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Melanopsin (OPN4) is a blue light-sensitive opsin-type G-protein coupled

receptor. It is highly expressed in photosensitive retinal ganglion cells which

mediate responses to light, including regulation of sleep, circadian

photoentrainment, and pupillary light response. Mutations in OPN4 were

shown to affect responses to light, ultimately affecting the regulation of

circadian rhythms and sleep. In this study, we describe a male carrier of the

OPN4 missense variant diagnosed with delayed sleep-wake phase disorder

(DSWPD), with a consistent recurrent pattern of delayed sleep onset The

rs143641898 [NM_033282.4:c.502C>T p.(Arg168Cys)] variant in the OPN4

gene was shown in a functional study to render the OPN4 protein non-

functional. The variant is rare and likely increases the risk of DSWPD via its

direct effect on themelanopsin pathway. This study offers useful insights for the

differential diagnosis and ultimately treatment of DSWPD risk in which patients

carry pathogenic variants in the OPN4 gene.
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Brief communication

Melanopsin (OPN4) is a blue light-sensitive opsin-type G-protein coupled receptor

(Provencio et al., 2000). It is highly expressed in photosensitive retinal ganglion cells that

mediate responses to light including regulation of sleep, circadian photoentrainment, and

pupillary light response (Panda et al., 2002; Rodgers et al., 2018). Consequential variants

in OPN4 were previously associated with an increased risk of developing the seasonal

affective disorder (Chellappa, 2021). Melanopsin-dependent phototransduction was

reported to be impaired in DSWPD and sighted non-24-hour sleep-wake rhythm

disorder (Abbott et al., 2021). DSWPD is the most commonly diagnosed circadian

rhythm sleep-wake disorder, with an estimated prevalence of 0.2%–10% (Nesbitt, 2018;

Zee et al., 2013). It is characterized by a persistent and intractable delay in sleep onset and

offset times relative to the societal norm (Zee et al., 2013). In this case report, we describe a

case study of a DSWPD patient with a consequential damaging variant in OPN4.
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We report a carrier of a rare variant:

rs143641898 [NM_033282.4:c.502C>T p.(Arg168Cys)], a rare

missense variant (gnomAD (Karczewski et al., 2019) MAF

0.0002). It is most common among European (non-Finnish)

and Ashkenazi Jewish populations and extremely rare among

East Asian (0.00005) and not detected in South Asian

populations, suggesting the highest conservation of this region

of the gene across these populations. It is in silico predicted to be

damaging and has a Combined Annotation Dependent

Depletion (CADD) score of 34. It is a highly conserved

variant, and it is a part of the E/DRY motif found in nearly

all GPCRs (positive charge to polar, increased hydrophobicity).

Interestingly, this variant (rs143641898) was tested using an

in vitro expression system as part of a study aiming to

determine the functional phenotypes of missense human

OPN4 variants (Rodgers et al., 2018). The authors selected

16 potentially deleterious variants for functional

characterization using calcium imaging of melanopsin-driven

light responses in HEK293T cells (Rodgers et al., 2018). This

variant was shown to be incapable of binding retinal

chromophore, suggesting that it renders the OPN4 protein

non-functional (Rodgers et al., 2018). The introduction of

rs143641898 in OPN4 abolished responses to light.

We do not detect this variant in our healthy sleeping super

control set of whole genome sequencing (WGS) samples (n =

300) as well as in our control set of WGS (n = 1900). In our whole

genome sequencing study of DSWPD patients, we report one

other rare stop-gain in OPN4 [NM_033282.4:

c.1086_1087insTAGCGG p.(Gln363*)] variant within the

OPN4 gene. This variant has been detected in an unrelated

individual. This variant requires functional confirmation

similar to the one that was carried out for rs143641898.

The patient is a 58-year-old male manifesting DSWPD

symptoms since high school. The patient meets DSWPD

diagnostic criteria (DSWPD—ICSD-3 (Sateia, 2014) based on

a clinical interview with a board-certified sleep physician). The

patients’ medical records have an earlier diagnosis of insomnia

(per medical history). The patient has been enrolled in a 12-week

diary study (Figure 1 raster plot below). The reported sleep onset

is consistent and significantly delayed in comparison to a control

population. The patient reported an average bedtime of 2:48 a.m.,

average sleep onset of 3:29 a.m., and average wake-up time of 11:

42 a.m. (average over 12 weeks of electronic time-stamped sleep

diary). The patient reported a consistent total sleep time (TST) of

8:14 (average over 12 weeks). Confirmatory of the delayed

phenotype is also the timing of the dim light melatonin onset

(DLMO) occurring at 23:20 (quantified with the salivary

melatonin assay) presented in Figure 2. The patient has no

other known pLOF mutations reported in the core circadian

clock genes including no variants or copy number variants

detected in the CRY1 gene or in the AANAT gene. Variants

within both were previously associated with DSWPD, and

despite the fact they are highly penetrant, they do not explain

a large proportion of individuals with DSWPD of mixed ancestry

(Patke et al., 2017; Hohjoh et al., 2003; Smieszek et al., 2021).

These data provide valuable insights into the phenotype-

genotype consequences of human OPN4 variants. Additional

studies focusing on a set of carriers of this and other damaging

variants in OPN4 are warranted to confirm this finding. One

example would be looking at the lab-based assessment of plasma

melatonin suppression under 460 nm (blue) and 555 nm

monochromatic light would be very interesting for this

patient, as well as other carriers of this variant. Given

melanopsin is not functional, there would be little or no

suppression in the last half to quarter of the 460 nm light,

which is all melanopsin driven; however, the 555 nm (cone

FIGURE 1
Sleep raster plot showing sleep timing (sleep onset, duration,
andwake-up time) asmeasuredwith an electronic sleep diary over
a period of 70 days in the carrier of the rs143641898OPN4 variant.
The raster plot confirms consistently delayed sleep onset
captured over more than 10 weeks of a sleep diary.

FIGURE 2
Salivary melatonin DLMO in the carrier of the
rs143641898 OPN4 variant. The DLMO is significantly later than
that of population controls, in this example, occurring at 23:17.
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system) would look normal (and the opposite to the blind man

who only has melanopsin). Additionally, studies looking at pupil

constriction dynamics could be helpful confirmatory studies

(Gooley et al., 2012). The identification of consequential

OPN4 variants leading to disruption of protein function such

as rs143641898 leading to disrupted melanopsin-based light

perception will help with the identification of patients with an

increased risk of sleep disturbances and circadian dysfunction,

who may need early interventions.

Methods

Electronic sleep diary

Participants reported their bedtime and wake time in a daily

sleep diary. Daily diaries were collected for up to 12 weeks (a

minimum of 4 weeks). Data were summarized with means,

medians, SDs, minimums, and maximums. The mean was

calculated as the average of individual means. The individual

mean was calculated as the average for each participant over all

nights, work nights, and free nights. For SD, the mean of individual

SD was calculated. Analyses were carried out for both work nights

and free nights, defined as a night before a work/morning

commitment and a night before a free day, respectively.

Whole genome sequencing

Incoming nucleic acid samples are quantified using

fluorescent-based assays (PicoGreen) to accurately determine

whether sufficient material is available for library preparation

and sequencing. DNA sample size distributions are profiled by a

Fragment Analyzer (Advanced Analytics) or BioAnalyzer

(Agilent Technologies) to assess sample quality and integrity.

Whole genome sequencing (WGS) libraries were prepared using

the Truseq DNA PCR-free Library Preparation Kit. Whole

genome data were processed on an automated pipeline by the

New York Genome Center. Paired-end 150 bp reads were aligned

to the GRCh37 human reference [BWA-MEM (Li and Durbin,

2009) v0.7.8] and processed with the GATK best-practices

workflow [GATK v3.4.0 (van der Auwera et al., 2013)]. The

mean coverage was 35.8. All high-quality variants obtained from

GATK were annotated for functional effects (intronic, intergenic,

splicing, nonsynonymous, stop-gain, and frameshifts) based on

RefSeq transcripts using Annovar (Wang et al., 2010).

Additionally, Annovar was used to match general population

frequencies from public databases (EXAC, gnomAD, ESP6500,

1000 g) and to prioritize pLOFs. The analysis focused on rare and

common consequential OPN4 variants such as missense,

frameshift, and splicing variants.

Salivary dim light melatonin onset
assessment kit

Salimetrics’ saliva collection devices, assay kits, and CLIA-

certified testing services were used. This is an ELISA-based assay

with a sensitivity of 1.37 pg/ml and an assay range of 0.78–50 pg/

ml. The DLMO assessment consisted of eight scheduled saliva

collections to be performed beginning from 5 h before bedtime

until 3 h after bedtime.
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