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Hepatocellular carcinoma (HCC) is a common malignant tumor with a poor

prognosis. Epigenetic dysregulation is now considered to be related to

hepatocarcinogenesis. However, it is unclear how epigenetic-related genes

(ERGs) contribute to the prognosis of HCC. In this study, we used the TCGA

database to identify prognostic ERGs that were differentially expressed in HCC

patients. Then, using least absolute shrinkage and selection operator (LASSO)

regression analysis, a six-gene signature was constructed, and patients were

divided into high- and low-risk groups. Validation was performed on HCC

patients from the ICGC database. Patients in the high-risk group had a

significantly lower chance of survival than those in the low-risk group (p <
0.001 in both databases). The predictive ability of the signature was determined

by the receiver operating characteristic (ROC) curve. The risk score was then

shown to be an independent prognostic factor for the overall survival (OS) of

HCC patients based on the results of univariate and multivariate analyses. We

also created a practical nomogram combining the prognostic model with other

clinical features. Moreover, functional enrichment analysis revealed that these

genes are linked to tumor immunity. In conclusion, our findings showed that a

novel six-gene signature related to epigenetics can accurately predict the

occurrence and prognosis of HCC.
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Introduction

Hepatocellular carcinoma (HCC) is the most common type

of primary liver cancer, accounting for ~75% of all liver cancers

as well as being the fourth leading cause of cancer-related deaths

worldwide (Lee et al., 2020). It is caused by chronic HBV or HCV

infection, exposure to toxins/environmental factors (alcoholism

or aflatoxins), and metabolic disorders [insulin resistance,

obesity, type II diabetes, or dyslipidemia in nonalcoholic fatty

liver disease (NAFLD)] among others (Liu et al., 2020;

Tsilimigras et al., 2020). Only a few patients diagnosed with

HCC are in the early stages (BCLC-0 and BCLC-A) and can

receive treatment such as local ablation, resection, or orthotopic

liver transplantation, according to the BCLC system. However,

the treatment of advanced HCC (BCLC-B and BCLC-C) has

always been a clinical challenge (Gordan et al., 2020).

Furthermore, the high incidence of tumor recurrence (50%–

70% 5 years after surgery) impedes improved survival and

contributes to poor prognosis (Sun et al., 2021). Due to the

significantly increased global burden of HCC and limited

treatment options, it is critical to explore new therapeutic

targets and develop credible prognostic models.

The advancement of epigenetics has resulted in a significant

breakthrough in tumor diagnosis and prediction of clinical

outcomes (Deans and Maggert, 2015). Epigenetics refers to

changes in cell characteristics that are stable and long-term,

rather than to alterations in the DNA sequence (Wu and

Morris, 2001; Bird, 2007), such as DNA and RNA

methylation, posttranslational modifications (histone and non-

histone), and noncoding RNAs (Mohd et al., 2020). During the

last decade, several studies have proved that epigenetic signature

alterations may lead to a variety of diseases, such as diabetes,

cardiovascular diseases, neurological diseases, and cancer

(Atlante et al., 2020). A growing body of evidence suggests

that abnormal epigenetic factors shape the physiological and

pathological processes of HCC and could be used as a type of

biomarker for early detection and prognosis of HCC (Grady

et al., 2021). Wong et al. (2007) discovered that tissue factor

pathway inhibitor-2 (TFPI-2) was frequently silenced by

epigenetic alterations in HCC, which include histone

deacetylation promoter and methylation. Furthermore, the

dysregulation of histone modifications has emerged as an

important mechanism for the development of HCC. Previous

studies have shown that histone lysine methyltransferase,

suppressor of variant 39H1 (SUV39H1), enhancer of zeste

homolog 2 (EZH2), euchromatic histone-lysine

N-methyltransferase 2 (G9a/EHMT2), and SET domain

bifurcated 1 (SETDB1) when significantly upregulated

promote the development and metastasis of HCC through

epigenetic silencing of key tumor suppressor genes and

microRNAs (miRNAs) (Wong et al., 2016; Sun et al., 2017;

Wei et al., 2017; Liu et al., 2019).

In this study, the expression of 720 ERGs and their

relationship with the prognosis of HCC were systematically

examined. We constructed a six-gene prognostic signature and

proposed a predictive risk score model to stratify HCC patients.

Moreover, we used multiple analysis methods to detect the

prognostic value of these genes and constructed a practical

nomogram by combining clinicopathological characteristics.

Finally, we used the gene set enrichment analysis (GSEA) to

investigate the underlying mechanism of our gene signature and

the correlation between ERGs and the tumor immune

microenvironment.

Materials and methods

Data collection

We obtained 424 transcriptome profiling data (normal and

tumor specimens) and the corresponding clinical data of

377 HCC patients from the TCGA database as of 1 September

2021 (https://portal.gdc.cancer.gov/), and the same information

of another 231 tumor specimens from the ICGC database

(https://dcc.icgc.org/projects/LIRI-JP). The information on the

clinicopathological characteristics of 377 HCC patients is

presented in Supplementary Table S1. We used standardized

reading count values. Both TCGA and ICGC data are publicly

available. Therefore, permission from the local ethics committee

is not required for our study. The present research follows the

TCGA and ICGC data access strategies and release guidelines.

Identification of differentially expressed
epigenetic-related genes related to
overall survival between tumor and
normal samples

We extracted 720 ERGs from the EpiFactors database

(https://epifactors.autosome.ru/) and presented them in

Supplementary Table S2. The R package “limma” was used to

identify differentially expressed genes (DEGs) between HCC

samples and normal samples. We used more stringent

screening conditions due to a large number of ERGs. The

absolute value of the log2 fold change (log2FC) > 2 and false

discovery rate (FDR) < 0.05 was adopted as the threshold. To

assess the prognostic value of ERGs, we used Cox regression

analysis to investigate the relationship between these genes and

OS in the TCGA database at p < 0.001. We chose the intersection

of differential expressed genes and prognostic genes for further

investigation. We used the STRING database (https://string-db.

org/, version 11.0) to construct an interaction network for the

overlapping prognostic DEGs. Then, using a correlation network,

we drew the co-expression relationship between these genes.
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Construction and validation of a
prognostic epigenetic-related gene
signature

Lasso regression, also known as the least absolute value

convergence and selection operator, is a method for solving the

collinearity of independent variables in linear regression analysis

(Tibshirani, 1997). To narrow the range of overlapping genes and

establish a prognostic signature, the Lasso Cox regression model

(“glmnet” package) was used. Subsequently, a six-gene signature

with its corresponding coefficients was constructed, and the penalty

parameter (λ) was determined using the lowest standard. The “scale”

function in R was used to calculate the risk score of each patient: risk

score = ∑7iXi×Yi (X: coefficients and Y: gene expression level).

Based on the median risk score, the HCC patients from the TCGA

database were divided into the high-risk and low-risk groups.

Receiver operating characteristic curves were used to predict the

accuracy of the prognostic signatures, and Kaplan–Meier survival

curves were used to examine the effect of the signature on survival.

The OS time of the two subgroups was compared by KM analysis,

while a series of R packages including “survminer,” “survival,” and

“time-ROC” R packages were used to establish ROC curve analyses

for 3 years. The principal component analysis (PCA) and

t-distributed stochastic neighbor embedding (t-SNE) were used to

determine the principal components. The PCA and t-SNE analyses

were performed by the “stats” and “Rtsne” packages based on the

gene expression levels in the model. Then, we used the

aforementioned formula to obtain the risk score of patients in

the ICGC database to verify whether the signature is effective.

Independent prognostic analysis of risk
score

We extracted the clinical characteristics (age, gender, grade,

stage, etc.) of patients from both databases. The risk score and

FIGURE 1
Workflow chart of the study.
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clinical variables were then combined to construct a regression

model. To identify independent risk factors from the risk score

and other clinical characteristics, univariate andmultivariate Cox

regression models were used at p < 0.05.

Functional enrichment analysis of the
differentially expressed genes

We screened out the DEGs between the high-risk and low-

risk subgroups using specific criteria (FDR < 0.05 and |log2FC| >
2); the “clusterProfiler,” “ggplot2,” and “enrich plot” packages

were executed to perform the GO and KEGG analyses based on

the DEGs. The BH method was used to adjust the p values. The

GO analysis was divided into three parts: biological process (BP),

cellular component (CC), and molecular function (MF), whereas

the KEGG analysis focused on the metabolic pathways and

molecular mechanisms. The ssGSEA in the “GSVA” R

package was used to assess the infiltrating level of immune

cells and the activity of immune-related pathways [18].

Supplementary Table S3 shows annotated gene set files.

Building a predictive nomogram in the
Cancer Genome Atlas and International
Cancer Genome Consortium database

The nomogram transforms the complex regression equation

into a visual contour map, making the prediction model more

readable, to evaluate the OS probability of individual patients

(Park, 2018). In this study, we used Cox regression analysis to

select all independent clinicopathological characteristics to build

a nomogram that can evaluate the probability of OS in HCC

patients at 1, 2, and 3 years.

FIGURE 2
Identification of prognostic epigenetic-related DEGs. (A) Venn diagram to identify DEGs related to OS. (B) Heat maps of the 39 overlapping
genes. (C) Results of the univariate Cox regression analysis. (D) PPI network indicating interactions among the overlapping genes. (E) The correlation
network of the overlapping genes.

Frontiers in Genetics frontiersin.org04

Wang et al. 10.3389/fgene.2022.897123

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.897123


External validation of prognostic gene
signature

ThemRNA expression level (TIMER database, https://cistrome.

shinyapps.io/timer/) revealed the abnormal expression of the genes

in the prognostic signature. The protein expression profiles (The

Human Protein Atlas database, HPA, https://www.proteinatlas.org/)

could be used to investigate the expression of proteins represented

by genes. Then, we explored genetic alterations in the signature

using cBioPortal (http://www.cbioportal.org).

Results

Identification of prognostic epigenetic-
related differentially expressed genes in
the Cancer Genome Atlas database

Figure 1 depicts the workflow chart. We identified 274 DEGs

(adjusted p-value < 0.05 and |log2FC| > 1) by comparing the

expression level of 720 ERGs from 50 normal and 374 tumor

samples in the TCGA database. Furthermore, univariate Cox

regression analysis was used to screen for prognostic-related

genes among them. For further analysis, we identified 194 DEGs

that are also related to prognosis (Figure 2A). We chose 39 of these

genes for further display due to the large number of prognostic

epigenetic-related DEGs. Supplementary Figure S1 shows the

complete results. Figures 2B,C show the RNA levels and

univariate Cox regression analysis results of these genes. A

protein–protein interaction (PPI) analysis was performed to

further assess the interactions of these genes, and the results are

shown in Figure 2D, as well as the correlation between these genes in

Figure 2E. This section may be divided into subheadings. It should

provide a concise and precise description of the experimental results,

their interpretation, and possible experimental conclusions.

Development of a prognostic gene model
in the Cancer Genome Atlas database

A six-gene signature was developed based on the optimal λ

value using Lasso Cox regression analysis. The risk score was

calculated as follows: risk score = (0.22*CBX2 exp.) +

(0.18*PPM1G exp.) + (0.28*RAD54B exp.) +

(0.07*RUVBL1 exp.) + (0.01*SAP30 exp.) + (0.08*0.08 exp.).

Then, 365 patients were divided into the high-risk (n = 182)

and low-risk (n = 183) groups on the basis of the median cut-off

expression value (Figure 3A). According to the PCA and t-SNE

analyses, the patients in the two risk groups were well separated

into different clusters (Figures 3B,C). Compared with the low-risk

group, the patients in the high-risk group had a higher probability

of death and a shorter lifetime (Figure 3D). Similarly, the KMcurve

revealed that patients in the high-risk group had significantly

shorter OS time (Figure 3E). The ROC analysis was used to

estimate the sensitivity and specificity of the gene signature.

The area under the ROC curve (AUC) was 0.779 for 1-year,

0.716 for 2-year, and 0.702 for 3-year survival, demonstrating

excellent prediction performance of the risk signature (Figure 3F).

Validation of the risk signature in the
International Cancer Genome Consortium
database

We applied the six-gene signature to the ICGC database to test

the robustness of our prognostic model. A total of 231 patients from

the ICGC database were classified into a high- or low-risk group

based on the median value calculated with the same formula as that

from the TCGA database (Figure 4A). PCA and t-SNE verified that

the patients in the two risk groups were distributed in the discrete

direction, which was consistent with the aforementioned results

(Figures 4B,C).Moreover, when compared with the high-risk group,

patients in the low-risk subgroup had longer survival lifetime and

lower mortality than those in the high-risk group (Figure 4D).

Furthermore, the KM analysis confirmed that the OS of the high-

risk group was significantly lower than that of the low-risk group

(p = 0.000018, Figure 4E). The AUC on the ROC curve was 0.727 at

1 year, 0.716 at 2 years, and 0.739 at 3 years (Figure 4F), indicating a

better predictive efficiency.

Independent prognostic value of risk
signature

The risk score based on the genetic signature was tested using

univariate andmultivariate Cox regression analyses to assess whether

it was an independent prognostic factor among the available

variables. In both TCGA and ICGC databases, univariate Cox

regression analysis showed that the risk score was significantly

associated with poor survival (HR = 5.795, 95% CI:

3.559–9.438 and HR: 4.401,95% CI: 2.072–9.348, Figures 5A,C).

The tumor stage was also correlated with OS, while no significant

association was found between other clinical features and OS. After

adjusting for other confounding factors, themultivariate analysis also

proved that the risk score was an independent factor for OS (HR =

4.824, 95% CI: 2.923–7.961 and HR: 3.632, 95% CI: 1.627–8.106,

Figures 5B,D) in both cohorts. These results have indicated that the

risk score generated from the six-gene signature could serve as an

independent factor for the OS of HCC patients.

Construction of a predictive nomogram in
both databases

We constructed a nomogram to predict 1-year, 2-year, and 3-

year survival to establish a clinically applicable method to predict
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the probability of survival of HCC patients. The model

incorporates five features of the TCGA database: age, grade,

T, M, and N, as well as three features of the ICGC database: age,

gender, and stage (Figure 6). Subsequently, a nomogram

combining the clinicopathological characteristics with the six-

gene signature was developed to enhance the predictive

sensitivity and specificity of 1-year, 2-year, and 3-year OS,

thereby improving the practicality in the clinical management

of HCC patients.

Functional analyses based on risk
signature

We then used the “limma” R package to screen out DEGs that

differed between the two risk groups to explore the biological

functions and pathways related to the risk model (FDR <
0.05 and |log2FC| ≥ 1). Then, GO and KEGG pathway

enrichment analyses were performed based on these DEGs.

The DEGs were found to be mainly enriched during DNA

replication, ATP-dependent DNA helicase activity, and other

molecular functions which were associated with epigenetics.

Moreover, the DEGs were found to be enriched in the

biological processes such as nuclear chromosome segregation

andmitotic nuclear division in both databases (q: the adjusted p <

0.05, Figures 7A,C). Figure 7A reveals that the DEGs were

involved in several immune-related molecular functions and

biological processes. KEGG pathway enrichment analysis also

showed that the cell cycle and human T-cell leukemia virus 1

infection pathway were enriched in both databases (q < 0.05,

Figures 7B,D).

Comparison of the immune activity
between subgroups

Based on the aforementioned functional analysis, we used

ssGSEA to further compare the enrichment degree of different

immune cells and immune-related pathways between the two

subgroups in the TCGA and ICGC databases. Figure 8A shows

that there were significant differences in the level of immune

infiltration between the two-risk groups in the TCGA database.

The enrichment scores of B cells, mast cells, neutrophils, and NK

cells in the high-risk group were lower than those in the low-risk

group, whereas the aDCs, macrophages, and Th2 cells showed

the opposite pattern. Moreover, in immune function correlation

analysis, the scores of MHC class I and type II IFN response and

cytolytic activity were significantly different between the two

groups (Figure 8B). We confirmed the differences between

neutrophils, B cells, cytolytic activity, NK cells, and type II

FIGURE 3
Construction of risk signature genes in the TCGA database. (A). Distribution of patients based on the risk score, (B) PCA plot, and (C) t-SNE
analysis. (D) Distributions of survival status (low-risk on the left and high-risk on the right side of the dotted line). (E) Kaplan–Meier curves for the OS.
(F) AUC of time-dependent ROC curves.
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IFN response between the two groups using ssGSEA analysis in

the ICGC database (Figures 8C,D). It is worth noting that the

enrichment scores of these immune cells and immune function in

the high-risk group were downregulated.

Online database analysis

We used a variety of online databases to explore CBX2,

PPM1G, RAD54B, RUVBL1, SAP30, and TTK based on the

RNA sequencing data in HCC patients to provide new insights

into different prognostic values, expression patterns, and gene

mutations of the signature. First, the mRNA expression levels

of six genes in various cancer types were analyzed in the

TIMER database (Figures 9, 10). The results showed that the

expression of these six genes was upregulated in HCC.

Furthermore, the expression of these genes was higher in

cancer tissues than in normal tissues. Then, we used

clinical specimens from HPA to determine the expression

of proteins encoded by these six genes for assessing the clinical

correlation of these genes. PPM1G and TTK were strongly

positive in HCC tissues when compared with their expression

level in normal liver tissues, while CBX2, RUVBL1, and

SAP30 were moderately positive in HCC tissues (Figures

11A–F). Additionally, we discovered that RAD54B had the

most common genetic variations (16%), and the most

pronounced change was mutation amplification (Figure 12).

Discussion

HCC is one of the most life-threatening and heterogeneous

malignant tumors in the world (Villanueva, 2019). The poor

prognosis and high mortality of HCC are largely due to delayed

diagnosis and lack of limited treatment options (Russo et al.,

2018; Yang et al., 2020). Finding new prognostic biomarkers to

predict outcomes and develop personalized treatment plans for

HCC patients is therefore an emergency. Recent studies have

demonstrated that the impact of epigenetic-related gene

dysregulation on cancer is beyond doubt, but how

tumorigenesis is based on the multistep process of epigenome

remains to be defined (Nebbioso et al., 2018). Previous research

have mainly focused on the function of a single epigenetic-related

gene and lacked systematic exploration. In addition, the

prognostic value of these genes in HCC is unknown. Thus, we

are committed to developing an epigenetic-related gene signature

to predict the OS of HCC and providing individualized diagnosis

and treatment plans.

We investigated the expression of ERGs in HCC patients and

their association with OS in this study. First, we obtained the

FIGURE 4
Validation of the six-gene signature. (A) Distribution of patients based on the risk score, (B) PCA plot, and (C) t-SNE analysis. (D) Distributions of
the survival status (low-risk on the left and high-risk on the right side of the dotted line). (E) Kaplan–Meier curves for the OS. (F) AUC of time-
dependent ROC curves.
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overlapping genes of differentially expressed and OS-related

candidate genes and constructed an interaction network of

these candidate genes to narrow the marker range. Then, to

assess the prognostic value of these ERGs, we used univariate

Cox analysis and LASSO Cox regression analysis to identify a six-

gene risk signature in the TCGA database, which we then validated

in the ICGC database. The ROC curve further demonstrated the

excellent predictive accuracy of the gene signature. The model was

then used to divide HCC patients into two risk groups with

different survival outcomes in both cohorts. We proved that the

six-genemodel is an independent prognostic factor that is superior

to traditional clinicopathological characteristics for HCC patients.

Therefore, we demonstrated that the risk score according to the

six-gene signature could be used for the early diagnosis and

detection of the prognosis of HCC. Additionally, we

constructed a nomogram that is used to provide personalized

prediction and treatment strategies for patients. Finally, we

conducted a functional enrichment analysis and discovered that

the DEGs that differentiated between the high-risk group and the

low-risk group were associated with immune-related pathways.

The prognostic signature in this study consisted of six

epigenetic-related genes (CBX2, PPM1G, RAD54B, RUVBL1,

SAP30, and TTK). The CBX2 gene belongs to the Polycomb

group (PcG) of protein family, which is involved in various

biological processes, such as cell cycle regulation, cell

differentiation, cell senescence, and X chromosome inactivation

(Mao et al., 2019; Plys et al., 2019). Previous research has indicated

that CBX2 was an epigenetically modified transcription repressor

(Chao et al., 2020). Recent studies have linked high

CBX2 expression with the poor prognosis of HCC patients. The

PPM family is a metal-dependent protein phosphatase. Gene

mutations and PPM phosphatase overexpression have been

observed in cancer. Hence, PPM phosphatase is now regarded as

a promising target for drug therapy (Kamada et al., 2020). The

PPM1G is a PPM family member and can dephosphorylate pre-

mRNA splicing factors. It is critical in the pathology of many

diseases, especially cancer because it influences the diversity of

proteins (Liu et al., 2013). Therefore, PPM1G dysfunction may

induce cancer progression by affecting pre-mRNA splicing, making

it a hot spot in current research (Sun et al., 2016; Lin et al., 2021).

The mutation rate of PPM1G was 2.7%, and it overexpressed in

HCC patients. RAD54B is a helicase belonging to the SW12/

SNF2 superfamily and is involved in DNA homologous

recombination and repair (Russo F et al., 2018). Current studies

show that abnormal homologous recombination repair is closely

associated with human carcinomas (Zhang et al., 2019). Previously,

RAD54B was considered a homolog of RAD54 and a cofactor for

homologous recombination repair (Yasuhara et al., 2014). In this

FIGURE 5
Results of the univariate andmultivariate Cox regression analyses in both databases. (A,B)Univariate analysis for the TCGA and ICGC databases.
(C,D) Multivariate analysis for the TCGA and ICGC databases.
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FIGURE 6
Construction of a nomogram in the TCGA (A) and ICGC (B) databases.

FIGURE 7
Functional analysis in the TCGA and ICGC databases. (A). Bubble graph for GO enrichment in the TCGA database. (B). Barplot graph for KEGG
pathways in the TCGA database. (C). Bubble graph for GO enrichment in the ICGC database. (D). Barplot graph for KEGG pathways in the ICGC
database. q-value: the adjusted p-value.
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study, the immunohistochemical results in the HPA database

showed that RAD54B is weakly expressed in liver cancer

patients, while its gene mutation rate is high (16%). These

findings hypothesize that RAD54B plays an unknown role in

HCC. At present, small molecule–targeted gene mutants have

been developed as a new strategy for cancer treatment (Clarke

et al., 2022). The RUVBL1 and RUVBL2 are involved in multiple

processes such as transcriptional regulation, chromatin remodeling,

telomerase and RNAPII assembly, DNA repair, mitosis, and cell

migration and invasion (Yenerall et al., 2020). The expression of

RUVBL1 is upregulated in many human tumors such as HCC and

is associated with more aggressive cancer types (Lin et al., 2020).

The mechanism of RUVBL1 is the primary focus of the current

research (Hristova et al., 2020; Lin et al., 2020). The Sin3-associated

polypeptide p30 (SAP30) is a component of the human histone

deacetylase complex (Zhang et al., 1998). The SAP30 is important

for cell growth as well as for affecting gene expression in a

promoter-dependent manner. Previous studies have shown that

SAP30 has also been conserved in evolution (Huang et al., 2003;

Viiri et al., 2009a; Viiri et al., 2009b). There are limited studies on

the relationship between SAP30 and liver cancer. However, our

results on immunohistochemistry show that SAP30 is moderately

expressed in HCC patients, which warrants further studies. The

TTK (Mps1) is found in the spindle, which participates in mitotic

spindle organization and biogenesis (Xie et al., 2017). Except for the

testis and placenta, TTK is almost undetectable in normal organs.

However, TTKhas been detected in variousmalignant tumors, such

as glioblastoma, thyroid cancer, breast cancer, and other cancers

FIGURE 8
ssGSEA to compare the scores for immune cells and immune-related functions. (A,C) Enrichment scores of 16 immune cells in the TCGA and
ICGC databases. (B,D) Enrichment scores of 13 immune-related functions in the TCGA and ICGC databases. p-values shown are ns, not significant;
*p < 0.05; **p < 0.01; and ***p < 0.001.
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(King et al., 2018; Zhang Z et al., 2019). The effect of TTK in the

progression of breast cancer has been shown, while its role in

liver cancer has received little attention.

The objective of the epigenetics study is actually to

investigate how nongenetic factors act on the genome to

influence gene expression and phenotype (Hardy and Mann,

2016; Lu et al., 2020). Therefore, epigenetics can help to explore

the mechanisms behind disease phenotypes and may provide

new clues to the basis of interpatient variability in disease

progression. We sought to investigate the molecular basis of

cell homeostasis loss by elucidating the epigenetic

modifications associated with liver cancer. However, it is

critical to note that our understanding of cancer epigenome

alterations is in its very early stages. Our understanding of how

FIGURE 9
Differential expressions of CBX2, PPM1G, and RAD54B based on the TIMER database.
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epigenetic disorders trigger tumorigenesis is dwarfed by the

body of knowledge that we have built on changes in the cancer

genome. Based on the DEGs between different subgroups, we

conducted GO and KEGG, then we unexpectedly found that

some immune-related functions and pathways were enriched.

Thus, we hypothesized that epigenetics may be closely related to

tumor immunity. We found low levels of antitumor infiltrating

immune cells, such as B cells, CD8+ T cells, neutrophils, and NK

cells, indicating that the immune function of the high-risk

group in the TCGA database is generally compromised. This

has also been supported by the ICGC database. The type II IFN

response pathway and cytolytic-activity pathway were also

inhibited in the high-risk group, according to the immune

function analysis. According to the study findings, the poor

FIGURE 10
Differential expressions of RUVBL1, SAP30, and TTK based on the TIMER database.
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prognosis of HCC patients with high risks may be related to the

low level of antitumor immunity. Single-cell sequencing

technology can investigate the different biological properties

of single cells in complex tissues, and it has been extensively

widely used in various diseases, especially tumors (Song et al.,

2022). Single-cell multi-omics technologies are emerging to

detect single-cell genomes, single-cell transcriptomes, single-

cell epigenomes, and single-cell proteomes to help better

FIGURE 11
(A–F) Representative protein expressions of CBX2, PPM1G, RAD54B, RUVBL1, SAP30, and TTK were explored in the HPA database.

FIGURE 12
CBX2, PPM1G, RAD54B, RUVBL1, SAP30, and TTK gene expression and mutation analysis.
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understand the cell-to-cell differences (Song et al., 2022).

Moreover, the comprehensive mapping of the immune cells

by single-cell sequencing enriches the understanding of HCC

immunity (Li et al., 2022). We can further investigate the

relationship between our gene signature and immunity

through single-cell multi-omics technologies. The current

understanding of cancer epigenome changes is still in its

early stage, particularly the mechanism of epigenetics in the

occurrence and development of liver cancer is not clear. Our

study screened out six genes from many epigenetics-related

genes and evaluated their prognostic value to provide

theoretical support for follow-up studies. Nevertheless, there

are several limitations to this study. First, our prognostic

models are identified and validated on the basis of the

retrospective data from public databases. There is a need for

more expected real data to demonstrate their clinical utility.

Second, the relationship between the risk scores and

immunization activities has not been established.

In conclusion, our study showed that epigenetics is closely related

to hepatocellular carcinoma because many epigenetic-related genes

were differently expressed between normal and HCC tissues.

Furthermore, in the TCGA and ICGC databases, the risk score

generated from our six epigenetic-related genes signature was an

independent risk factor for predicting prognosis. Functional analysis

of different risk groups revealed an associationwith tumor immunity.

Our findings establish a new genetic signature for predicting the

prognosis of HCC patients and providing an important foundation

for future studies on the underlying mechanism between epigenetic-

related genes and tumor immunity.

Conclusion

We identified a valid, innovative, and reliable six epigenetic-

related gene prognostic models (CBX2, PPM1G, RAD54B,

RUVBL1, SAP30, and TTK) to predict HCC patient

outcomes. Our signature was an independent and important

risk factor for HCC. Moreover, a nomogram combining our

prognostic model and clinicopathological features was

constructed, which could increase the usefulness in the clinical

management of patients. Furthermore, the correlation between

epigenetics and tumor immunity found in functional analysis can

be used as a clue for in-depth research.
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