer study (Ding et al., 2018). In bladder urothelial carcinoma

(BLCA), stomach adenocarcinoma (STAD), and uterine corpus

endometrial carcinoma (UCEC), high TMB is associated with

longer overall survival (OS). In HNSCC, kidney renal clear cell

carcinoma (KIRC), and low-grade glioma (LGG), high TMB is

associated with shorter OS. The Cox regression result of TMB in

SARC patients showed that HR (95% CI) was 1.25 (0.63–2.49). In the

TABLE 3 Univariate and multivariate Cox regression analysis of the overall survival (OS) of patients with SARC.

Variable Univariate analysis Multivariate analysis

HR 95% CI P HR 95% CI P

m6Ascore 2.58 1.62–4.11 <0.0001 3.08 1.84–5.17 <0.0001
Age 1.02 1.01–1.04 0.009 1.02 1.00–1.03 0.054

Sex

Female 1

Male 0.79 0.52–1.19 0.263

Cancer status

Tumor free 1 1

With tumor 6.07 3.54–10.43 <0.0001 6.41 3.71–11.07 <0.0001
Unknown 3.33 1.61–6.89 0.001 3.68 1.75–7.76 0.001

Race

Asian 1

Black or African American 1.08 0.13–8.87 0.944

White 0.79 0.11–5.75 0.813

Unknown 3.41 0.35–32.9 0.288

Radiation therapy

No 1

Yes 0.83 0.52–1.33 0.441

Unknown 0.38 0.05–2.76 0.341

HR, hazard ratio; CI, confidence interval.
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present study, patients with lower TMB had better prognosis than

SARC patients with higher TMB, which is consistent with the trend of

pan-cancer research. The significance of the results may be that the

selected threshold is different. However, we did not observe a

significant correlation between m6Ascore and TMB, nor did we

observe a significant difference in the distribution of TMB between

patients in the two different risk groups. Themain reason is that with a

threshold of p< 0.05, using Fisher’s exact test,CSMD1was the only one

significant differentially mutated gene detected between the high- and

low-m6Ascore cohorts, andCSMD1was found to bemutatingmore in

the low-m6Ascore group, which resulted in a similar gene mutation

status in the two groups. These findings suggested that TMB and

m6Ascore are independent biomarkers/indicators for predicting ICB

response. Interestingly, the combination of TMB and the risk

characteristic we constructed can more clearly and accurately

stratify SARC patients. Compared with other subgroups, patients

with high TMB/high m6Ascore have the worst prognosis, which

also shows that the TMB status does not affect the prognostic value

of m6Ascore. m6Ascore has the potential to predict immunotherapy

responsiveness, whichmaybe independent of TMB (Zhang et al., 2020;

Guan et al., 2021; Lin et al., 2021; Sun et al., 2021; Wu et al., 2021). In

addition, the TIDE results suggested that the patients in the low-risk

groupmay respond better to immunotherapy. Based on estimated IC50

values, the patients in the low-risk group showed sensitive

FIGURE 12
Construction and validation of the nomogram. (A)Nomogram based on themultivariate Cox regression model of SARC patients; (B) calibration
plots for the internal validation of the current nomogram; the x-axis represents the nomogram-predicted overall survival, and the y-axis represents
the actual overall survival of patients with SARC; (C–E) DCA of the nomogram based on m6Ascore for 1-, 3- and 5-year OS prediction; and (F–H)
time-dependent ROC curves of nomogram, m6Ascore, cancer status, and age at 1, 3, and 5 years.
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chemotherapy responses tomost drugs. Taken together, these findings

suggest that this risk signature may play a role in the ICB treatment of

SARC. Subsequent studies further confirmed that risk characteristic is

independent prognostic factors in patients with sarcoma. Based on risk

score and other clinically independent predictors, a nomogram for

personalized clinical outcome prediction was established in the study,

whichwas certified to performwell for predicting the 1-, 3-, and 5-year

survival rates of SARC patients, showing a C-index of 0.744 (95% CI:

0.707–0.784).

Although potential biomarkers involved in tumorigenesis in

a large number of samples were identified by the bioinformatics

approach, it should be noted that this study also has some

limitations as follows: 1) due to the lack of RNA-seq or

microarray data in SARC patients, only TCGA data were

included. Also, the SARC samples lacked some additional

clinical follow-up information; therefore, factors such as the

presence of other health conditions in patients to differentiate

prognostic biomarkers were not included. 2) We internally

verified the nomogram prediction model based on m6Ascore,

and the findings of this study would be more meaningful if this

model could be well validated externally with another real-world,

independent, large-quantity, and high-quality cohort, and thus, a

more diverse patient population could be extrapolated. However,

the application of the prognostic prediction model based on

m6Ascore required four types of data, namely, clinical data,

RNA-seq (mRNAs and lncRNAs), and miRNA-seq, which

involves high costs and is not easily feasible in practice. 3)

Most importantly, experimental validation is needed to

confirm these results and further explore the potential

mechanism and role of these potential biomarkers in SARC.

However, our findings showed that the nomogram model based

on m6Ascore may be promising for clinical prediction of

prognosis and might contain potential biomarkers for

treatment response prediction for SARC patients, which

remains an instructive and efficient way for predicting the

accurate individual clinical outcomes of SARC patients.

Conclusion

In conclusion, in our study, a ceRNA network based on

m6A-related genes was successfully constructed through

bioinformatics analysis of TCGA database. Candidate biomarkers

in the ceRNA network were used to establish a risk profile of

m6A-related RNAs, which is significantly associated with the

prognosis and immune microenvironment of SARC, and could

effectively predict the prognosis and treatment efficacy of STSs.

The results of this study suggest that these markers may play an

important role in the therapeutic target and prognostic analysis of

sarcoma patients.
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