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Renal cell carcinoma is one of the most common tumors in the urinary system, among
which clear cell renal cell carcinoma is the most common subtype with poor prognosis. As
one of the tumors closely related to lipid metabolism, the role of fatty acid metabolism in
ccRCC was investigated to predict the prognosis and guide treatment strategies. RNA-
seq and clinical information of patients with ccRCC and expression microarray of human
renal cell carcinoma cell lines were obtained from TCGA and GEO databases. Fatty acid
metabolism-related risk signature was established by the univariate Cox regression and
LASSO analysis to predict patient prognosis and response to different treatment
modalities. Using the fatty acid metabolism risk signature, the risk score for each
sample in the TCGA cohort was calculated and divided into high-risk and low-risk
groups, with the cutoff point being the median. Patients with higher risk scores had a
poorer prognosis than those with lower risk scores. The response of each sample to
immunotherapy was predicted from the “TIDE” algorithm, while the sensitivity of each
sample to sunitinib was obtained using the “pRRophetic” R package. Patients with lower
risk scores had higher expression of PD-L1 and better efficacy for sunitinib than those in
the high-risk group and were less likely to develop drug resistance, while patients with
high-risk scores had a strong response to the anti-CTLA4 antibody therapy. A nomogram
was constructed by independent prognostic factors to predict the 1-, 3-, and 5-year
survival. According to the calibration curves, the nomogram had an excellent ability to
predict survival for patients with ccRCC. Therefore, the fatty acid metabolism risk signature
we established can not only predict the survival of patients with ccRCC but also predict
patient response to targeted therapy and immunotherapy to provide optimal treatment
strategies for patients.

Keywords: lipid metabolism, immunotherapy, sunitinib-resistant, clear cell renal cell carcinoma, risk model

Abbreviations: ccRCC, clear cell renal cell carcinoma; DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; GSVA, the Gene Set Variation Analysis; ssGSVA, the single-sample Gene Set Variation
Analysis; TMB, Tumor Mutation Burden; TIDE, Tumor Immune Dysfunction and Exclusion; OS, overall survival.
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INTRODUCTION

Renal cell carcinoma (RCC) is one of the most common
malignancies in the urinary system and accounts for >90% of
cancers in the kidney (Siegel et al., 2019). Clear cell renal cell
carcinoma is the most common subtype and accounts for most
cancer-related deaths (Hsieh et al., 2017). Localized ccRCC can be
treated with partial or radical surgical resection, but more than
30% of patients will eventually develop metastasis after surgery,
which requires systemic therapies including immunotherapy,
targeted therapy, and chemotherapy (Nerich et al, 2014).
However, resistance to drugs such as sunitinib has
undermined the effectiveness of targeted therapy (Joosten
et al.,, 2015).

Metabolic reprogramming is a hallmark of malignancy.
Increased lipid uptake, storage, and lipogenesis occur in RCC
and contribute to rapid tumor growth (Faubert et al., 2020).
Lipids are widely distributed in cellular organelles and are critical
components of all membranes. Abnormal de novo fatty acids
(FAs) and cholesterol biosynthesis supply the membrane and
energy substrates for rapidly growing tumor cells and
continuously adapt to a variety of microenvironmental
conditions conducive to tumor growth (Cheng et al., 2018;
Bacci et al, 2021). In most tumors, the process of lipogenesis
is upregulated for the energy needs of tumor cells (Guo et al.,
2013). Moreover, lipid uptake and storage are also upregulated in
most tumors (Zhao et al., 2017). Fatty acids can be used as
substrates to generate large amounts of ATP through f oxidation
processes, thereby energizing tumor cells (Betz and Enerbick,
2018). Intriguingly, recent studies have found that lipid
autophagy in renal carcinoma cells can effectively inhibit
tumor progression (Xiao et al., 2019). In summary, the lipid
metabolic process in renal carcinoma cells is closely related to
tumorigenesis and tumor progression, and the specific
mechanism of this process remains unclear.

In recent years, an increasing number of studies have found that
lipid metabolism also plays a key and complex role in resistance to
antitumor therapy (Cao, 2019). Lipid anabolic rewiring supports
disease relapse and drug resistance. Multiple signaling pathways and
multiple metabolites of lipid metabolism can all affect the efficacy of
tumor therapy and eventually lead to emergence of drug resistance by
altering the tumor microenvironment (Bacci et al, 2021). For
example, it has been shown that the metabolism of long-chain FA
sapienate is enhanced in a variety of solid tumors, accompanied by
upregulation of lipid-modifying enzymes, which allows the insertion
of a double bond into the acyl chain of FA, thereby bypassing
potential antitumor therapy (Peck and Schulze, 2016).The
reprogramming of lipid metabolism and changes in the tumor
microenvironment not only play a key role in tumor progression
but also affect the therapeutic effect of tumors.

In recent years, there is growing evidence of a close
relationship between immune cell responses and metabolic
reprogramming (Lee et al., 2018). Evidence has shown that
some tumor cells increase the uptake of fatty acids, which is
directly correlated with CD8" T cell suppression. In addition, the
researchers also observed that the combined treatment of the
inhibitor of fatty acid transporter 2 (FATP2), lipofermata, with
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ICIs (anti-CTLA4 antibody), can effectively inhibit tumor
progression (Veglia et al., 2019). This suggests that tumor
microenvironmental conditions, cellular metabolic
reprogramming, and infiltrating immune cells all have
overlapping effects and influence the response to treatment
(Bleve et al, 2020). The emerging research field of
immunometabolism  also  brings new  prospects for
immunotherapy in the treatment of tumors.

Lipid metabolism, especially fatty acid metabolism, has an impact
on tumor development, progression, drug resistance, and
immunotherapy, so we wonder if the characteristics of lipid
metabolism pathways can be used to predict the prognosis,
responsiveness to TKI (such as sunitinib), and sensitivity to
immunotherapy in patients with renal cancer. Also, the fatty
acid metabolism-related gene set in ccRCC has not been
systematically studied. Herein, we downloaded the
transcriptome profiling and clinical data of 538 clear cell
renal cell carcinoma samples and 72 normal kidney tissue
samples from the Cancer Genome Atlas (TCGA) portal. We
screen differentially expressed genes in three fatty acid
metabolism pathways and identified a prognostic signature
by using the univariate Cox regression analysis and
LASSO-penalized Cox analysis. The prognostic signature
independently predicted the overall survival and sensitivity
to sunitinib. Moreover, the signature could also predict
patient response to immunotherapy. These studies provide
a new perspective for prognostic prediction of ccRCC patients
and guide our choice of treatment methods through the level
of risk scores.

METHODS AND MATERIALS

Data Acquisition and Processing

The RNA-seq expression files and relevant clinicopathological
and survival data of TCGA-KIRC patients were acquired from the
TCGA database, including 538 ¢ccRCC and 72 normal kidney
tissue samples. All the transcriptome profiling included both
HTSeq-Counts and HTSeq-FPKM workflow types, and we
calculated the corresponding TPM using the following

formula: TPM; = ( ZF%II(VIM) x 10°. Moreover, the microarray
' j

data profiles of GEO: GSE183140 and GSE150404 were also
downloaded from the GEO database, the former consisting of
18 sunitinib-resistant renal cell lines and nine originator cell lines
and the latter including 60 expression data of clear cell renal cell
carcinoma samples at different pathological stages
(Supplementary Table S1). Similarly, clinical information of
each sample of GSE150404 was downloaded from the GEO
database.

Differentially Expressed Genes

The R package “edgeR” was used to identify differentially expressed
genes between 538 ccRCC samples and 72 normal tissue samples of
the TCGA cohort, and the cutoff point was defined as |logFC| > 1 and
p < 0.05.
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Establishment of a Fatty Acid Metabolism
Risk Signature

A total of 75 fatty acid metabolism-related genes were obtained
from the website (https://www.genome.jp/kegg/), and 23 genes
were included in the list of differentially expressed genes.
Univariate Cox regression analyses of these 23 genes were
performed to construct the risk model, and 10 genes met the
condition that p < 0.05. By using the “glmnet” R package, we
further screened out four genes credibly associated with the
prognosis of ccRCC patients to establish this risk model by
the LASSO-penalized Cox analysis. Coefficients of these four
genes (ACADM, ACATI1, CPT1B, and HACD1) were used to
calculate the risk score of each sample as shown in the following:

Risk score = (—0.0164225144171802) x ACADM
+ (—0.0062944739645312) x ACAT1
+ (0.338329366345878) x CPT1B
+ (0.45060041098045) x HACD1 (1)

Samples from the TCGA cohort and the GSE 150404 were
divided into a high-risk group and a low-risk group by the median
risk scores.

The Functional Enrichment Analysis

In the same way, as aforementioned, we screened for differentially
expressed genes between the high-risk group and low-risk group.
Using the “clusterProfiler” R package, we performed the GO and
KEGG functional enrichment analyses based on these
differentially expressed genes. In addition, the REACTOME
functional enrichment analysis was also performed by the
“ReactomePA” R package. The significant pathways were
determined by a cutoff value of p value < 0.05.

The Single-Sample Gene Set Variation
Analysis

“c2.cp.v7.5.1.symbols.gmt” was obtained as the reference gene
sets by using the “GSEABase” R package. The single-sample gene
set variation analysis of each sample in the high-risk group and
low-risk group was conducted by the “GSVA” R package. Thus,
differential pathways between the high-risk group and low-risk
group were obtained. FDR <0.05 indicated a statistically
significant pathway. Finally, five pathways related to fatty acid
metabolism were selected for further analysis.

Comparison of Somatic Mutation Profiles

The mutation landscape of 336 tumor samples from the “TCGA-
KIRC” project was evaluated using the “maftools” R package.
Meanwhile, mutation landscapes of 140 tumor samples in the
high-risk group and 184 samples in the low-risk group were
obtained. The tumor mutation burden (TMB) was measured
according to tumor-specific mutated genes (Budczies et al., 2019).

Establishment of a Nomogram
The univariate Cox regression and multivariate Cox regression
analysis were performed to screen the indicators for OS
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prediction. By using the “rms” R package, a nomogram with
the independent indicators such as age, pathological grade,
pathological stage, the AJCC M stage, and prognostic risk
score model was established for predicting OS in ccRCC. In
order to verify the predictive validity of the nomogram for OS,
calibration curves for 1-, 3-, and 5-year OS were constructed.

Survival Analysis

Differences between the high-risk group and low-risk group in
OS were represented by the Kaplan-Meier curve using the
“survival” and “surviminer” R packages.

Predicting Immune Cell Infiltration and

Response to Immunotherapy

“Cell Type Identification by Estimating Relative Subsets of RNA
Transcripts (CIBERSORT)” is an analytical tool developed by
Newman to provide an estimate of the abundance ratio of
member cell types in a mixed cell population using gene
expression data (Newman et al, 2015). The leukocyte
signature matrix (LM 22) was downloaded from the website
(https://cibersort.stanford.edu), which contained 547 genes that
distinguished 22 human hematopoietic cell phenotypes. Next, we
calculated the abundance ratio matrix of 22 immune cells of each
sample in the high-risk group and low-risk group and compared
whether the abundance of infiltration of 22 immune cells in the
two groups was significantly different.

The response to immunotherapy was mainly reflected in the
response to PD-L1 and CTLA4 inhibitors in our case. The Tumor
Immune Dysfunction and Exclusion (TIDE) (http://tide.dfci.
harvard.edu) algorithm could estimate multiple published
transcriptomic biomarkers to predict patient response (Jiang
et al.,, 2018). The response to immunotherapy of each sample
in the TCGA cohort was evaluated by the TIDE module.

The “pRRophetic” R package was used to predict the response
to the targeted drug sunitinib of each sample of the TCGA cohort.

Clinical Patient Samples

The seven paired clinical samples were all obtained from ccRCC
patients who underwent surgical treatment at the Department of
Urology, Union Hospital Affiliated to Tongji Medical College
(Wuhan, China) from 2016 to 2021. They had never received
preoperative chemotherapy or radiotherapy and informed
consent was signed. After the tumor tissues and matched
para-carcinoma renal tissues were isolated, both of them were
frozen in liquid nitrogen quickly to prevent total RNA and
protein degradation. The study was approved by the Human
Research Ethics Committee of Huazhong University of Science
and Technology. The study complies with the guidelines of the
Declaration of Helsinki.

Cell Culture and Establishment of
Sunitinib-Resistant Cell Lines

The two kinds of human renal cell carcinoma cell lines: 786-O
and CAKI-1 were used in this study and were purchased from the
American Type Culture Collection. The cells were grown in
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TABLE 1 | Primers of ACADM, ACAT1, CPT1B, HACD1, and GAPDH.
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Genes F 5'-3’ R 5'-3’

ACADM ACAGGGGTTCAGACTGCTATT TCCTCCGTTGGTTATCCACAT
ACAT1 TACCAGAAGTAAAGCAGCATGG TCATTCAGTGTACTGGCATTGG
CPT1B GCGCCCCTTGTTGGATGAT CCACCATGACTTGAGCACCAG
HACD1 GGTGTGGCTCATTACTCACAG GGTCAAGAAGGCTGAATGTGT
GAPDH GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCATACTTCTCATGG

Dulbecco’s modified Eagle’s medium containing high glucose
(4.5 g/L), fetal bovine serum (10%), and penicillin/streptomycin
solution (1%). All cells were cultured under standard conditions:
at 37°C in a 5% CO, atmosphere.

Sunitinib was purchased from MedChemExpress (Shanghai,
China), and the stock solutions (10 mmol/L) were prepared using
DMSO and stored at —20°C. 786-0O and Caki-1 cells were treated
with sunitinib at an initial concentration of 2.5 and 5 pm,
respectively, and the concentration of sunitinib was increased
stepwise by 0.5 pm to gradually establish sunitinib-resistant 786-
O (10 pm sunitinib) and Caki-1 (5 pm sunitinib) cells.

RNA Extraction and gRT-PCR

The clinical tissue specimens were prepared by grinding, while
cells were collected before mixing with the TRIzol reagent
(Thermo Fisher Scientific; Waltham, MA, United States) to
isolate and extract total RNA from tissues and cells. A reverse
transcription method was conducted to amplify the
corresponding mRNA we need. All the qPCR analyses were
performed using the Step One Plus (ABI; Thermo Fisher
Scientific, Rockford, IL, United States) platform using the
SYBR Green mix (Thermo  Fisher, Massachusetts,
United States). Primers of ACADM, ACAT1, CPT1B, HACDI,
and GAPDH were designed and purchased from TsingKe
(Wuhan, China) and could be traced in Table 1.

Statistical Analysis

The Wilcoxon rank-sum test was used to compare the difference
between the two groups. The K-W test was performed to compare
three or more groups. A chi-square test was performed for
comparison of categorical data, while Student’s t-tests were
used for continuous data. Statistical significance was defined as
p < 0.05. All statistical analyses were conducted using R 4.1.2.

RESULTS

Identification of Fatty Acid Pathway Risk

Signature

A total of 9447 differentially expressed genes were obtained by
comparing gene expression between 538 ccRCC samples and 72
normal tissue samples of the TCGA cohort. The differentially
expressed genes were analyzed with the “edgeR” R package and
under the condition that |logFC| > 1 and p < 0.05. Meanwhile, a
total of 75 fatty acid metabolism-related genes of three fatty acid
pathways (hsa00061: fatty acid biosynthesis, hsa00062: fatty acid
elongation, and hsa00071: fatty acid degradation) were

investigated, 23 of which were included in the aforementioned
differentially expressed genes (Supplementary Table S2). Ten of
these genes were significantly correlated with OS in the univariate
Cox regression analysis (p < 0.05). With the “glmnet” R package,
the Lasso-penalized Cox regression analysis then discerned the
four most available genes with nonzero coefficients to develop a
prognostic risk score model to independently predict the OS
outcome (Figures 1A,B). Coefficients of four genes (ACADM,
ACATI1, CPT1B, and HACD1) were used to calculate the risk
score of each sample (Figure 1C).

After removing the samples recorded with a survival time of 0,
the fatty acid pathway risk signature was constructed to
distinguish the 508 ccRCC samples into high risk and low risk.

A total of 508 samples were classified as the high-risk group
and low-risk group using the median value of the risk score as the
cut-off point (Figure 2A). To substantiate the prognostic
capability of this risk score model, we plotted the distribution
of risk scores and survival times of each sample by risk groups
(Figure 2B). As shown in the heatmap of the gene expression
profile, the expression of CPT1B and HACD1 was generally
higher in the high-risk group than in the low-risk group,
while the expression of ACADM and ACAT1 was significantly
lower in the high-risk group (Figure 2C). In addition,
Kaplan-Meier survival analyses of the high-risk group and
low-risk group were performed. Apparently, the OS of the
low-risk group was significantly longer than that of the high-
risk group (p < 0.001) (Figure 2D). As proved above, the risk
score model we constructed could predict the prognosis of
patients to a certain extent.

The Functional Enrichment Analysis of
High-Risk Group Samples and Low-Risk

Group Samples

To further illustrate the fatty acid pathway risk signature,
functional enrichment analysis was performed between the
high-risk group and the low-risk group. Functional
enrichment pathways were analyzed by differentially expressed
genes, which were obtained by comparing gene expression
between the high-risk group and low-risk group under the
condition that |logFC| > 1 and p < 0.05.

The reactome analysis mainly revealed the involvement of
hemostasis and the innate immune system (Figure 3A).

The GO-BP analysis showed that differentially expressed
genes were mainly enriched in humoral immune response, cell
recognition, phagocytosis recognition, humoral immune
response mediated by circulating and immunoglobulin
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FIGURE 1 | Establishment of fatty acid metabolism risk signature. (A) LASSO coefficient profiles for the 10 differentially expressed genes. (B) Optimal parameter (\)
was chosen by cross-validation. (C) Coefficient values of the four fatty acid metabolism-related genes screened by the LASSO analysis.

complement activation, etc. Moreover, the GO-CC analysis also
revealed the enrichment of cellular components such as
immunoglobulin ~ complex,  immunoglobulin  complex
circulating, and blood microparticle (Figures 3B,C).

The KEGG pathway analysis revealed the enrichment of the
neuroactive ligand-receptor interaction pathway,
cytokine-cytokine receptor interaction pathway, protein
digestion and absorption pathway (Figure 3D).

Functional enrichment analysis indicates that differentially
expressed genes between the high-risk group and low-risk groups
were mainly enriched in immune-related pathways and
hemostasis processes in ccRCC.

The Single-Sample Gene Set Variation
Analysis of the TCGA Cohort

The gene set enrichment score of each sample in the TCGA cohort
was calculated by the “GSVA” R package. Differential analysis of
pathway enrichment scores between the high-risk group and low-risk
group was performed under the condition that |logFC| > 0.5 and FDR
<0.05, and the volcano map of the differential pathways was plotted
(Figure 4A). We further analyzed five pathways (KEGG-fatty acid
metabolism, KEGG-biosynthesis of unsaturated fatty acids,
reactome—fatty acids, reactome-fatty acid metabolism, and
reactome—free fatty acids regulate insulin secretion) that were
closely related to fatty acid metabolism. As shown in the figures,
compared with the low-risk group, the enrichment scores of the high-
risk group in the four pathways of KEGG-fatty acid metabolism,
KEGG-biosynthesis of unsaturated fatty acids, reactome-fatty acids,
and reactome-fatty acid metabolism was predominantly higher, and
there were no significant differences between the low-risk group and
high-risk groups in the reactome-free fatty acids regulate the insulin
secretion pathway (Figures 4B-F). The result of the single-sample
gene set variation analysis (ssGSVA) elucidated that fatty acid
—metabolism-related pathways were more significantly enriched in
a high-risk group and suggested poorer clinical outcomes.

The Relationship Between Risk Score and
Clinical Characteristics

To investigate the relationship between clinical characteristics
and risk scores in patients with ccRCC, we, respectively, studied
whether there were significant differences in age, gender, grade,
pathological stage, and the AJCC TNM Classification of
Malignant Tumors (TNM) stage among different risk groups.
Obviously, there were no significant differences in risk score
associations with age and gender in c¢ccRCC patients, and we
observed that there was no correlation between the risk scores
and AJCC T-stages (Figures 5A,B,F). However, the clinical grade
(Figure 5C, p < 0.001), pathological stage (Figure 5D, p < 0.01),
AJCC T-stage (Figure 5E, p < 0.01), and AJCC M-stage
(Figure 5G, p < 0.01) were correlated with risk scores, which
indicated that the poorer the stage, the higher the risk scores. In
addition, the gene expression microarray of 60 ccRCC patients in
the dataset GSE150404 was analyzed to further validate the
relationship between risk scores and clinical characteristics.
We used the same formula to calculate the risk score for each
patient, and similarly, the risk score was associated with the
pathological stage (Figure 5H), which indicated that the high-risk
group had poorer prognosis than the low-risk group.
Unfortunately, the clinical information of samples of this
dataset contained only pathological stage and no other clinical
features and survival status of patients.

Subgroups were classified by age (age >65, age <65), gender
(female and male), pathological grade (G1-2, G3-4), pathological
stage (STAGEI-II; STAGE lll-1V), the AJCC T stage (T1-2, T3-4), the
AJCC N stage (NO, N1), and the AJCC M stage (M0, M1) in TCGA
cohorts. The Kaplan—Meier survival analysis of the high-risk group
and low-risk group was performed in each subgroup. As shown in the
figures, patients in the low-risk group had a longer overall survival
time than those in the high-risk group, except in the subgroup of the
AJCC NO stage (Supplementary Figures S3A-N). These fundings
convincingly revealed that the fatty acid metabolism signature could
be used to predict the prognosis, survival time, and survival status of
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risk scores and survival time and survival status. (C) Heatmap of the expression profile of the four genes. (D) K-M survival curve of the high-risk group and low-risk group.

ccRCC patients without considering the impact of the clinical
features.

Establishment of the Prognosis Nomogram
From the univariate Cox regression analysis, it could be seen that age,
pathological grade, pathological stage, AJCC T stage, AJCC N stage,
AJCC M stage, and risk scores were closely related to the prognosis of
ccRCC patients. Only one clinical characteristic, gender, did not show
a correlation with prognosis in the univariate Cox regression analysis
(Figure 6A). Furthermore, as shown in the multivariate Cox
regression analysis, age, pathological grade, pathological stage,
AJCC T stage, AJCC M stage, and risk score could serve as
independent  prognostic  indicators for ccRCC  patients

(Figure 6B). We then constructed a nomogram to predict 1-year,
3-year, and 5-year overall survival using these reliable independent
prognostic indicators (Figure 6C). The calibration curves at 1-year, 3-
year, and 5-year OS validated that the nomogram could achieve the
purpose of predicting the overall survival of ccRCC patients
(Figures 6D-F).

Immune-Related Characteristic and
Immunotherapy Response Between the
High-Risk Group and Low-Risk Group

The abundance ratio of immune cells for each sample was
obtained via the “Cell Type Identification by Estimating
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Relative Subsets of RNA Transcripts (CIBERSORT)”
algorithm. As shown in the figures, there were significant
differences in immune cell infiltration between the high-risk
group and low-risk group, such as memory activated T cells
CD4, monocytes, M1 macrophages, and resting mast cells,
which were high in the high-risk group. Intriguingly, plasma

cells, regulatory T cells (Tregs), and M0 macrophages were
more abundant in the low-risk group (Figure 7A,
Supplementary Figure S1). In addition, Figure 4B showed
that expression of PD-L1 was higher in the low-risk group
than in the high-risk group (Figure 7B, p < 0.05), which
indicates that low-risk group patients may have better efficacy
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with PD-1/PD-L1 immunotherapy, but there were no
significant differences in the expression of CTLA4 between
the high-risk group and low-risk group (Figure 7C, p = 0.36).

The somatic mutation profile of 270 ccRCC samples showed
that PBRM1, like VHL, was highly mutated in ccRCC and had a
potential co-occurrence with VHL (Figures 8A,B, p < 0.05).
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Moreover, the mutations of PBRM1, EP300, and MLLT4 were
more likely to occur in the low-risk group, while the mutation of
TRIOBP, FREM2, PLEC, PKHDIL1, and STAG2 was more likely

to occur in the high-risk group (Figures 8C,D,G, p < 0.05).
However, none of these gene mutations was associated with
ccRCC prognosis (Supplementary Figures S2A-H) No
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Response to CTLA4

differences were observed between the two groups in the
functional enrichment analysis involved in mutant genes and
tumor mutational burden (TMB) (Figures 8E,F,H).

Response to Targeted Therapy and
Correlation With Sunitinib Resistance

Fatty acid metabolism-related gene signature has shown a
correlation with the prognosis of c¢cRCC, and we further

explore its relationship to the sensitivity of the drug sunitinib.
The sensitivity of each sample to sunitinib was calculated by the
“pRRophetic” R package, and it can be seen that the high-risk
group was significantly less sensitive to the drug than the low-risk
group (Figure 9A). Furthermore, the point distribution of risk
score and sensitivity value of each sample indicated that risk score
was negatively correlated with sensitivity to sunitinib, and its
correlation coefficient was —0.2 (Figure 9B, p < 0.001). The
aforementioned results suggested that the higher risk score not
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only predicts worse prognosis but also shows desensitization to
sunitinib.

The dataset GSE183140 of the GEO database contains three
parent renal cell carcinoma cell lines and their corresponding
—drug-resistant cell lines, which we used to elucidate the
relationship between sunitinib resistance and risk scores. As
for Caki-1 and 786-O, the corresponding drug-resistant cell
lines had higher risk scores, while no differences were seen in
A498, where prominent differences could be seen between 786-O
parent and sunitinib-resistant cell lines, and no statistical

significance in Caki-1 was observed (Figures 9C-E). As we
expected, sunitinib-resistant samples had higher risk scores,
which also meant worse prognosis.

Validation of These Four Genes in Clinical
Samples and Cell Lines

To further confirm the results from bioinformatics analysis, the
quantitative real time polymerase chain reaction (qRT-PCR)
analysis was performed in ccRCC cell lines and clinical

Frontiers in Genetics | www.frontiersin.org

July 2022 | Volume 13 | Article 894736


https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Wei et al.

samples from ccRCC patients. We detected seven pairs of ccRCC
tissues and corresponding para-carcinoma tissues and found a
significantly lower level of ACADM and ACAT1 mRNA and a
higher level of CPT1B and HACD1 mRNA in tumor tissues
(Figure 10A). Then, we studied the mRNA expression of these
four genes in ccRCC cell lines (Caki-1 and 786-O) and their
respective sunitinib-resistant cell lines. Interestingly, the qRT-
PCR analysis of ACADM, ACATI, and HACD1 showed a
different result in ccRCC cell lines and their respective
sunitinib-resistant cell lines (Figures 10B,C,E). A significantly
higher expression of CPT1B was observed in sunitinib-resistant
cell lines than in parental cell lines (Figure 10D), suggesting that
CPTI1B plays a key role in the mechanism of sunitinib resistance
in ccRCC.

DISCUSSION

ccRCC, as the most common subtype of renal cell carcinoma,
tends to show worse prognosis and malignant features, which
indicated that the treatment for ccRCC focused mainly on
comprehensive treatment (Shuch et al, 2015). Although
surgical resection of early localized ccRCC was still a curative
method, systemic treatment was dominant for advanced tumors,
especially metastatic tumors (Barata and Rini, 2017). Over the
past years, medical treatment for ccRCC has transitioned from a
nonspecific immune approach to targeted therapy against
vascular endothelial growth factor (VEGF) and now to novel
immunotherapy agents (Garcia and Rini, 2007). The current
systemic treatment of targeted therapies has been shown to
improve progression-free survival in metastatic RCC (Bedke
et al,, 2016). However, some patients were still insensitive to
targeted therapy or showed resistance after short-term therapy.
Surprisingly, recent studies have demonstrated that the addition
of LDL cholesterol increased activation of PI3K/AKT signaling,
which coincided with reduced antitumor therapy such as
sunitinib against ccRCC (Naito et al., 2017; Makhov et al,
2018). The aforementioned findings all reflected activation of
the lipid metabolism pathways in the treatment of ccRCC and the
mechanism of drug resistance.

As is known to all, the reprogramming of the cellular
metabolism played an essential role in tumor development
(Pavlova and Thompson, 2016). Furthermore, kidney cancer,
especially clear cell renal cell carcinoma, has been aptly labeled
a metabolic disease (Linehan et al., 2010; Linehan and Ricketts,
2013). More and more findings suggested the upregulation of
lipid storage and utilization of lipids for membrane synthesis
in ccRCC (Gebhard et al., 1987; von Roemeling et al., 2013;
Horiguchi et al., 2008). Intriguingly, increased levels of fatty
acylcarnitines and carnitine in ccRCC were compared with
those of normal controls, and these alterations correlated with
kidney cancer grade, which suggested that fatty acid
metabolism played an important role in the occurrence,
progression, and even treatment of ccRCC (Horiguchi et al.,
2008; Wettersten et al., 2017). However, current studies have
not systematically elaborated on the specific mechanism of
different lipid metabolism, especially fatty acid metabolism

A Fatty Acid Metabolism Signature

pathways, in the occurrence, progression, treatment, and
prognosis of ccRCC, and the exploration of fatty acid
metabolism pathways in ccRCC can help us better study its
significance and provide new therapeutic ideas and strategies.

In this study, considering that fatty acid metabolism
pathways are closely related to the progression, treatment,
and mechanism of drug resistance of ccRCC, a fatty acid
metabolism-related risk signature established by
screening differentially expressed genes in tumor and
normal samples in the TCGA cohort using the multivariate
Cox regression and LASSO Cox regression analysis, which
had the potential to predict prognosis, overall survival,
response to targeted agents, and immunotherapy in
patients with ccRCC. The high-risk group tended to have a
worse prognosis, shorter survival, and lower sensitivity to
targeted agents and immunotherapy. This risk model involved
four fatty acid metabolism-related genes, including ACADM,
ACATI1, CPT1B, and HACDI1.

It had been reported that ACADM is associated with the
progression of some tumors, especially those closely related to
lipid metabolism, such as neuroblastoma and breast cancer
(Ma et al, 2021; Hsieh et al., 2019; Yu et al., 2019).
Interestingly, we found that ACADM plays an anticancer
role in most tumors such as hepatocellular carcinoma and
neuroblastoma (Hsieh et al., 2019; Ma et al., 2021). However,
it has been reported that ACADM enhances the invasion and
metastasis ability of breast cancer cells (Yu et al,, 2019). In
addition, ACADM has been shown as a potential biomarker
for kidney cancer, and consistent with this study, ACADM is
downregulated in renal cancer. However, the study did not
address the potential impact of ACADM on RCC and its
association with clinical features of patients with RCC (Xu
et al., 2021). ACAT1 has also been identified as a possible
anticancer therapeutic target and is closely involved in lipid
metabolism and antitumor immune response in recent studies
(Yang et al., 2016; Goudarzi, 2019; Gu et al., 2020). Moreover,
it had been reported that ACATI1 is essential for the
progression of ccRCC, but these studies only discussed the
relationship between ACAT1 and prognosis, ignoring its
important role in immunotherapy (Chen et al., 2019).
Surprisingly, CPT1B has been shown to be associated with
mechanisms of drug resistance in multiple cancers such as
bladder cancer, prostate cancer, etc. (Iwamoto et al., 2018;
Wang et al., 2018; Vantaku et al.,, 2019; Abudurexiti et al,,
2020) However, there are still no relevant studies on the
relationship between CPT1B and drug resistance in ccRCC.
Few studies have been carried out on HACD1, and it has only
been reported as an independent prognostic factor in uveal
melanoma (UVM) (Xu et al., 2019). Therefore, this study is
the first to identify these four genes as a prognostic model and
find their relationship with antitumor immune response and
drug resistance.

The fatty acid metabolism-related risk model can predict 1-, 3-, or
5-year survival of patients with ccRCC by calculating the risk score of
patients. By analyzing the risk scores of patients in each clinically
characterized subgroup, such as pathological grade, pathological
stage, and the AJCC TNM stage, we found that survival

was
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differences can be shown between the two groups in each subgroup
through this model. The risk model we constructed serves as a
biomarker to compare prognosis and survival among patients at the
same pathological stage.

Tumors must be achieve the evasion of immune
surveillance in order to progress and metastasize (Gajewski
et al, 2013). Tumors limit the host immune response via
upregulation of PD-1 ligand (PD-L1) and its ligation to PD-1
on antigen-specific CD8" T cells, which suggests the
expression of PD-L1 in tumor tissues is closely related to
the efficacy of PD-L1 blockade (Tumeh et al., 2014). In our
study, the low-risk group had a higher expression of PD-L1 in
the tumor tissues than in the high-risk group, indicating a
better efficacy of PD-L1 blockade, suggesting that the high-
risk group could not benefit from PD-L1 blockade and tended
to be immunotherapy-resistant. Intriguingly, although no
difference was shown between the responses of the two
groups to anti-CTLA4 antibodies, both of which had
reliable response rates, meaning that anti-CTLA4
antibodies could be actively attempted in the high-risk
group. In addition, TMB could also be used as an effective
biomarker to predict the response of tumor tissues to PD-L1
blockade (Chan et al., 2019). However, no significant
difference in TMB between the two groups was observed in
our study. These results indicate that the risk model
established by us can predict ccRCC patient response to
immunotherapy to a certain extent, but whether there is an
association between it and TMB needs to be verified by more
research.

A comparison of responses to sunitinib in the high-risk
group and low-risk group can further help understand the
significance of this risk model in the treatment of ccRCC. It
was found that samples with higher risk scores were less
sensitive to sunitinib, and there was a negative correlation
between them, suggesting that patients in the high-risk group
tended to be desensitized to sunitinib treatment. Furthermore,
in comparison of three different human renal carcinoma cell
lines and their corresponding sunitinib-resistant cell lines, the
risk scores of the sunitinib-resistant 786-O cell line were
significantly higher than those of the parental cell line,
while this trend was not observed in the other two cell
lines (Caki-1 and A498).Through verification in ccRCC cell
lines and their respective sunitinib-resistant cell lines, it was
found that CPT1B played a more important role in the drug-
resistance mechanism of ccRCC. Therefore, this risk model is
also helpful in predicting patient response to targeted agents
such as sunitinib and their tendency to develop resistance,
which shows that the model has the potential to guide patient
treatment. Unfortunately, the distinctness between different
cell lines suggests that this ability may not cover all patients
with ccRCC and its effectiveness deserves more research.

In summary, the fatty acid metabolism-related risk model
can be used to predict survival, response to immunotherapy as
well as targeted therapy, and propensity to drug resistance in
patients with ccRCC. Risk scores can be associated with
numerous clinical features, such as pathological grade,
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pathological stage, AJCC T stage, and AJCC M stage.
Therefore, this risk model can not only serve as a
biomarker to assess the prognosis of patients but also
achieve personalized treatment, which means an optimal
treatment approach. However, there are still limitations to
our study. First, distinctness can be seen in response to
targeted drugs between the different renal cell lines, and
the mechanisms behind this need to be further studied.
Second, we found that the hemostasis process also differed
significantly between the two groups in the functional
enrichment analysis, but we did not further investigate its
potential mechanisms. Last, the functional and molecular
mechanisms of these four genes for the progression of
ccRCC need to be investigated in the next stage, and the
mechanism of the differences in response to therapies remains
unclear.
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