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Background:Due to the highly variable prognosis of low-grade gliomas (LGGs),

it is important to find robust biomarkers for predicting clinical outcomes. Aging

cancer-associated fibroblasts (CAFs) within the senescent stroma of a tumor

microenvironment (TME) have been recently reported to play a key role in

tumor development. However, there are few studies focusing on this topic in

gliomas.

Methods and Results: Based on the transcriptome data from TCGA and CGGA

databases, we identified aging CAF-related genes (ACAFRGs) in LGGs by the

weighted gene co-expression network analysis (WGCNA) method, followed by

which LGG samples were classified into two agingCAF-related gene clusterswith

distinct prognosis and characteristics of the TME. Machine learning algorithms

were used to screen out eight featured ACAFRGs to characterize two aging CAF-

related gene clusters, and a nomogram model was constructed to predict the

probability of gene cluster A for each LGG sample. Then, a powerful aging CAF

scoring systemwas developed to predict the prognosis and response to immune

checkpoint blockage therapy. Finally, the ACAFRGs were verified in two glioma-

related external datasets. The performance of the aging CAF score in predicting

the immunotherapy response was further validated in two independent cohorts.

We also confirmed the expression of ACAFRGs at the protein level in glioma

tissues through the Human Protein Atlas website and Western blotting analysis.

Conclusion: We developed a robust aging CAF scoring system to predict the

prognosis and immunotherapy response in LGGs. Our findings may provide

new targets for therapeutics and contribute to the exploration focusing on

aging CAFs.
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Introduction

Low-grade gliomas (LGGs) encompassing grade II and III

gliomas represent a group of primary tumors originating from

the central nervous system and are very common in young adults

compared to high-grade gliomas (grade IV, glioblastoma

multiforme, GBM) (Perry and Wesseling, 2016). In 2016, the

World Health Organization (WHO) updated the classification

method for gliomas by combing histological diagnosis with

molecular variations such as IDH mutation status and

codeletion of the short arm of chromosome 1 and the long

arm of chromosome 19 (1p/19q codeletion) (Komori, 2017).

Previous studies revealed that glioma patients with mutant IDH

exhibited a more favorable response to current therapy including

radiation and chemotherapy, implying the correlation between

molecular alterations and prognosis (Cairncross et al., 2014). Due

to high heterogeneity, glioma patients had various clinical

outcomes even with the same diagnosis. While LGG patients

tend to get a longer survival time with the median overall survival

ranging from 5.6–13.3 years, the prognosis of LGG patients can

be highly variable (Hottinger et al., 2016; Ostrom et al., 2018).

Exploration focusing on biomarkers for predicting prognosis is

becoming a hot spot in cancer research.

Most of the previous investigations have been focusing on

tumor cells themselves while pioneering studies have claimed the

significant importance of the crosstalk between tumor cells and

the surrounding microenvironment in the course of tumor

development (Radin and Tsirka, 2020). As a complex

environment with dynamic alterations, the tumor

microenvironment (TME) represents the non-tumoral

components around tumor cells, including the extracellular

matrix (ECM) and various cell populations such as immune

cells, fibroblasts, and endothelial cells (Anderson and Simon,

2020). Fibroblasts, which constitute a major proportion of the

TME, refer to a heterogeneous cell population derived from

mesenchymal lineage cells and are collectively defined as

cancer-associated fibroblasts (CAFs) (Piersma et al., 2020b).

The past few years have witnessed significant strikes in the

explorations of CAFs. Considering its well-established roles in

epithelial–mesenchymal transition (EMT) (Erin et al., 2020) and

maintenance of cancer stemness (Su et al., 2018), which is

important for tumorigenesis and progression, CAFs are

known to be closely related to prognosis in a variety of

cancers (Miyai et al., 2020). Recently, T-cell-targeted

immunotherapy is emerging as a robust treatment option for

intractable cancers. As a novel type of immunotherapy, immune

checkpoint blockage treatment such as CTLA4 and PD-1/PD-

L1 antibodies has demonstrated pronounced success by

activating T cells (Topalian et al., 2015). However, only a

minority of patients get a favorable response to

immunotherapy (Pitt et al., 2016). The T cell’s capacity to kill

tumor cells is significantly affected by the tumor stromal

microenvironment, in which CAFs are understood to be a key

player in immunosuppressive activity and reduce the efficacy of

immune checkpoint blockage treatment (Baker et al., 2021; Miyai

et al., 2022). Over the past decade, cancer has been usually

recognized as a disease of aging and CAFs appear to be easily

influenced by this age-related effect (Fane and Weeraratna,

2020). Despite the fact that senescence can be caused by

tumor-independent manners, the senescence of CAFs is

generally induced by signaling from tumor cells (Sahai et al.,

2020). Senescent CAFs in the TME and their secretory profile

(senescence-associated secretory phenotype, SASP) are known to

influence all aspects of tumor development, including tumor

initiation, progression, anti-tumor immunity, and

chemoresistance (Yasuda et al., 2021b; Ruhland and Alspach,

2021). Overall, comprehensive analysis of aging CAFs is

meaningful to determine biomarkers for predicting prognosis

and immunotherapy response in gliomas. However, the

explanation for the complicated roles of aging CAFs in the

TME is hindered due to the lack of specific biomarkers to

identify both the aging status and the cell type of CAFs in

vivo (Sahai et al., 2020). Moreover, there are no studies

focusing on aging CAF-related genes or prediction models in

gliomas at this time.

In this research, we identified aging CAF-related genes

(ACAFRGs) by comprehensive analysis of the transcriptome

data from TCGA and CGGA databases, based on which two

distinct aging CAF-related gene clusters were determined.

Subsequently, we constructed an aging CAF scoring system to

predict the prognosis and immunotherapy response for LGG

patients. Finally, we confirmed the expression of the aging CAF-

related genes at the protein level. Our study may shed light on the

exploration of aging CAFs and contribute to the development of

aging CAF-targeted therapy for glioma patients in the future.

Materials and methods

Data acquisition

A dataset containing 508 LGG samples with the

corresponding RNA sequencing (RNA-seq) data was

downloaded from TCGA database (The Cancer Genome

Atlas, http://cancergenome.nih.gov/). The annotation file,

Genome Reference Consortium Human Build 38 (GRCh38),

which was acquired from the Ensembl website (http://asia.

ensembl.org/), was employed to annotate the RNA-seq data.

The transcriptome data (dataset ID: mRNA-array_301)

composed of 159 LGG samples were obtained from the

CGGA database (Chinese Glioma Genome Atlas, http://cgga.

org.cn/index.jsp) (Fang et al., 2017; Wang et al., 2017). The

corresponding clinical information for LGG patients involved in

the two datasets was also downloaded from the aforementioned

websites. R software (version 4.1.1) was utilized for the

bioinformatic analysis and visualization of the data.
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Determination of ACAFRGs

In our study, the transcriptome data from TCGA database

were first transformed to transcripts per million (TPM) values for

further combination with the transcriptome data from the

CGGA database. Robust multi-array average normalization

would be performed for the transcriptome data by the

normalizeBetweenArrays function in the limma R package

(Smyth et al., 2005) when the distribution of gene expression

values in the transcriptome data from different databases was not

uniform, followed which quantile normalization and

log2 transformation were carried out. Combat function in the

sva R package (Leek et al., 2012) was used to remove the batch

effect caused by non-biotechnological bias when merging the

transcriptome data. In addition, two-dimensional principal

component analysis (PCA) cluster plots were utilized to show

the sample distribution before and after batch effect correction.

The stromal score which indicated the stromal components of

the TME for each LGG sample was calculated by the ESTIMATE

algorithm (Estimation of STromal and Immune cells in MAlignant

Tumor tissues using Expression data) through the estimate R package

(Yoshihara et al., 2013) based on the gene expression values in the

merged transcriptome data. Furthermore, LGG samples in the

merged data were separated into high- and low-stromal score

groups according to the optimal cut-off value which was

determined through survminer and survival R packages. The

differentially expressed genes (DEGs) between the high- and low-

stromal score groups were screened out by |log2 FC (fold change)| >
0.5 and adjusted p-values (FDR, false discovery rate) < 0.05 through

the limma R package. The robust DEGs were considered as stromal

cell-related genes. The relative abundance of fibroblasts in the TME

was quantified via theMCP counter (Becht et al., 2016). Based on the

expression profiles of stromal cell-related genes, weighted gene co-

expression network analysis (WGCNA) (Zhang and Horvath, 2005)

was utilized to determine the ACAFRGs by using the WGCNA R

package. To construct the network, we first calculated the robust

correlations between all the stromal cell-related genes across all LGG

samples in the data. The optimal power parameter was set to amplify

the strong connections between genes in the same gene modules and

to penalize the weak connections between genes in differentmodules.

In this study, the optimal power value was determinedwhen the scale

independence R2 was higher than 0.90 and the mean connectivity

degree of the co-expression network was relatively higher. A total of

four phenotypes, namely, survival time, age, fibroblasts, and stromal

score were involved inWGCNA. The Spearmanmethod was used to

analyze the correlation between MEs and phenotypes.

Aging CAF-related gene clusters

First, ACAFRGs with prognostic values were screened out via

univariate Cox regression analysis by using the survival R

package, in which p < 0.05 was considered statistically

significant. Then, distinct aging CAF-related gene clusters

were determined by a consensus clustering method using the

ConsensusClusterPlus R package based on the expression profiles

of prognostic ACAFRGs in the merged data (Wilkerson and

Hayes, 2010). Our clustering analysis was based on the

Partitioning Around Medoid (PAM) algorithm which was

derived from the k-means machine learning algorithm. A total

of 50 repetitions were conducted in the consensus clustering

process for the stability of our classification and 80% of the LGG

samples were involved in each iteration. The optimal number for

the subgroup assignment was determined based on the consensus

matrix heatmap and the relative change values of the area under

the cumulative distribution function (CDF) curves.

Identification of the featured ACAFRGs for
discriminating aging CAF-related gene
clusters

Based on the expression profiles of ACAFRGs, two machine

learning algorithms were adopted to select the key genes for

discriminating aging CAF-related gene clusters, namely, least

absolute shrinkage and selection operator (LASSO) logistic

regression (Tibshirani, 1996) and support vector machine-

recursive feature elimination (SVM-RFE) (Suykens and

Vandewalle, 1999). The LASSO algorithm serves as a special

instance of the penalized least squares regression with the L1-

penalty function. LASSO logistic regression was carried out by

using the glmnet R package, in which the optimal number of

featured genes was determined when the lambda value was

minimal. The SVM-RFE machine learning algorithm was

performed with five-fold cross-validation by using the

e1071 R package, in which the optimal number of featured

genes was determined when the root mean square error (RMSE,

cross-validation) was minimal. Afterward, the overlapping

featured genes were selected for further analysis.

Furthermore, the random forest (RF) machine learning

algorithm was used to further screen out featured genes via

the randomForest R package (Breiman, 2001), in which ntrees

and mtry were set at 500 and 3, respectively. First, the optimal

number of the random forest trees was determined when the

cross-validation error presented minimal. Then, the random

forest with the optimal number of trees was constructed. To

obtain featured genes with high importance, the importance of

each gene was calculated. The genes with importance >10 were
selected as the featured genes for aging CAF-related gene

clusters.

Based on the expression profiles of the featured ACAFRGs,

we constructed a nomogram model to predict aging CAF-related

gene cluster A. Calibration curves, decision curve analysis

(DCA), and clinical impact curve were used to evaluate the

performance of the model to predict aging CAF-related gene

cluster A.
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Aging CAF scoring system

Univariate cox regression analysis was implemented to

determine whether the ACAFRGs were positively or negatively

associated with prognosis, according to which the ACAFRGs were

divided into favorable and unfavorable genes. Gene set variation

analysis (GSVA) can quantify the enrichment with respect to

specific functions or characteristics for individuals based on

specific gene sets and transcriptome data (Hänzelmann et al.,

2013). GSVA and single-sample gene set enrichment analysis

(ssGSEA) were used to produce GSVA scores regarding the

unfavorable and favorable gene sets for LGG samples by using

the GSVA R package (Hänzelmann et al., 2013). First, the gene

expression values in the transcriptome data were sequenced to

obtain their rank. Then, the genes in the unfavorable and favorable

gene sets were extracted, followed by which the expression levels of

unfavorable and favorable genes were summed. Finally, we

obtained the enrichment scores of unfavorable and favorable

gene sets for each LGG sample. The aging CAF score for each

LGG sample was calculated by the following formula:

agingCAFscore � GSVAscoreA − GSVAscoreB, in which

GSVAscoreA represents the enrichment regarding unfavorable

ACAFRGs and GSVAscoreB represents the enrichment regarding

favorable ACAFRGs. Subsequently, LGG samples were classified

into high- and low-aging CAF score groups according to the

optimal cut-off value of aging CAF scores which was determined

by survminer and survival R packages. Moreover, the aging CAF

score and other common clinicopathological characteristics were

taken into consideration for the construction of a nomogram

model to predict the prognosis of LGG patients by using the rms R

package.

Differential function enrichment analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways and molecular functions (GO, Gene Ontology)

between subgroups were analyzed by using GSVA,

GSEABase, and limma R packages, in which the reference

gene sets including “c5.go.mf.v7.4.symbols.gmt” and

“c2.cp.kegg.v7.4.symbols.gmt” were downloaded from the

GSEA database. First, the GSVA score for each function

term was calculated for each sample based on the reference

gene sets and the gene expression profiles. The function

terms with |log2 FC| > 0.1 and adjusted p-values (FDR) <
0.05 between the two groups were then screened out and

were considered differentially enriched. In the heatmaps,

the values of the GSVA score were centered and scaled in the

row direction, in which the rows are scaled to have mean

zero and standard deviation one (z score). The top

20 differentially enriched function terms were shown in

the heatmaps.

Exploration of the TME

The immune and stromal components of the TME were

quantified via the ESTIMATE algorithm (Yoshihara et al., 2013).

The relative abundance of essential immune and stromal cells in

the TME was quantified via the MCP counter (Becht et al., 2016).

CIBERSORT, a deconvolution algorithm based on linear support

vector regression, was employed to further calculate the

abundance of infiltrating immune cells in the TME based on

the gene expression profiles of LGG samples (Newman et al.,

2015). The SsGSEA method was also employed to quantify the

immune cells based on the input immune cell-related gene set. In

addition, we downloaded the results of the abundance of critical

cells in the TME for all LGG samples from TCGA on the

TIMER2.0 website (http://timer.cistrome.org/), including

XCELL, TIMER, QUANTISEQ, MCP counter, EPIC,

CIBERSORT, and CIBERSORT ABS. Tumor Immune

Dysfunction and Exclusion (TIDE)-related scores for LGG

samples were calculated to explore the immunotherapeutic

response (http://tide.dfci.harvard.edu/).

Genetic mutation analysis

The genetic mutation data for LGG samples were retrieved

from TCGA database. The maftools R package was used for

the analysis of somatic variants. The cumulative

nonsynonymous mutations per million bases in coding

regions were defined as tumor mutation burdens (TMBs).

LGG samples with exome nonsynonymous mutations were

taken into account.

Validation in external datasets

Two independent datasets from the CGGA database (dataset

ID: mRNAseq_325 and mRNAseq_693) were chosen as

validation cohorts (Bao et al., 2014; Wang et al., 2015; Zhao

et al., 2017; Liu et al., 2018; Zhao et al., 2021) to verify the aging

CAF-related gene cluster and aging CAF score. In addition, the

aging CAF score was further validated in two external datasets

(GSE78220 and IMvigor210 cohort) to explore the performance

in predicting the immunotherapeutic response (Hugo et al., 2016;

Balar et al., 2017; Mariathasan et al., 2018).

Validation of the ACAFRGs at the protein
level

A total of four ACAFRGs, namely, RBP1, PDPN, FKBP9, and

MSN were randomly selected from the featured ACAFRGs. The

differential expression patterns of the aforementioned genes
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between normal and glioma tissues were explored on the Human

Protein Atlas website (https://www.proteinatlas.org/).

Western blotting was implemented to further verify the

differential expression levels of the featured ACAFRGs between

normal and glioma tissues. Normal brain tissues were acquired

from patients with epilepsy who received temporal lobe resection.

Glioma tissues which were histologically diagnosed as grades II (G2)

and III (G3) were obtained from patients who received tumor

resection. In this study, three normal samples, six G2 glioma

samples, and nine G3 glioma samples were involved. One normal

sample, two G2 glioma samples, and three G3 glioma samples were

taken together for Western blotting analysis every time. The optical

density of the bands inWestern blottingwas analyzed by using ImageJ

software (Software Version: 1.53q, Wayne Rasband and contributors,

National Institutes of Health, United States). The differential analysis

between different samples was conducted by the limma R package.

The collected tissues were separately homogenized and lysed in

RIPA lysis buffer containing protease and phosphatase inhibitors at

0–4°C. The homogenized protein samples were centrifuged at 1,000 g

for 15 min at 4°C to obtain the protein in the cytoplasm. A Bio-Rad

protein assay kit was used to correct the protein content to an equal

level. The protein samples were homogenized with the prepared

loading buffer and then boiled for 5 min at 100°C. The same amounts

of protein samples were added to SDS-PAGE and electrophoresed at

80 V for 1 h. Afterward, the protein was transferred to polyvinylidene

difluoride (PVDF) membranes at 50 V for 1 h. The primary

antibodies used in this study were as follows: RBP1, Podoplanin

(PDPN), FKBP9, TIMP1, CHI3L1,moesin (MSN), and β-actin. After

incubationwith the primary antibodies for 12 h, themembraneswere

then incubated with the secondary anti-rabbit or anti-mouse

horseradish peroxidase (HRP) antibodies. Finally, the membranes

were visualized by enhanced chemiluminescence (ECL) solution.

Statistical analysis

The prognosis between different subgroups was compared

using Kaplan–Meier survival analysis by survminer and survival

R packages, in which the log-rank test was utilized for statistical

analysis. Comparisons between the two groups were carried out

by using Wilcoxon rank-sum tests. Comparisons of categorical

variables between two groups were presented by chi-square tests.

Comparisons of continuous variables between two groups were

conducted via an independent Student’s t-test. Two-tailed p <
0.05 was considered statistically significant.

Results

Determination of ACAFRGs

The schematic diagram of the workflow of this study is

shown in Supplementary Figure S1. The corresponding

clinicopathological information for LGG samples in the

merged data is demonstrated in Supplementary Tables S1,

S2. The inter-batch difference was corrected when merging

the transcriptome data from TCGA and CGGA databases. As

illustrated in the two-dimensional PCA cluster diagram

(Supplementary Figures S2A,B), the inter-batch difference

was removed. The Kaplan–Meier survival analysis indicated

that the high-stromal score group tended to get a worse

prognosis compared to the low score group (Figure 1A). As

shown in the volcano plot (Figure 1B), the robust DEGs

between the high and low-stromal score groups were

screened out for further analysis. Given that CAFs

represent a major component of the TME and accumulate

in the tumor stroma across multiple cancers (Kalluri, 2016;

Kobayashi et al., 2019; Piersma et al., 2020a; Miyai et al.,

2020), the stroma-related DEGs were selected for the

identification of CAF-related genes. Based on the

expression profiles of stroma-related genes, a co-

expression network was constructed by the WGCNA

method. As shown in Figure 1C, the scale independence

R2 increased and the mean connection decreased when the

soft threshold (power) value increased. The optimal power

parameter was set at 10 to amplify the strong connections

between genes in the same gene modules and to penalize the

weak connections between different modules (scale

independence R2 = 0.89, mean connectivity = 7.02). The

genes within the same module presented significant within-

module connectivity and were defined as the hub genes for

the specific modules (Figure 1D, Supplementary Figure S2C).

The correlation between module eigengenes (MEs) and

phenotypes including survival time, age, fibroblasts, and

stromal score were subsequently analyzed (Figure 1E). A

total of five gene modules were identified, in which the green

module was positively associated with age (r = 0.27, p = 1e-

12) and fibroblasts (r = 0.81, p = 3e-158) and the gray module

was negatively associated with age (r = −0.13, p = 6e-04) and

fibroblasts (r = −0.41, p = 2e-28). A total of 463 genes in the

two modules were determined as ACAFRGs (Supplementary

Table S3).

Aging CAF-related gene clusters

A total of 400 ACAFRGs with prognostic values were

screened out via univariate Cox regression analysis. LGG

samples in the merge data were classified into two gene

clusters based on the expression profiles of prognostic

ACAFRGs (Supplementary Figure S3A). As shown in the

heatmap of the consensus matrix, samples were reasonably

classified into two gene clusters (k = 2), in which samples with

high consensus scores between them were more likely to be

grouped into the same cluster. Moreover, no apparent increase

was found in the area under the CDF curve when k = 2
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(relative change <0.4). PCA confirmed the results of the

subgroup assignment (Figure 2A). Kaplan–Meier analysis

revealed that gene cluster A had shorter overall survival

and shorter progression-free survival than gene cluster B,

indicating that LGG samples in gene cluster A tended to

get a worse prognosis (Figures 2B,C). The prognostic

ACAFRGs were separated into gene types A and B, in

which ACAFRGs in gene type A were downregulated in

gene cluster A and upregulated in gene cluster B while

ACAFRGs in gene type B were upregulated in gene cluster

A and downregulated in gene cluster B (Figure 2D). In

addition, the stromal and immune scores of gene cluster A

were significantly higher than those of gene cluster B

(Supplementary Figures S3B,C). The abundance of most

types of the cells in the TME was higher in gene cluster A,

including T cells, CD8 T cells, epithelial cells, fibroblasts, and

macrophages (Figure 2E, Supplementary Figures S3B,C).

Identification of the featured ACAFRGs for
discriminating aging CAF-related gene
clusters

First, the LASSO logistic regression machine learning

method was utilized to identify the featured ACAFRGs for

discriminating two aging CAF-related gene clusters, in which

53 featured ACAFRGs were determined when the lambda value

was minimal (Figure 3A). Subsequently, the SVM-RFE machine

learning algorithm was performed to further determine the

featured ACAFRGs, in which 31 featured ACAFRGs were

identified when RMSE was minimal (Figure 3B). We obtained

15 overlapped genes via the two aforementioned methods

(Figure 3C). Moreover, the random forest model was used to

further screen out featured ACAFRGs based on the expression

profiles of the aforementioned 15 featured ACAFRGs, in which

50 trees were determined when the cross-validation error

FIGURE 1
Determination of ACAFRGs. (A) Kaplan–Meier survival analysis for LGG patients assigned to high and low stromal scores (p < 0.001). (B) Volcano
plot of the DEGs between high- and low-stromal score groups. Genes with |log2 FC (fold change)| > 0.5 and adjusted p-values (FDR, false discovery
rate) < 0.05 were considered significant. Green dots represent downregulated genes in the high-stromal score group and red dots represent
upregulated genes in the high-stromal score group. (C) Scale independence index and mean connectivity values when soft threshold (power)
ranges from 1–20. The red line was set at 0.90. (D)Clustering of the module eigengenes. The cut height was set at 0.30 as depicted with the red line.
(E)Heatmap demonstrating the key genemodules associatedwith survival time, age, fibroblasts, and stromal scores. Pearson correlation coefficients
and p-values were shown in cells. ACAFRGs, aging cancer-associated fibroblast related genes; PCA, principal component analysis; LGG, low-grade
glioma; DEGs, differentially expressed genes.
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presented minimal (Figure 3D). Based on the determination of

the optimal number of forest trees, the importance of each gene

was calculated, followed by which eight ACAFRGs with

importance higher than 10 were selected as the optimal

featured ACAFRGs for discriminating aging CAF-related gene

clusters (Figure 3E). ROC curves revealed the efficacy of each

featured gene for discriminating aging CAF-related gene clusters

(Figure 3F, Supplementary Figure S4), in which all the AUC

values were higher than 0.930. A nomogram model combing the

eight featured ACAFRGs was constructed to predict aging CAF-

related gene cluster A (Figure 3G). The calibration curves

indicated a good performance of the nomogram model to

predict gene cluster A (Figure 3H). The red line in the DCA

remained above the gray and black lines from 0 to 1, suggesting

that the decisions based on the nomogram model were accurate

(Figure 3I). The clinical impact curve confirmed the robust

performance of the nomogram model (Figure 3J).

Unsupervised clustering for LGG samples was conducted

based on the expression of the eight featured ACAFRGs. We

found that samples in the same gene cluster tended to be

aggregated together, indicating that LGG samples could be

well distinguished through the expression of the eight featured

ACAFRGs (Figure 3K). Additionally, the differential expression

patterns of the eight featured genes between gliomas and normal

samples were analyzed through the GEPIA online tools (Li et al.,

2021) (GEPIA, Gene Expression Profiling Interactive Analysis,

http://gepia.cancer-pku.cn/). As shown in Supplementary Figure

S5, most of the featured ACAFRGs were upregulated in gliomas

compared to normal brain samples, except for FAM110B with no

significant difference.

Comparison of the prognosis between
low- and high-aging CAF score groups

Based on the expression profiles of the prognostic ACAFRGs,

the aging CAF score was calculated for each LGG sample in the

merged data through the GSVAmethod. LGG samples were then

FIGURE 2
Aging CAF-related gene clusters. (A) PCA of LGG samples based on the expression profiles of ACAFRGs. Blue dots represent samples of gene
cluster A and yellow dots represent samples of gene cluster B. (B) Kaplan–Meier analysis indicated that gene cluster A had a shorter overall survival
than gene cluster B (p < 0.001). (C) Kaplan–Meier analysis indicated that gene cluster A had shorter progression-free survival than gene cluster B (p <
0.001). (D) Heatmap displaying the distinct expression patterns of ACAFRGs between two gene clusters, in which gene type A was upregulated
in gene cluster B while gene type B was upregulated in gene cluster A. (E) Heatmap displaying the distinct characteristics of the TME between two
gene clusters. ACAFRGs, aging cancer-associated fibroblast related genes; LGG, low-grade glioma; PCA, principal component analysis.
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FIGURE 3
Identification of the featured ACAFRGs for discriminating aging CAF-related gene clusters. (A)Determination of the optimal number of featured
ACAFRGs by LASSO logistic regression, in which 53 featured ACAFRGs were determined when the lambda value was minimal. (B) Determination of
the optimal number of featured ACAFRGs by using the SVM-RFE algorithm (N = 31). (C) Venn plot showing the 15 overlapped featured ACAFRGs
obtained by the aforementioned methods. (D) Optimal number of the random forest trees was determined when the cross-validation error
presented minimal. The red dots represent the samples in gene cluster A, the green dots represent the samples in gene cluster B, and the black dots
represent all the samples. (E) Importance of the featured genes in which eight ACAFRGs with importance higher than 10were selected as the optimal

(Continued )
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divided into low- and high-aging CAF score groups.

Kaplan–Meier survival analysis suggested that the high-aging

CAF score group exhibited a worse prognosis than the low-score

group in TCGA cohort (Figure 4A). ROC curves revealed that the

accuracy of the aging CAF score was 0.874, 0.843, and 0.816 when

predicting the 1, 2, and 3-year overall survival of LGG samples,

respectively, in TCGA cohort (Figure 4B). Univariate Cox

regression analysis indicated that the aging CAF score was

significantly correlated with the prognosis of LGG samples

and multivariate Cox regression analysis demonstrated that

the aging CAF score served as an independent prognostic

factor in TCGA cohort (Figure 4C). Similar results were

acquired in the CGGA cohort (Supplementary Figures

S6A–C). The relationship between the aging CAF score and

multiple clinicopathological characteristics was explored in our

research. We found that the proportion of glioma patients of

grade III (G3) was significantly higher in the high-aging CAF

score group than those in the low-score group (Figure 4D).

IDH1 mutation was more frequent in the low-aging CAF score

group (Figure 4E). Gliomas were more likely to recur or progress

in the high-aging CAF score group than in the low-score group

(Figure 4F). With respect to the therapeutic response to

conventional treatment, more patients got complete or partial

remission in the low-aging CAF score group compared to the

high-score group (Figure 4G). Based on clinical features such as

age, gender, and grade, LGG samples were stratified into different

subgroups. We compared the aging CAF scores between

subgroups with different clinical features. The aging CAF

scores of old individuals were significantly higher than those

of young individuals and the scores of samples with G3 were

higher compared to G2. There was no correlation between the

aging CAF score and gender (Supplementary Figure S7A). The

overall survival of the high-aging CAF score group was

substantially shorter than those of the low-score group even

though samples were separated into subgroups with different

clinical features (Supplementary Figure S7B). All these findings

suggested that patients in the high-aging CAF score group tended

to get a poor prognosis.

Consistent with the aforementioned results, we found that

most samples of gene cluster A belonged to the high-aging CAF

score group and all samples of gene cluster B were classified into

the low-aging CAF score group (Supplementary Figure S6D). In

addition, the aging CAF scores of gene cluster A were significantly

higher than those of gene cluster B (Supplementary Figure S6E).

We further probed into the correlation between the

expression patterns of ACAFRGs and aging CAF scores. As

shown in Figures 4H,I, the expression levels of unfavorable

ACAFRGs were upregulated with the increase in the aging

CAF score while the expression levels of favorable ACAFRGs

were downregulated with the increase in the aging CAF score.

Differentially enriched functions between the two aging CAF

score groups were analyzed to explore the underlying molecular

mechanisms. We found that stroma-related functions were active

in the high-aging CAF score group, including fibronectin

binding, collagen binding, ECM receptor interaction, focal

adhesion, and cell adhesion molecule (CAM)-related

pathways, which may contribute to tumorigenesis and

progression (Walker et al., 2018; Winkler et al., 2020; Bhargav

et al., 2022) (Figures 4J,K).

Construction of a nomogram model

A nomogram model based on the aging CAF score and

multiple clinicopathological factors was constructed to improve

the predictive ability for prognosis (Figure 5A). As shown in

Figure 5B, the values of the C-index for the aging CAF score,

aging CAF score group, and nomogram model were 0.827, 0.942,

and 0.849, respectively, indicating a good performance (the

C-index of 0.5 represents a random chance and 1.0 represents

ideal ability to predict the prognosis). The calibration curves of

the nomogram model presented a good agreement between the

prediction and the actual observation (Figure 5C). The AUC

values of ROC curves for the nomogram model were 0.862 and

0.829 when predicting the 2 and 3-year overall survival,

respectively, indicating the high accuracy of the model

(Figures 5D,E). The results of DCA demonstrated that the

nomogram model got great net benefits across a large range

of risk thresholds (Figure 5F). All these findings revealed the

powerful performance of the nomogram model.

Exploration of the correlation between the
aging CAF score and TME

The abundance of critical compositions in the TME

calculated through multiple methods was involved in our

study to extensively explore the correlation between the TME

FIGURE 3
featured ACAFRGs. (F) ROC curve demonstrating the accuracy of the featured genes for discriminating two gene clusters (take EMP3 for
example, AUC value = 0.991). (G) Construction of the nomogram model based on the eight featured ACAFRGs to calculate the probability of gene
cluster A for each sample. (H) Calibration curve revealed the accuracy of the nomogrammodel. (I) DCA of the nomogrammodel. (J) Clinical impact
curves of the nomogram model. (K) Unsupervised clustering of samples based on the expression of the eight featured ACAFRGs. ACAFRGs,
aging cancer-associated fibroblast related genes; CAF, cancer-associated fibroblast; LASSO, least absolute shrinkage and selection operator; SVM-
RFE, support vector machine-recursive feature elimination; ROC, receiver operating characteristic; AUC, area under curve; DCA, decision curve
analysis.
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FIGURE 4
Comparison of the prognosis between low- and high-aging CAF score groups. (A) Kaplan–Meier survival analysis demonstrated that the high-
aging CAF score group had a worse prognosis than the low-aging CAF score group in TCGA cohort (p < 0.001). (B) Time-dependent ROC curves of
the aging CAF score in TCGA cohort. (C) Univariate/multivariate Cox regression analysis of the aging CAF score in TCGA cohort. (D–G) Correlation
analysis between the aging CAF score group and grade (D), IDH1mutation status (E), disease-free status (F), and conventional therapy response
(G). All p-values less than 0.05. (H)Heatmap showing the expression patterns of unfavorable ACAFRGs with increasing aging CAF scores. (I)Heatmap
showing the expression patterns of favorable ACAFRGs with increasing aging CAF scores. (J) Differentially enriched molecular functions between

(Continued )
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and aging CAF score (Figure 6A, p < 0.05). We found that

immune score, stromal score, microenvironment score, and the

abundance of stromal cells such as CAFs and epithelial cells were

positively correlated with the aging CAF score. The abundance of

macrophages, especially M2 macrophages which served as an

anti-inflammatory and tumor-promoting phenotype (Yunna

et al., 2020), was significantly associated with the aging CAF

score. CD4+ T cells and CD8+ T cells were also positively

correlated with the aging CAF score. Consistently, the

abundance of M2 macrophages and CAFs significantly

increased in the high-aging CAF score group (Figure 6B).

Similar results were obtained by quantifying the TME

components for all samples in the merged data via MCP

counter, CIBERSORT algorithm, and ssGSEA method, in

which CAFs, M2 macrophages, regulatory T cells (Treg), and

myeloid-derived suppressor cells (MDSCs) increased in the high-

aging CAF score group (Supplementary Figures S8A–C).We also

found that most of the immune checkpoints were highly

expressed in the high-aging CAF score group compared to the

low-score group (Figure 6C). The expression levels of most of the

genes involved in the negative regulation of the cancer-immunity

cycle increased in the high-aging CAF score group

(Supplementary Figures 8D,E), the related gene list was

downloaded from the Tracking Tumor Immunophenotype

FIGURE 4
low- and high-aging CAF score groups. (K) Differentially enriched KEGG pathways between low- and high-aging CAF score groups. The
function terms with |log2 FC| > 0.1 and adjusted p-values (FDR) < 0.05 between two groups were considered differentially enriched. The values of the
GSVA score for function terms were centered and scaled in the row direction. The top 20 differentially enriched function terms were shown in the
heatmaps. CAF, cancer-associated fibroblast; ROC, receiver operating characteristic; AUC, area under curve; ACAFRGs, aging cancer-
associated fibroblast-related genes; CR/PR, complete remission/partial remission; PD/SD, progressed disease/stable disease, GSVA, gene set
variation analysis.

FIGURE 5
Construction of a nomogram model. (A) Nomogram model based on the aging CAF score and multiple clinicopathological factors was
constructed. (B) Values of the C-index for the nomogram model and aging CAF score group were higher than those of other clinical factors. (C)
Calibration curves for the nomogram model. (D,E) ROC curves of the nomogram model for predicting the 2 (D) and 3-year (E) overall survival. (F)
DCA of the nomogram model for predicting the prognosis at 3 years. CAF, cancer-associated fibroblast; C-index, consistency index; ROC,
receiver operating characteristic; AUC, area under curve; DCA, decision curve analysis.
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FIGURE 6
Exploration of the correlation between the aging CAF score and TME. (A) Correlation between the abundance of essential cells in the TME and
aging CAF score. The cell types with p-values less than 0.05 were presented. (B) Heatmap showing the comparisons of the abundance of essential
cells in the TME between low- and high-aging CAF score groups. The cell types with p-values less than 0.05 were presented. (C)Comparisons of the
expression levels of immune checkpoints between the low- and high-aging CAF score groups. (D) Expression patterns of cytokines secreted by
CAFs with increasing aging CAF scores. (E) Comparisons of TIDE-related scores between the two groups. * means p < 0.05, ** means p < 0.01, and
***means p < 0.001. CAF, cancer-associated fibroblast; TME, tumor microenvironment; TIDE, Tumor Immune Dysfunction and Exclusion.
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website (http://biocc.hrbmu.edu.cn/). All these results suggested

that the high-aging CAF score group tended to exhibit an

immune-suppressive phenotype. Moreover, the expression

levels of most of the cytokines secreted by CAFs upregulated

with the increase in the aging CAF score (Figure 6D,

Supplementary Figure S8F). Intriguingly, we found that some

cytokines secreted by CAFs were also involved in senescence-

associated secretory phenotype (SASP) factors which can be

upregulated upon senescence, influence immune cell

functions, and play tumor-promoting roles in the TME

(Ruhland and Alspach, 2021), such as IL6, AREG, CXCL12,

TGFβ, VEGF, and CCL2. These findings indicated that the

aging CAF score developed by our study was genetically

correlated with aging CAFs. The TIDE algorithm can be used

to predict the potential response to immune checkpoint blockage

treatment based on a comprehensive analysis of tumor immune

dysfunction and exclusion mechanisms (Jiang et al., 2018). We

detected that the dysfunction scores of the low-aging CAF score

group were lower than those of the high-score group while the

exclusion scores of the low-aging CAF score group were higher

than those of the high-score group. Finally, we found that the

low-aging CAF score group exhibited significantly lower TIDE

scores than the high-score group, implying that patients in the

low-aging CAF score group tended to benefit from immune

checkpoint blockage treatment such as PD-1/PD-L1 blockage

immunotherapy (all p values <0.001, Figure 6E).

In addition, the enrichment levels of the immune gene sets were

quantified by single-sample gene set enrichment analysis (ssGSEA)

based on the gene expression profiles of LGGs. Then, based on the

ssGSEA scores of the immune cells, consensus clustering was

performed to classify the LGG patients into different clusters,

which were termed by immune subtypes (He et al., 2018). As

shown in Supplementary Figure S9A, LGG samples were

reasonable to be classified into three immune subtypes. We found

that immune subtype B represented a subtype with high infiltration

of immune cells, immune subtype C represented a subtype with low

infiltration of immune cells, and immune subtype A represented a

subtype with medium infiltration of immune cells (Supplementary

Figure S9B). Furthermore, we explored the links between immune

subtypes and the previously established model in our study. As

shown in Supplementary Figures S9C,D, immune subtype B with

high immunity showed the highest proportion of gene cluster A and

the high-aging CAF score group while immune subtype C with low

immunity showed the lowest proportion of gene cluster A and the

high-aging CAF score group (p < 0.001).

Exploration of genetic mutations for
samples with low- and high-aging CAF
scores

Previous studies demonstrated the underlying correlation

between genetic alterations and the tumor immune

microenvironment (Rooney et al., 2015). Thus, we further explored

the features of geneticmutations for sampleswith low- and high-aging

CAF scores.We found that TMBs were significantly lower in the low-

aging CAF score group than in the high-score group (p= 1.7e-12) and

the TMBwas positively correlated with the aging CAF score (R = 0.22,

p = 9.2e-7, Figure 7A). Moreover, the LGG patients with high TMBs

and high-aging CAF scores received the shortest overall survival while

the patients with lowTMBs and low-agingCAF scores had the longest

overall survival. The prognosis of patients with low TMBs and high-

aging CAF scores was worse than those of patients with high TMBs

and low-aging CAF scores, indicating that the aging CAF score served

as an independent prognostic factor independent of the TMB

(Figure 7B). Finally, we identified the top 20 genes with the

highest mutation frequencies in the low- and high-aging CAF

score groups (Figures 7C,D). IDH1, TP53, and ATRX represented

the top three frequently mutated genes in the low-aging CAF score

group while EGFR, PTEN, and NF1 presented the highest mutation

frequencies in the high-aging CAF score group.

Validation of aging CAF-related genes in
external datasets

Two independent cohorts were employed to verify the aging

CAF-related genes. First, two distinct aging CAF-related gene

clusters were identified in the validation cohort (dataset ID:

mRNAseq_693) based on the expression profiles of aging

CAF-related genes by the consensus clustering method

(Supplementary Figure S10A). Consistent with the

aforementioned results, the prognosis of gene cluster A was

worse than that of gene cluster B (Figure 8A). Moreover, we

found that the expression levels of the eight featured genes for

discriminating the two gene clusters substantially differed

between gene clusters A and B in the validation cohort

(Supplementary Figure S10B). The ROC curves demonstrated

the high accuracy of the eight featured genes for discriminating

the two gene clusters (Supplementary Figure S10C).

Unsupervised clustering for glioma samples in the validation

cohort demonstrated that samples can be easily discriminated

against based on the expression of the eight featured ACAFRGs

(Figure 8B). A nomogram model was also built to predict the

probability of gene cluster A based on the expression of these

featured genes (Supplementary Figure S10D). The calibration

curve, DCA curve, and clinical impact curve confirmed the

robust performance of the nomogram model (Supplementary

Figures S6E–G). Finally, samples in the validation cohort were

assigned with specific aging CAF scores based on a similar

method, followed by which samples were separated into low-

and high-aging CAF score groups. The prognosis of the high-

aging CAF score group was worse than those of the low-score

group (Figure 8C). The ROC curves for predicting 1, 2, and 3-

year overall survival further verified the accuracy of the aging

CAF score (Figure 8D). In addition, similar results were obtained
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in another validation cohort (dataset ID: mRNAseq_325, Figures

8E–H, Supplementary Figure S11).

We also verified the performance of the aging CAF score in

predicting the response to immune checkpoint blockage treatment

in two independent cohorts. More patients were found to get

favorable responses in the low-aging CAF score group compared

to the high-score group (p = 0.033 in the GSE78220 cohort and p =

0.03 in the IMvigor210 cohort, Figures 8I,J).

Validation of the featured ACAFRGs at the
protein level

A total of four ACAFRGs, namely, RBP1, PDPN, FKBP9, and

MSN were randomly selected from the featured ACAFRGs. We

found differential expression patterns of the aforementioned

genes between normal and glioma tissues in

immunohistochemistry staining on the Human Protein Atlas

website (Figures 9A–D). Western blotting confirmed the high

expression levels of six ACAFRGs in glioma tissues at the protein

level (Figure 9E). As shown in Supplementary Figure S12, for the

six molecules, we found that the optical density of G3 glioma

samples was significantly higher than those of the normal brain

samples. Although we detected that the six molecules were

upregulated in the G2 glioma samples compared to the

normal brain samples (Figure 9E), the statistical analysis of

the optical density of the bands demonstrated no significant

difference between them except PDPN and RBP1.

Discussions

As the most common stromal component in the TME, CAFs

have been drawing increasing attention in cancer research for

FIGURE 7
Exploration of genetic mutations for samples with low- and high-aging CAF scores. (A) Correlation between the TMB and aging CAF score. (B)
Kaplan–Meier analysis of patients with different TMBs and aging CAF scores. (C,D) Top 20 geneswith the highestmutation frequencies in the low- (C)
and high- (D) aging CAF score groups. CAF, cancer-associated fibroblast; TMB, tumor mutation burden.
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FIGURE 8
Validation of aging CAF-related genes in external datasets. (A)Comparison of the overall survival between gene clusters A and B in the validation
cohort (dataset ID: mRNAseq_693). (B) Unsupervised clustering for samples based on the expression of eight featured ACAFRGs in the validation
cohort (dataset ID: mRNAseq_693). (C) Comparison of the overall survival between the low- and high-aging CAF score groups in the validation
cohort (dataset ID: mRNAseq_693). (D) Time-dependent ROC curves of the aging CAF score in the validation cohort (dataset ID:
mRNAseq_693). (E–H) Similar results were obtained in another validation cohort (dataset ID: mRNAseq_325). (I)Comparison of the response to PD-
1 immune checkpoint blockage treatment between the low- and high-aging CAF score groups in the GSE78220 cohort. (J) Comparison of the

(Continued )
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their indispensable roles in tumor initiation and progression.

Previous studies have revealed that CAFs have context-

dependent functions, harboring both tumor-promoting and

tumor-suppressive roles (Chen et al., 2021). The significant

impact of CAFs on the regulation of anti-tumor immunity

makes it possible to predict the immunotherapy response

based on CAF-related biomarkers (Miyai et al., 2022).

Moreover, considering that cancer has been previously

FIGURE 9
Validation of the featured ACAFRGs at the protein level. (A–D) Differential expression patterns of the featured genes between normal brain
tissues and glioma tissues which were identified in immunohistochemistry staining on the Human Protein Atlas website. (E) Identification of the
featured genes byWestern blotting, in which lane 1 represents normal brain tissues, lanes 2 and 3 represent grade II glioma tissues, and lanes 4, 5, and
6 represent grade III glioma tissues. ACAFRGs, aging cancer-associated fibroblast related genes; Control: normal brain tissue.

FIGURE 8
response to PD-L1 immune checkpoint blockage treatment between the low- and high-aging CAF score groups in the IMvigor210 cohort. CAF,
cancer-associated fibroblast; ACAFRGs, aging cancer-associated fibroblast related genes; ROC, receiver operating characteristic; AUC, area under
curve; CR/PR, complete remission/partial remission; PD/SD, progressed disease/stable disease.
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regarded as a disease of aging, CAFs are demonstrated to be

particularly susceptible to aging-related impact in the context of

tumor development (Yasuda et al., 2021a). Therefore, studies

focusing on aging CAFs may provide a new direction for

exploring biomarkers by drawing implications in predicting

prognosis and immunotherapy in gliomas. In our study, we

identified ACAFRGs in LGGs by the WGCNA method, based

on which LGG samples were classified into two aging CAF-

related gene clusters with distinct prognosis and characteristics of

the TME. Machine learning algorithms were used to screen out

the eight featured ACAFRGs to characterize two aging CAF-

related gene clusters, and a nomogram model was constructed to

predict the probability of gene cluster A for each LGG sample.

Then, a powerful aging CAF scoring system was developed to

predict the prognosis and response to immune checkpoint

blockage therapy in the current research. Finally, the

ACAFRGs were verified in two glioma-related external

datasets. The performance of the aging CAF score in

predicting the immunotherapy response was further validated

in two independent cohorts with the information on immune

checkpoint blockage treatment. We also confirmed the

expression of ACAFRGs at the protein level in glioma tissues.

CAFs are a critical component in the stroma of the TME with a

variety of functions, including generating and remodeling

extracellular matrix components and complex interactions with

tumor cells and other cell types in the TME (Sahai et al., 2020).

Epigenetic alterations of CAFs enable the production and release of

multiple cytokines, chemokines, exosomes, and metabolites, which

impacts cancer progression, regulation of anti-tumor immunity, and

metabolism (Chen et al., 2021). Based on the distinct transcriptome,

single-cell RNA sequencing analysis has identified several

subpopulations of CAFs with different functions, which has

increased our understanding of the high heterogeneity of CAFs

(Kieffer et al., 2020). Similar to the opposing effects of CAFs on

tumor cells (tumor-permissive and tumor-suppressive effects), aging

CAFs have also been demonstrated to exhibit both pro- and anti-

tumorigenic activity (Ruhland and Alspach, 2021). Nevertheless, the

substantial roles of agingCAFs in tumor promotion have always been

underscored in recent years. Researchers have reported the dynamic

evolving epigenetic changes of CAFs in the course of aging. Aging

CAFs facilitate tumor progression mainly by the secretion of SASP

factors which can cause chronic inflammation, promote

angiogenesis, and enhance immunosuppressive activity (Yasuda

et al., 2021a). However, it is important to note that current

studies focusing on aging CAFs are facing the challenge of

identifying both the aging status and the cell type of CAFs.

Fibroblasts can be determined only by the absence of markers

which define epithelial cells, endothelial cells, and immune cells

(Sahai et al., 2020). In our study, we determined a total of

463 ACAFRGs which were significantly correlated with aging

CAFs in LGG samples, such as CDKN2B, CCL4, CCL19, and

ISLR. The CDKN2B (cyclin-dependent kinase inhibitor 2B) gene

locates at exon 1 of CDKN2B-AS1, and the encoded protein serves as

a regulator in cell cycle G1 progression by interacting with CDK

kinases (Sibin et al., 2016). CDKN2B is found to be highly

differentially expressed in aged individuals (Sebastiani et al., 2021).

Considering that cellular senescence has previously been defined as a

state of permanent cell cycle arrest, as a cell cycle arrest gene,

CDKN2B has been reported to contribute to extracellular matrix

deposition and cellular senescence (Rathi et al., 2020). CCL family

members are involved in the chemokines and cytokines which can be

strongly expressed by CAFs to enhance the pro-tumorigenic activity

of myeloid cells (Monteran and Erez, 2019). Meflin (ISLR) is defined

as a new cell surface marker for cancer-restraining CAFs in

pancreatic and colon cancers. Tumor-suppressive roles of meflin-

positive CAFs have been proposed, which are mediated by the

regulation of collagen structures and bone morphogenetic protein

(BMP) signaling in the TME (Takahashi et al., 2021).Meflin has been

also reported to correlate with favorable prognosis and therapeutic

response to immune checkpoint blockage treatment in patients with

non-small cell lung cancer (NSCLC) (Miyai et al., 2022).

Alternatively, meflin is determined as an unfavorable gene with a

predictive value in patients with colon adenocarcinoma (Wang et al.,

2021). Consistently, univariate Cox regression analysis revealed that

meflin (ISLR) served as an unfavorable gene in LGGs in our research.

A total of 400 ACAFRGs with prognostic values were used to

segregate LGG samples into two aging CAF-related gene clusters.We

found that worse survival was associated with gene cluster A which

was characterized bymore infiltrating immune cells and fibroblasts in

the TME, compared to gene cluster B. A total of eight featured

ACAFRGs were determined to discriminate the two gene clusters,

namely, FAM110B, RBP1, FKBP9, MSN, PDPN, TIMP1, EMP3, and

CHI3L1, based on which a nomogram with robust performance was

constructed to predict the probability to be grouped into gene cluster

A for each glioma patient. In addition, each gene involved in the eight

featured ACAFRGs exhibited high accuracy to characterize the gene

clusters. For example, as a member of the FAM110 family (family

with sequence similarity 110), FAM110B with an AUC value of

0.934 was downregulated in gene cluster A and the high-aging CAF

score group (Supplementary Figure S4, Figure 3K, Figure 4I).

Previous studies demonstrated that FAM110B participated in the

regulation of the cell cycle and predicted favorable prognosis in

NSCLC (Xie et al., 2020). In agreement with this study, FAM110B

was found to be involved in the favorable gene set which was used to

calculate the aging CAF score. As an unfavorable gene involved in

ACAFRGs, CHI3L1 was highly expressed in gene cluster A and the

high-aging CAF score group (Figure 3K, Figure 4H). Consistent with

our results, CHI3L1 has been reported to be associated with poor

prognosis in hepatocellular carcinoma (Wang et al., 2022). A recent

study showed that CHI3L1 was significantly correlated with severe

state and adverse prognosis for COVID-19 patients (Kimura et al.,

2021). Intriguingly,CHI3L1 has been shown to positively regulate the

PD-1/PD-L1 axis and other immune checkpoint molecules,

potentially implying its impact on immunotherapy response (Ma

et al., 2021). It is important to emphasize that the high-aging CAF

score group has been found to receive less response to immune
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checkpoint blockage therapy in the current research, which might be

attributed to the aforementioned mechanism.

Based on the expression profiles of unfavorable and favorable

ACAFRGs, we constructed a novel aging CAF scoring system. We

detected that the high-aging CAF score predicted poor prognosis

and a less favorable response to immune checkpoint blockage

therapy in LGGs. The powerful performance of the aging CAF

score was further verified in external cohorts. In this study, our

analysis culminated in several important points: 1) as shown in

Supplementary Figure S13, the aging CAF score was positively

correlated with age (R = 0.17, p = 1.7e-5) and the age values of the

high-agingCAF score groupwere significantly higher than those of

the low-score group (p = 1.9e-12); 2) the aging CAF score was

shown to be positively associated with the abundance of CAFs

within the TME, as shown in Figure 6A; 3) the SASP factors and

cytokines secreted by CAFs were robustly upregulated with the

increasing aging CAF score. All these findings suggested that,

except for the predictive performance, the aging CAF score

developed in our study may serve as an indicator to quantify

the abundance of aging CAFs in the TME. To some extent, the

high aging CAF score predicted a poor prognosis and indicated

more abundance of aging CAFs in the TME, which was consistent

with the widely accepted concept that aging CAFs contributed to

the proliferation and invasion of the surrounding cancer cells

(Yasuda et al., 2021a). In addition, previous studies have revealed

that aging CAFs promote the recruitment of M2 macrophages to

enhance the immunosuppressive phenotype (Ruhland et al., 2016).

We found that well-defined immune cells negatively regulating

immune responses such as regulatory T cells (Tregs),

M2 macrophages, and MDSCs presented high abundance in

the high-aging CAF score group accompanied by the high

expression of genes negatively regulating anti-tumor immunity

(Figure 6B, Supplementary Figure S8B–E). This indicated that the

high-aging CAF score group had an immunosuppressive

phenotype, which was in accordance with the current point

that aging CAFs acted as a major driver of immunosuppression

within the TME (Ruhland and Alspach, 2021). To confirm the

outstanding performance of the aging CAF score, we compared the

risk score from multivariate Cox regression analysis based on

ACAFRGs with it. First, we calculated the risk score for each LGG

sample based on the expression profiles of prognostic ACAFRGs

by using multivariate Cox regression analysis method. The critical

genes involved in the construction of the risk score and the

corresponding coefficients are listed in Supplementary Table S4.

Similarly, LGG samples were divided into high- and low-risk score

groups. As shown in Supplementary Figures S14A,B, LGG patients

in the high-risk score group had a worse prognosis than those in

the low-risk score group (p < 0.001) and the univariate/

multivariate Cox regression analysis indicated that the risk

score was significantly correlated with prognosis and served as

an independent prognostic factor (all p values < 0.001). However,

the ROC curves revealed that the accuracy of the aging CAF score

was higher than those of the risk score for predicting the prognosis

(Supplementary Figures S14C–E). For example, the AUC value of

the aging CAF score for predicting the 2-year overall survival was

0.802 while the AUC value of the risk score was 0.776. Similarly,

the results of DCA showed that the aging CAF score was a more

powerful predictor than the risk score. Moreover, as shown in

Supplementary Figure S14F, the C-index value of the aging CAF

score group (0.942) was higher than those of the risk score group

(0.913). Similar to the aging CAF score, the risk score can also

predict the characteristics of the TME (Supplementary Figure

S14G), immunotherapy response (Supplementary Figure S14H),

aging CAF-related gene clusters (Supplementary Figure S14I), and

tumor mutation burden (Supplementary Figure S14J). However,

the risk score cannot predict the immunotherapy response in the

validation cohorts (p = 0.853 in GSE78220, p = 0.077 in the

IMvigor210 cohort, Supplementary Figures S14K,L). The robust

capacity of the aging CAF score for predicting the immunotherapy

response has been verified in the aforementioned external datasets

in our study. Taking all these results into consideration, we believe

that the aging CAF score in our study has a more powerful

potential to predict prognosis and immunotherapy response

than the risk score from multivariate Cox regression analysis.

Moreover, our results indicated that the high-aging CAF

score group bore more TMBs than the low-score group

(Figure 7A). It is to be noted that the top three genes with the

highest mutation frequencies in the high-aging CAF score group

were EGFR, PTEN, andNF1. The mutation frequency of EGFR in

GBMs has been shown to be higher than those in LGGs. EGFR

mutation has been reported to be an independent predictor of the

prognosis in all grades of gliomas (Saadeh et al., 2017). PTEN

mutation has also been found to be significantly associated with

reduced survival in gliomas (Zhang et al., 2021). Wang et al.

demonstrated that NF1 was more frequently mutated in GBMs

compared to LGGs and has been used to define the mesenchymal

subtype of GBMs (Verhaak et al., 2010). In contrast, IDH1

exhibited the highest mutation frequency in the low-aging

CAF score group, which was consistent with the well-

identified concept that IDH mutation was associated with

better prognosis in gliomas (Turkalp et al., 2014). It seemed

that LGGs in the high-aging CAF score group may represent a

subgroup similar to GBMs from the point of genetic variation.

Overall, in our study, we determined a series of ACAFRGs in

LGGs, based on which a robust aging CAF scoring system was

developed to predict the prognosis and immunotherapy

response. Our findings may provide new targets for

therapeutics and contribute to future exploration focusing on

aging CAFs.
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