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Common bean is considered a recalcitrant crop for in vitro regeneration and needs a
repeatable and efficient in vitro regeneration protocol for its improvement through
biotechnological approaches. In this study, the establishment of efficient and
reproducible in vitro regeneration followed by predicting and optimizing through
machine learning (ML) models, such as artificial neural network algorithms, was
performed. Mature embryos of common bean were pretreated with 5, 10, and 20mg/
L benzylaminopurine (BAP) for 20 days followed by isolation of plumular apice for in vitro
regeneration and cultured on a post-treatment medium containing 0.25, 0.50, 1.0, and
1.50 mg/L BAP for 8 weeks. Plumular apice explants pretreated with 20mg/L BAP exerted
a negative impact and resulted in minimum shoot regeneration frequency and shoot count,
but produced longer shoots. All output variables (shoot regeneration frequency, shoot
counts, and shoot length) increased significantly with the enhancement of BAP
concentration in the post-treatment medium. Interaction of the pretreatment × post-
treatment medium revealed the need for a specific combination for inducing a high shoot
regeneration frequency. Higher shoot count and shoot length were achieved from the
interaction of 5 mg/L BAP × 1.00 mg/L BAP followed by 10 mg/L BAP × 1.50 mg/L BAP
and 20mg/L BAP × 1.50 mg/L BAP. The evaluation of data through ML models revealed
that R2 values ranged from 0.32 to 0.58 (regeneration), 0.01 to 0.22 (shoot counts), and
0.18 to 0.48 (shoot length). On the other hand, the mean squared error values ranged from
0.0596 to 0.0965 for shoot regeneration, 0.0327 to 0.0412 for shoot count, and 0.0258 to
0.0404 for shoot length from all ML models. Among the utilized models, the multilayer
perceptron model provided a better prediction and optimization for all output variables,
compared to other models. The achieved results can be employed for the prediction and
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optimization of plant tissue culture protocols used for biotechnological approaches in a
breeding program of common beans.

Keywords: machine learning algorithms, artificial neural network, in vitro regeneration, plumular apices, coefficient
of determination, mean squared error

INTRODUCTION

Grain legumes are an important pillar of the agricultural
system, are considered a vital source of high-quality protein
for food and fodder, and play a significant role in sustainable
cropping systems (Vanlauwe et al., 2019). Common bean
(Phaseolus vulgaris L.) is an important grain legume crop
and is mostly used worldwide for its pods and palatable
seeds (Nadeem et al., 2020a). Common bean contains good
concentrations of high-quality protein, minerals particularly
zinc and iron, vitamins, and antioxidants and is considered a
“grain of hope” for the impoverished community. Common
bean was originated in Mesoamerica (Bitocchi et al., 2012) and
its domestication in Andean and Mesoamerican regions
resulted in the formation of two unique gene pools: Andean
gene pool and Mesoamerican gene pool (Kami et al., 1995;
Mamidi et al., 2013; Asfaw et al., 2017; Blair et al., 2018; Campa
et al., 2018). Common bean is considered one of the most varied
legume crops by reflecting variations in its growth habit, plant
height, pods, maturity, seed weight and size (Yeken et al., 2019;
Nadeem et al., 2020b).

Climate change is becoming a serious threat to agriculture, and
various biotic (pathogens and insects) or abiotic (drought and
edaphic) factors are contributing significantly to the global
common bean production loss (Castillo et al., 2015). Keeping
these in view, scientists are trying to develop climate-resilient
common bean cultivars having improved agronomic and
nutritional traits. The mentioned target can be achieved by the
application of modern biotechnological techniques and for that
reason, optimization of the in vitro plant tissue culture technique
for whole plant regeneration is highly demanding. To date, a
reasonable number of in vitro regeneration protocols have been
established and documented. In vitro regeneration of common
bean is an arduous task due to its recalcitrant nature, genotype
dependence, lack of reproducibility, low shoot counts with
stunted growth, rooting, and acclimatization. Hence, there is
always a need to develop a new, efficient, and repeatable
protocol for the application of biotechnological techniques to
produce elite cultivars, especially for recalcitrant crops (Aasim
et al., 2013). To achieve the objective, selection of potent explants
with a high regeneration protocol is highly significant.
Considering this, a novel explant “plumular apices” and an
in vitro regeneration protocol of pretreatment of explants with
high benzylaminopurine (BAP) concentration was employed for
common bean. Pretreatment is the process of treating seeds or
explants with variable stimulants like cytokinins at low to high
doses for a certain period, followed by culturing the explants on a
post-treatment medium, supplemented with low plant growth
regulators (PGRs) or without any PGRs (Özkan and Aasim,
2019).

Conventional plant breeding methodologies include the
assessment and classification of genetic diversity, yield
component analysis, yield stability analysis, enhanced tolerance
to stresses, and hybrid breeding programs. On the other hand,
in vitro micropropagation, doubled haploid production, artificial
polyploidy induction and Agrobacterium-mediated gene
transformation techniques are considered in vitro-based
biotechnological breeding methodologies (Niazian and
Niedbala, 2020). In plant tissue culture studies, the impacts of
input (uni or multi) factors on the regeneration potential
(outputs) of desired plants are studied. In general, classical
statistical techniques have been employed for analyzing and
interpreting the output variables. These techniques are
generally based on variance analysis and linear regression
models for estimating the correlation between input
(independent) and output (dependent) variables. Although
these approaches are highly effective, lack of efficacy of
complex and nonlinear inputs (Hesami and Jones, 2021; Earl
et al., 2021) and high probability (Abbasi et al., 2016; Jamshidi
et al., 2016; Farhadi et al., 2020) are the major concerns in plant
tissue culture studies due to the sensitivity. These types of issues
can be overcome by modern high throughput technologies like
machine learning (ML) and artificial neural network (ANN)
models for testing and optimizing the output variables
concerning the input parameters. Although the application of
ML and ANN models in plant sciences specifically in the area of
plant tissue culture is in its early stages, it is successfully
documented for different aspects of plant tissue culture
ranging from in vitro sterilization to in vitro regeneration and
from in vitro callogenesis to secondary metabolite production
(Hesami et al., 2020a; García-Pérez et al., 2020; Hameg et al.,
2020; Hesami & Jones, 2020; Niazian and Niedbala, 2020; Pepe
et al., 2021; Salehi et al., 2021; Aasim et al., 2022). In these studies,
researchers employed different ML algorithms, and the selection
of specific ML models is generally based on the expertise and
target set in the study. These data-driven models are highly
efficient to parse and interpret different types of datasets (non-
normal, nonlinear, and nondeterministic unpredictable data) by
using all spectral data along with avoiding irrelevant spectral
bands and multicollinearity (Salehi et al., 2020). In this study, an
in vitro regeneration protocol of common bean was established
using novel plumular apice explants. The results regarding output
variables were analyzed and interpreted, and input variables were
predicted by response surface methodology (RSM). In addition,
the results for the output variables were validated using different
ML algorithms (support vector regression—SVR, Gaussian
process regression—GPR, XGBoost regression—XGBoost, and
random forest regression—RF) and an ANN-based multilayer
perceptron (MLP) regression model. The performance was
evaluated by tabulating the R2 and the mean squared error
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(MSE) metric values for each model (Hesami et al., 2019; Kirtis
et al., 2022). The results achieved in this study will open a new
window to evaluate the efficiency of the plant tissue culture
protocols that are predominantly developed for breeding
purposes.

MATERIALS AND METHODS

In vitro Regeneration
The commercial common bean cultivar “Karacaşehir-90” was
selected for this study as the plant material. Manually selected
uniform seeds were surface sterilized with 3.5% (w/v) NaOCl for
15 min. Thereafter, seeds were continuously rinsed with sterilized
dH2O water for 5–7 min and this process was repeated thrice to
remove the traces of NaOCl. Seeds (Figure 1A) were awaited for
24 h in dH2O, followed by isolation of mature embryos
(Figure 1B) under aseptic conditions. A two-step experiment
was designed for this research. At first, mature embryos isolated
from sterilized seeds were inoculated on MS (Murashige and
Skoog, 1962) media supplemented with 5, 10, and 20 mg/L BAP
(pretreatment medium) for 20 days. In the second step, plumular
apice explants (Figure 1C) were carefully isolated from pretreated
mature explants, followed by inoculation on MS media
supplemented with low BAP (0.25, 0.50, 1.00, and
1.50 mg L−1) concentrations (post-treatment medium). The
explants were cultured for 8 weeks on the post-treatment
medium. Four different concentrations (0.25, 0.50, 1.0, and
1.50 mg L−1) of indole-3-butyric acid (IBA) were used for
in vitro rooting. For acclimatization, rooted plantlets were
transferred to pots filled with vermiculite, wrapped in a
polyethylene bag, and placed in the growth room.

The basal media used for pretreatment, post-treatment, and
rooting were prepared by adding MS (4.4 g/L), commercial sugar
(30 g/L), and polyvinyl proline (25 mg L−1). The pH of all media
was adjusted to ~5.8 with the aid of 1N HCl or 1N NaOH. The

medium was gelled with agar (6.5 g/L) and autoclaved at 121°C
for 20 min. All experiments were carried out in the growth room
at 24 ± 2°C and 16-h light photoperiod, equipped with white light-
emitting diodes at approximately 2000 LUX. All chemicals used
in this study were procured from Duchefa (MS, BAP, IBA, and
agar) and Sigma-Aldrich (polyvinyl proline).

Response Surface Methodology
The RSM approach was used to model and optimize the selected
responses to changing variables and graphical representation of
the results. RSM generates continuous multivariable predictions
represented as quadratic surfaces, allowing the prediction of
optimal values in three-dimensional space. Pretreatment, post-
treatment, and their interactive effect values were used as input
variables. On the other hand, regeneration frequency (%), shoot
count, and shoot length (cm) were used for the response surface
calculations. The degree of predicted mathematical model
compliance to obtained values was expressed as R2 fit values.
All RSM data analyses, such as analysis of variance, regression,
and generation of quadratic polynomial surface equations,
graphics and optimal value predictions, were conducted using
Minitab v20.4 statistical software.

Modeling Procedures
In this study, interactions of pretreatment (5, 10, and 20 mg/L
BAP) × post-treatment BAP doses (0.25, 0.50, 1.0, and 1.50 mg/L)
were used as input variables, whereas, in vitro regeneration
frequency, shoot count, and shoot length were measured as
the output variables. ML algorithms of SVR (Hesami et al.,
2020b; Katirci and Takci, 2021), GPR (Hu et al., 2019),
XGBoost (Chen and Guestrin, 2016), RF (Aggarwal, 2018),
and MLP neural network (Silva et al., 2019) were utilized to
train and test the model. The performance of the model was
assessed using leave-one-out cross-validation (Sammut and
Webb, 2011). The hyperparameters of the ML models were
optimized using the grid search technique to find the best

FIGURE 1 | In vitro regeneration and rooting of common bean Cv. Karacaşehir 90 (A) sterilized seed with the intact embryo, (B) isolated embryo ready for
inoculating on the pretreatment medium, (C) pretreatedmature embryo used for isolating the plumular apice explant, (D)multiple shoot induction from the plumular apice
explant, and (E) acclimatized plant in a pot containing vermiculite.
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model. The open-source Python language (Van Rossum and
Drake, 1994) was used to code algorithms using the sklearn
library (Pedregosa et al., 2011). MLP, SVR, GP, XGBoost, and
RF algorithms were used to predict the outputs. The model
performance was evaluated by calculating R2 (coefficient of
determination) and MSE values (Hesami et al., 2019), which
are presented in Eqs. 1 and 2.

R2 � 1 − ∑n
i�1(Yi − Ŷi)2

∑n
i�1(Yi − ~Y)2

(1)

MSE � 1
n
∑
n

i�1
(Yi − Ŷi)2 (2)

Yi represents the measured values, Ŷi indicates the predicted
values, ~Y denotes the mean of the measured values, and n is the
count of samples.

The dataset that is used in plant tissue culture studies may not
be linear; hence, nonlinear regression models are essential like the
SVR model (Drucker, 1997) as expressed in Eq. 3. In SVR, the
output y is a real number and it can be used for nonlinear
variables.

y � wφ(x) + b (3)
In the above equation, b depicts the bias, w represents the

weight, and the elevated features space is presented as φ(x),
which defines the nonlinearity of input x. In the SVR model, the
predicted variable is placed between the upper and lower limit
values to minimize the risk. In case the data exceeds these limits, it
is set between these values (Smola & Schölkopf, 2004). The
kernels of “linear”, “poly”, “radial basis function (rbf)”,
“sigmoid”, and “precomputed” are present in the SVR model.
Among these, the RBF kernel is the most widely used.

The GPR model is another nonparametric supervised learning
method that is used mainly to perform Bayesian nonlinear
regression and classification tasks. It is a powerful ML
algorithm that uses the Gaussian probability density function.
The GPR works efficiently with a small dataset, with more
accuracy, ease of calculation, and consistency.

The approach is presented in Eq. 4 for each input x and output
y produced by this function.

yi � f(xi) + ε (4)
Extreme gradient boosting (XGBoost) is a decision-tree-

based ensemble ML algorithm that uses a gradient boosting
framework that can be used for both regression and
classification problems (Chen and Guestrin, 2016). In ML,
ensemble learning algorithms combine multiple ML
algorithms to obtain a better model. The XGBoost model
generates the regression or classification trees by taking
previous trees and factoring in their predictions to create a
new tree to decrease prediction error. Eq. 5 indicates the
XGBoost objective function and Eq. 6 shows the model of
XGBoost at iteration j that needs to be minimized.

Yi � F(xi) � ∑D

d�1fd(xi), fd ∈ F, i � 1, ..., n (5)

Lj � ∑n

(i�1)l(yi, ŷ
(j−1)
i + fj(xi)) + Ω(fj) (6)

where l is a differentiable convex loss function that measures the
dissimilarity between the prediction ŷi and the target yi. The term
Ω penalizes the complexity of the model and it also helps to
smooth out the final learned weights to avoid overfitting.

The RF model is an alternative supervised ensemble learning
method based on the decision trees (Breiman, 2001), which can
also be implemented for regression and classification problems. It
is one of the most widely used ML models due to its simplicity in
design, high efficiency, less susceptibility to overfitting, handling
the noise, and ability to manage a large number of features. The
forest is generated by multiple decision trees and each tree
possesses the same distribution. The MSE metric is used to
solve the regression models. It determines the distance
between the nodes to define which branch is better for the
forest. The following Eq. 7 describes this concept (Pavlov
et al., 2019).

y � ∑n

i�1(αi − αpi )k(x, xi) + b (7)
where y is the value of the data point and n is the number of
samples.

The MLP is the most well-known ANN model that consists of
more than one perceptron, which includes a nonlinear activation
function. MLP is a supervised learning method containing one or
more hidden layers. The training continues until the following
equation is minimized.

E � 1
K
∑K

k�1(yk − ŷk)2 (8)

where yk and ŷk are observed and predicted data points,
respectively.

Generating an MLP structure is the most important part that
significantly influences the performance of the model. It is a
prerequisite to defining the number of neurons in each layer and
the number of hidden layers during the construction of the
model. MLP is often applied to supervised learning problems.
The backpropagation method is implemented to tune the weights
and biases of the layers (Hesami et al., 2019).

RESULTS

In vitro Regeneration of Common Bean
Mature embryo explants exposed to 5, 10, and 20 mg L−1 BAP for
20 days resulted in enhanced embryo size of approximately
60–70% explants, which allowed to isolate plumular apice
explants easily under sterile conditions (Figure 1C).
Thereafter, explants were inoculated on a post-treatment
medium, which resulted in multiple shoot induction within
2–3 weeks along with callus induction from the basal end of
some explants. The explants were cultured in the growth room for
8 weeks to induce multiple shoots (Figure 1D). The analysis of
variance exhibited the variable response of input variables
(pretreatment, post-treatment, and pretreatment × post-
treatment) on in vitro regeneration of common bean. Results
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revealed the significant impact of pretreatment on the
regeneration frequency (p < 0.01) and shoot length (p < 0.05).
Results on post-treatment (p < 0.01) application of BAP and
combination of pretreatment × post-treatment × post-treatment
(p < 0.01) revealed a significant impact only on the shoot length.
On the other hand, shoot counts have remained insignificant to
all input variables (Table 1).

Results revealed that elevated pretreatment concentrations
negatively affected the regeneration frequency and shoot
counts, which ranged from 47.91 to 96.51% and 2.99 to
3.60, respectively. In contrast, the mean shoot length
increased with elevated pretreatment concentration and
ranged from 1.07 to 1.57 cm (Supplementary Table S1).
Results of post-treatment revealed a better regeneration
frequency at high BAP concentrations ranging from
66.67 to 72.22%. In a similar manner, shoot length also
exhibited an increase with a respective increase in BAP
concentration. On the other hand, the variable impact of
the post-treatment medium (BAP) was observed on shoot
counts that ranged from 3.06 to 3.92 (Supplementary Table
S1). The results on pretreatment × post-treatment exhibited
the negative impact of elevated BAP concentration
(pretreatment) on shoot regeneration frequency (%) that
ranged from 58.33 to 66.67% (10 m g/L BAP) and 41.67 to
58.33% (20 m g/L BAP). However, exposing explants to 5 mg/L
BAP resulted in up to 100% regeneration (Figure 2A). The
results on shoot counts and shoot length showed the variable
impact of pretreatment × post-treatment concentrations
(Figures 2B and C). Outcomes revealed that maximum

shoot counts were linked with pretreatment × post-
treatment concentrations. The maximum shoot counts were
obtained for 10 mg/L × 1.50 mg/L BAP (5.0 shoots), 5 mg/L ×
0.50 mg/L BAP (4.67 shoots), and 20 mg/L × 1.50 mg/L BAP
(3.33 shoots) (Figure 2B). A similar pattern was also observed
with the shoot length. The longest shoots were recorded as
1.15 cm (5 mg L−1 × 1.00 mg L−1), 1.40 cm (10 mg L−1 ×
1.50 mg L−1), and 1.79 cm (20 mg L−1 × 1.50 mg L−1)
(Supplementary Table S2). Results revealed that exposing
explants to a high BAP concentration (both pretreatment
and post-treatment) medium yielded relatively longer
shoots (Figure 2C) compared to other combinations. In this
study, contour plots were also constructed for a better
presentation and understanding of the data. In the contour
plots, the data were distributed into different subgroups,
emphasized with different colors. Contour plots help to find
out the best combination for the desired output value. Results
of contour plots revealed the optimization of <90%
regeneration frequency (Figure 3A), 4.0 shoots per explant
(Figure 3B), and 2.4 cm longer shoots (Figure 3C) and
presented the doses of the pretreatment and post-treatment
medium.

In vitro regenerated shoots inoculated on the rooting medium
yielded a relatively high rooting frequency. Although most of the
plants were rooted within the first 3–4 weeks, they were kept in
the rooting medium for a total of 6 weeks before shifting to pots
for acclimatization. The survival rate of rooted plantlets in pots
was relatively less than expected (Figure 1E). The results revealed
that the protocol can be used for in vitro regeneration of
common bean.

Response Surface Regression Models
The experiment design of the study was based on pretreatment
doses and post-treatment doses, followed by selecting the best
mathematical model. The regression equations (Eq. 9–11) for the
response variables [R2 (measured), R2 (Adj.), and R2 (pred.)] were
used and their respective values are presented in Table 2.

Regeneration frequency � 152.2 − 13.25 pre + 3.9 post

+ 0.375 preppre − 3.7 postppost

+ 0.67 preppost

(9)

TABLE 1 | Analysis of variance of output variables of common bean.

Treatment Output variables p-value

Pretreatment Regeneration (%) 0.000a

Shoot counts 0.234
Shoot length (cm) 0.013*

Post-treatment Regeneration (%) 0.421
Shoot counts 0.329
Shoot length (cm) 0.000a

Pretreatment × post-treatment Regeneration (%) 0.562
Shoot counts 0.682
Shoot length (cm) 0.021*

ap< 0.01 and *p< 0.05.

FIGURE 2 | 3D response surface plots of in vitro regeneration of common bean (A) regeneration, (B) shoot count, and (C) shoot length.
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Shoot Counts � 3.52 + 0.124 pre − 1.74 post

− 0.00737 preppre + 1.04 postppost

+ 0.0263 preppost (10)
Shoot Length � 1.511 − 0.117 pre − 0.50 post

+ 0.00372 preppre + 0.195 postppost

+ 0.0710 preppost (11)
The results of the regression model depicted more R2

(measured) compared to R2 (Adj.) and R2 (pred.) for all
tested output variables used in this study. The R2 values for
regeneration were recorded as 56.27 (R2 measured), 48.98 (R2

adj.), and 38.68 (R2 pred.). R2 for shoot length was recorded as
47.84 (R2 measured), 39.14 (R2 adj), and 24.34 (R2 pred.). The
results illustrated that the regression models efficiently
presented the data. In contrast, a low R2 (measured) value
of 13.74 with zero values for both R2 (adj) and R2 (pred.) was
attributed to the shoot counts. The comparatively low R2

values for shoot counts reflect that the regression model did
not find the association between input and output variables.
Overall results illustrated a better impact of pretreatment and
post-treatment systems on shoot regeneration and shoot
length as compared to shoot counts.

Response Prediction of Output Variables
The computations of predicted values for all output variables of
in vitro regeneration of common beans were also performed by
solving the reference equations (Eq. 7–9) to predict the impact of
input variables on output variables. Results indicated a variable
combination of pretreatment and post-treatment dose (BAP) for
inducing maximum output values. Moreover, results also showed
that a combination of 5 mg/L BAP × 0.995 mg/L BAP may yield
98.88% regeneration frequency (%) (Figure 4A). The maximum

predicted shoot count (4.142 shoots) was attributed to the
11.061 mg/L BAP × 1.50 mg/L BAP combination (Figure 4B).
However, the maximum predicted shoot length of 2.447 cm was

FIGURE 3 | Contour plots of in vitro regeneration of common bean (A) regeneration, (B) shoot count, and (C) shoot length.

TABLE 2 | Response surface regression models for in vitro regeneration of
common bean.

Output variables R2 R2 adj R2 pred

Regeneration (%) 56.27 48.98 38.68
Shoot counts 13.74 0.00 0.00
Shoot Length (cm) 47.84 39.14 24.34

FIGURE 4 | Response prediction of individual output variables on in vitro
regeneration of common bean (A) regeneration, (B) shoot count, and (C)
shoot length.
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attributed to the 20 mg/L BAP × 1.50 mg/L BAP combination
(Figure 4C). The predicted values by response prediction models
were close to the results attained in this study. The achieved
results can be confirmed by checking the contour plots for shoot
regeneration frequency (Figure 3A), shoot counts (Figure 3B),
and shoot length (Figure 3C).

In addition to response prediction of individual output variables,
the prediction response of multiple output variables was also
constructed to optimize the dose concentration by considering
two (reg × shoots and shoots × length) or considering all output
variables (reg × shoot counts × shoot length). Results revealed that
the combination of 5mg/L × 1.5 mg/L BAP can be used for reg ×
shoot counts × shoot length (Figure 5A) and regeneration × shoot
counts (Figure 5B). In contrast, 19.867 mg/L BAP × 1.5 mg/L BAP
combination was predicted for shoot counts × shoot length variables
(Figure 5C).

Machine Learning Algorithms
The R2 and MSE performance metrics were used to predict the
shoot count, shoot length, and regeneration (Table 3). Results
exhibited variable R2 values of all output variables for all models.
The MSE values indicate the error between the measured and
predicted values and varied with each model. Comparison
between the five models revealed the better performance of

MLP with high R2 values for all outputs as compared to other
models. However, the values differed for each output variable.
Results further illustrated the clear relationship between the R2

and the MSE values. In general, high R2 values with low MSE
values were recorded for all models. Results on shoot regeneration
revealed the order of MLP (0.58 R2; 0.0596 MSE) > GP (0.49 R2;
0.0724 MSE) > SVR (0.44 R2; 0.0802 MSE) > RF (0.44 R2;
0.0803 MSE) > XGBoost (0.32 R2; 0.0966 MSE). Results on
shoot counts were computed in order of MLP (0.22 R2;
0.0327 MSE) > SVR (0.11 R2; 0.0371 MSE) > RF (0.09 R2;
0.0380 MSE) > GP (0.06 R2; 0.0392 MSE) > XGBoost
(0.01 R2; 0.0412 MSE). The performance of models on shoot
count revealed the order of MLP (0.48 R2; 0.0258 MSE) > GP
(0.35 R2; 0.0318MSE) > RF (0.25 R2; 0.0367MSE) > SVR (0.23 R2;
0.0377MSE) >XGBoost (0.18 R2; 0.0404MSE). Figure 6 presents
the difference between the predicted and measured values. The
horizontal axis refers to the samples while the vertical axis
specifies the data collected from the models and the
experimental study. The compatibility of the experimental
results revealed the better performance of the MLP model for
shoot regeneration, shoot counts, and shoot length (Figure 6). On
the contrary, the XGBoost model exhibited the least compatibility
between actual and predicted values.

A data visualization method was used with colors to indicate
the relationship between two variables. In the heatmap, it was
detected that there is a strong correlation between BAP and shoot
length. The overall results displayed a negative correlation for
regeneration (−0.67) and shoot counts (−0.25) with BAP
(pretreatment) and a positive correlation between BAP
(pretreatment) and shoot length (0.34). Results on BAP (post-
treatment) revealed a positive correlation with all output
variables. On the other hand, a negative correlation between
regeneration and shoot length (−0.21) and a positive correlation
between regeneration and shoot counts (0.49) were also observed
(Figure 7). These results indicated the dependence of input
factors on output variables.

FIGURE 5 |Multiple response prediction of output variables on in vitro regeneration of common bean (A) regeneration × shoots × length, (B) regeneration × shoots,
and (C) shoots × length.

TABLE 3 | Validity of the models.

Shoot count Shoot length Regeneration

R2 MSE R2 MSE R2 MSE

MLP 0.22 0.0327 0.48 0.0258 0.58 0.0596
SVR 0.11 0.0371 0.23 0.0377 0.44 0.0803
GP 0.06 0.0392 0.35 0.0318 0.49 0.0724
XGB 0.01 0.0412 0.18 0.0404 0.32 0.0965
RF 0.09 0.0380 0.25 0.0367 0.44 0.0803
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DISCUSSION

The selection of proper explants is a prerequisite for establishing
an in vitro regeneration protocol, especially for recalcitrant plants
like edible legumes. The selection of nontraditional and novel
explants is one of the possible and potential solutions to overcome
the recalcitrant issue in plant tissue cultures (Wang et al., 2011).
Plumular apice are a potent and highly efficient explant due to the
presence of meristem. To date, researchers tested plumule or
plumular apice explant for in vitro shoot regeneration of different
edible legumes like pea (Molnár et al., 1999), chickpea (Aasim
et al., 2013), peanut (Singh and Hazra, 2009; Day and Aasim,
2017), cowpea (Aasim et al., 2009), pigeon pea (Surekha et al.,
2005), and lentils (Aasim, 2012). In all these studies, plumular
apices were proved to be efficient for inducing high regeneration
frequency with high shoot counts per explant. However, the
major problem associated with the use of this potent explant
is the isolation from the embryo without any damage due to its

smaller size. Pretreatment or pulse treatment of mature (Aasim
et al., 2009; Day and Aasim, 2017) or immature embryos (Aasim,
2012) with high cytokinin concentration significantly enhances
the embryo size which in turn allows isolation of plumular apice
explant properly without any damage (Özkan and Aasim, 2019).

Pretreatment of explants with a high dose of cytokinins or
auxins for a certain period is more effective to induce more shoots
and more rapid regeneration (Brar et al., 1999; Barpete et al.,
2014; Kumari et al., 2017; Özkan and Aasim, 2019) due to the
more active division of cells (meristematic cells) found in the
explants. However, stunted shoots, heavy callus induction, and
deformed shoots (vitrified or hyperhidric shoots) are some of the
common and negative features associated with the pretreatment
(Aasim et al., 2011a). The pretreatment and post-treatment
medium, treatment time, plant, and explants (Day and Aasim,
2017) are some of the factors that regulate the whole regeneration
process. The manipulation of triggers (inputs), epigenetic and
transcriptional cellular responses to the triggers, and molecules

FIGURE 6 | The relationship between the prediction and actual values for (A) regeneration, (B) shoot length, and (C) shoot count.

FIGURE 7 | Correlation matrix of inputs and outputs for common bean.
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stem cell niche (Sugimoto et al., 2019) lead to nondeterministic
and nonlinear developmental patterns in the plant’s cells and
tissues (Prasad and Gupta, 2008).

In vitro regeneration is the mainstay of in vitro-based breeding
methods, and optimization of input variables for the application
of modern biotechnological techniques is highly demanding in
the modern era of genome editing. The final output is generally
analyzed and interpreted by traditional statistical software
programs with the aid of tests like least significant difference
test, Duncan’s multiple range test, Tukey’s honestly significant
difference test, etc. (Ayuso et al., 2019). These models are not
sufficient for the exact prediction of input combinations for the
desired output variables. In recent years, modern computer-based
software and models have been documented for the exact
prediction and validation of the results. The prediction
methodologies are divided into three major groups: regression
equations, mathematical equations, and computer-based
software (Askari et al., 2021). Among these, computer-based
software models and simulation programs are gaining
popularity with high acceptability by researchers to predict
data with more accuracy (Kirtis et al., 2022).

RSM is a computer-based model, used for optimizing and
predicting output variables using more than two input variables
(Abbasi et al., 2016; Managamuri et al., 2019; Askari et al., 2021;
Slimani et al., 2021). The advantage of using contour plots is the
distribution of attained results into different subunits, which
enables to specify the input variables for the desired output
variable (Aasim et al., 2022). RSM predicted the optimal
pretreatment and post-treatment BAP concentrations for
inducing maximum shoot regeneration frequency, shoot
counts and shoot length by estimating the R2 (measured), R2

(Adj.), and R2 (pred.) values of output variables. Furthermore,
RSM successfully predicted the input variables by considering
individual or multiple output variables. The use of surface plots
and contour plots by RSM also clearly illustrated the impact of
pretreatment and post-treatment doses of BAP on in vitro
regeneration output variables of common bean. The use of
RSM in plant or agricultural sciences is limited. However,
RSM has been employed successfully for predicting the
optimal conditions for in vitro regeneration and secondary
metabolite production of different plants (Bansal et al., 2017;
Premkumar et al., 2020; Slimani et al., 2021).

Results on pretreatment dose revealed a negative impact on
shoot regeneration frequency and shoot count. Investigation of
previous studies on pretreatment with cytokinin discerned the
variable impact on shoot regeneration with both positive and
negative impacts depending on the genotype, cytokinin type, and
concentration. The study on peanuts revealed 100% shoot
regeneration with more shoot counts from plumular apices
preconditioned with 20 mg L−1 BAP as compared to 10 mg L−1

BAP (Day and Aasim, 2017). In a similar manner, other studies
on cowpea (Brar et al., 1999), Pongamia pinnata (Belide et al.,
2010), and Sophora tonkinensis (Jana et al., 2013) also illustrated
the positive impact of pretreatment with cytokinin on shoot
regeneration. On the other hand, relatively low regeneration
from preconditioned explants has also been documented in
peanuts (Akasaka et al., 2000; Matand et al., 2013). The results

revealed a decreased shoot count pattern with enhanced
pretreatment concentration of BAP. On the contrary, a high
concentration of pretreatment dose yielded longer shoots. Results
illustrated that shoot counts and shoot length are associated with
BAP concentration and other factors like genotype. A previous
study on lentils using preconditioned plumular apices explants
yielded relatively more shoot counts and shoot length compared
to nonconditioned plumular apices explants (Aasim, 2012).

A post-treatment medium enriched with low cytokinin
concentration is highly significant and regulates the in vitro
regeneration from pretreated explants. Results revealed high
shoot regeneration frequency, shoot counts, and shoot length
from pretreatment and post-treatment of BAP and confirmed the
results achieved in chickpea (Aasim et al., 2011b) and lentils
(Aasim, 2012). However, the investigation of previous studies
clearly illustrated the significance of the correlation between
PGRs type and concentration of both pretreatment and post-
treatment medium, explant, and genotype (Tang et al., 2012;
Kumari et al., 2017) on in vitro shoot regeneration. The results
confirmed the significance of BAP concentration in the
pretreatment and post-treatment medium on in vitro shoot
count and shoot length of common bean. However, both
parameters generated maximum output at a different
combination of pretreatment × post-treatment BAP
concentration. Previous studies on chickpea and lentils also
exhibited a different combination of pretreatment × post-
treatment BAP concentration. In chickpea, maximum shoot
counts with shorter shoots were associated with high BAP in
the post-treatment medium (Aasim et al., 2013). Vice versa,
minimum shoot counts with longer shoots of lentils were
documented from low BAP concentration in the post-
treatment medium (Aasim, 2012). Shoot length is another
important factor and maximum shoot length was documented
at the high pretreatment × post-treatment combination used in
this study. The results are contrary to the findings in peanuts,
where shoot length gradually decreased with elevated BAP
concentration in the post-treatment medium (Day and Aasim,
2017). Overall results revealed that pretreatment and post-
treatment doses of BAP exerted a clear impact on in vitro
shoot regeneration of common beans as confirmed in other
studies (Jahan et al., 2011; Özkan and Aasim, 2019).

In vitro rooting of in vitro regenerated shoot is an important
step to establishing a successful in vitro regeneration protocol for
recalcitrant plants. The availability of higher cytokinin
concentration in the culture medium is generally supposed to
be inhibitive for inducing in vitro rooting. Previous studies on the
use of pretreatment or post-treatment medium in other crops
revealed no negative impact on in vitro rooting (Aasim et al.,
2009; Day and Aasim, 2017; Özkan and Aasim, 2020), and this
study also support their findings and achieved 100% rooting.
After successful rooting, rooted plants transferred to pots failed to
adopt and a very low frequency of plants survived possibly due to
awaiting plants in the rooting medium for a long time, which
resulted in damaged roots and ultimately affected the survival
percentage.

In recent years, ML and ANN models have been successfully
employed in plant tissue culture studies for optimizing different
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input variables like a basal medium (Alanagh et al., 2014; Arab
et al., 2016; Arab et al., 2018), PGR types, concentration for
in vitro regeneration (Kirtis et al., 2022), somatic embryogenesis
(Niazian et al., 2017), callogenesis (Niazian et al., 2018), in vitro
sterilization (Hesami et al., 2019; Aasim et al., 2022), and in vitro
induced double haploid production (Niazian and Shariatpanahi,
2020). The detailed investigation of these studies revealed the use
of different performance metrics like R2, MSE, RMSE, MAE, etc.
to validate different ML and ANN models. In this study, five
different ML models including the ANN model were used for
optimizing and predicting the results. Results divulged the
variable response of all tested models to the target output
variable. The best model for all parameters was found to be
MLP. However, the RF model ranked second for shoot
regeneration and shoot count, and the GP model for shoot
length. The results confirmed the previous findings by
researchers in plant tissue culture studies. An investigation of
MLmodels revealed that the prediction of the model is dependent
on inputs, target outputs, and the type of model used (Hesami
et al., 2019; Salehi et al., 2020, 2021; Kirtis et al., 2022).

The performance of all the tested models was validated by
computing R2 andMSE scores. Relatively high R2 values for shoot
regeneration and low R2 values were recorded for the shoot
length. A detailed investigation of ML models in plant tissue
culture studies revealed the variable R2 values for different output
variables like R2 = 0.94 (Hesami et al., 2019), R2 = 0.56–0.85
(Salehi et al., 2020), and R2 = 0.70 (Hesami and Jones, 2021) and
0.98–1.0 (Kirtis et al., 2022). The R2 values obtained in this study
are relatively less than those of the previous findings but still
validated the results in an efficient way. A low R2 does not reflect
the poor performance of the experiment, but rather reflects the
low compatibility between input and output variables. High R2

values reflect the high compatibility between the input and output
variables, and they are obtained when the difference between the
mean of the measured values and the predicted values is bigger
than the difference between the actual and predicted values. The
single performance metric does not predict or validate the results
accurately, and therefore more than two performance metrics are
generally considered for ML modeling. MSE is another powerful
performance metric that reflects the error between the actual and
predicted values. High MSE values depict the high error and vice
versa. The results onMSE values for all output variables exhibited
very low values for all the tested models, which reflects the low
error between the actual and predicted values (Kirtis et al., 2022).

CONCLUSION

The development of a successful in vitro regeneration protocol
for the common bean is extremely crucial for the application of

modern biotechnological techniques for its improvement. The
developed protocol can be employed for the application of
in vitro biotechnological techniques like genetic
transformation and in vitro polyploidy induction for its
enhancement. Application of ML and ANN models depicted
better performance of the MLP model as compared to other
models for better prediction and optimization of all output
variables. The results achieved in this study proved that ML
models are powerful tools to analyze the data and optimize the
complex conditions irrespective of the variable inputs, outputs,
and responses of models. The accomplished results can be
effectively employed for the prediction and optimization of
plant tissue culture protocols used for breeding purposes in the
future.
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