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Identifying biomarkers of Multiple Sclerosis is important for the diagnosis and treatment of
Multiple Sclerosis. The existing study has shown that miRNA is one of the most important
biomarkers for diseases. However, few existing methods are designed for predicting
Multiple Sclerosis-related miRNAs. To fill this gap, we proposed a novel computation
framework for predicting Multiple Sclerosis-associated miRNAs. The proposed framework
uses a network representation model to learn the feature representation of miRNA and
uses a deep learning-based model to predict the miRNAs associated with Multiple
Sclerosis. The evaluation result shows that the proposed model can predict the
miRNAs associated with Multiple Sclerosis precisely. In addition, the proposed model
can outperform several existing methods in a large margin.

Keywords: multiple sclerosis, deep learning, disease related miRNAs, miRNA discovery, network representation

INTRODUCTION

Multiple sclerosis is a central nervous system disease that affects a lot of young adults worldwide. The
amount of patients with Multiple Sclerosis is increasing in both developed and developing
countries(Amoruso, 2020 #5) (Browne et al., 2014) The biological basis and underlying cause of
Multiple Sclerosis are still unknown. Some existing studies show that Multiple Sclerosis is associated
with several genes or other genetic biomarkers, which may increase the disease susceptibility (Ebers,
2008). It is a challenge to discover pathogenesis and disease-related biomarkers. Discovering such
biomarkers will effectively contribute to studying the biological mechanisms of Multiple Sclerosis
and will help people to understandMultiple Sclerosis. To improve efficiency, computational methods
have been designed for identifying biomarkers of Multiple Sclerosis (Bielekova and Martin, 2004;
Ziemssen et al., 2019). However, most existing methods for discovering biomarkers of Multiple
Sclerosis focus on identifying the disease genes. Few of them are focused on identifying the miRNA
related to Multiple Sclerosis. Since it has been shown that miRNAs could be biomarkers of Multiple
Sclerosis (Amoruso et al., 2020), it is important to develop a novel algorithm to identify the disease-
related miRNAs of Multiple Sclerosis rapidly and effectively.

Although not too many methods are designed for identifying biomarkers of Multiple Sclerosis,
identifying biomarkers of diseases has attracted a huge amount of attention in recent years. Several
computational methods have been developed for predicting disease genes since such methods are
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helpful for saving time and money. The Guilt-by-association
hypothesis is the basis of most of the proposed methods for
predicting disease-related genes. In detail, the hypothesis is that
genes related to the same disease may have a higher probability of
having the same topological structure in the protein-protein
interaction network. For example, genes associated with the
same disease may be neighbors or in the same clique in the
protein-protein network. Therefore, based on the guilt-by-
association hypothesis, one of the key problems of predicting
disease-related genes is how to measure the similarity between
known disease-related genes and candidate genes precisely. By
now, a lot of approaches have been developed to compute
similarities between genes. One of the earliest approaches is to
directly count the neighborhoods (Oti et al., 2006), which counts
the number of disease-related genes in their neighborhoods in the
protein-protein network. Given a gene g, if most neighbors of g
are associated with the disease, gene g has a high probability to
associate with the disease. This approach ignores these disease-
related genes which are not direct neighbors of g in the protein-
protein-interaction network.

To overcome this drawback, some proposed approaches use
the shortest path-based model to measure the distance between
genes (Krauthammer et al., 2004). However, these methods did
not perform well in some cases. The reason is that both
aforementioned methods only take the local topological
structure of the protein-protein interaction network into
account, ignoring the global topological information of the
protein-protein network. A lot of studies have shown that
considering global topological information would be able to
improve the performance of disease gene prediction (Ma et al.,
2016). Therefore, to consider the global topological
information, several studies have tried to use random walk
with restart to capture the global topological information
(Valdeolivas et al., 2019). Furthermore, other network
representation methods, like node2vec, are used to predict
disease (Li et al., 2021). However, these methods are not
designed for predicting the miRNA associated with Multiple
Sclerosis. In addition, it is a challenge to consider both the gene
feature and miRNA feature for Multiple Sclerosis-associated
miRNA prediction. Inspired by existing research and to
overcome the challenge, we aim to propose a method to
predict Multiple Sclerosis-associated miRNAs based on
network representation and deep neural networks.

In this study, we propose a novel computation framework for
predicting Multiple Sclerosis-associated miRNAs. The
framework firstly learns the feature representation of miRNA
based on a network representation model. Then, a deep learning-
based framework is used to predict the miRNA associated with
Multiple Sclerosis. The main contributions of this study can be
listed as follows:

1) A network representation learning-based method is proposed
for learning the feature representation of miRNA based on a
protein-protein interaction network and a miRNA-gene
regulation network.

2) A convolution neural network-based model is proposed for
predicting Multiple Sclerosis-associated miRNAs based on the

low-dimensional features learned based on the network
representation learning-based method.

3) The evaluation shows that the proposed model can predict
Multiple Sclerosis-associated miRNAs precisely.

MATERIALS AND METHODS

Construction of miRNA Networks
In order to predict MS-related miRNAs based on the hypothesis
of guilt-by-association, we first construct two miRNA-related
networks: miRNA-mRNA interaction network and miRNA
functional similarity network. We obtain the miRNA targeted
mRNA interactions of human from the mirTarBase database
(Hsu et al., 2011), which records experimentally validated
miRNA-target interactions. There are mainly six types of
experimental evidence supporting the miRNA-target
interactions, including western blot, luciferase assay, pSILAC,
microarray, NGS, and CLIPseq. In this work, 380,639 miRNA-
mRNA interactions are downloaded and used to construct the
heterogenous bipartite RNA network, covering 2,599 miRNAs
and 15,064 mRNAs.

The previous study has demonstrated that miRNAs with
similar functions are more likely associated with the same
disease (Wang et al., 2010; You et al., 2017). In this work, we
use a miRNA functional similarity network calculated by MISIM
(You et al., 2017). In detail, MISIM measures the functional
similarity between two miRNAs by measuring the semantic
similarity of their associated diseases while considering the
structures of disease relationships. We use a well-constructed
miRNA functional similarity score matrix from You et al. (You
et al., 2017), which consists of 495 miRNAs. In this miRNA
functional similarity symmetric matrix, each matrix element
indicates how are the corresponding miRNAs functionally
similar to each other. In the following step, we will learn
miRNA features based on the two miRNA networks.

Extract miRNA Features From Networks
Using Graph Embedding Technique
Before predicting MS-related miRNAs, we first extract features of
miRNAs from the miRNA functional similarity network and
miRNA-mRNA interaction network. Based on the hypothesis
that miRNAs with higher similarity to known disease-related
nodes are more likely to be disease-associated, we mainly extract
node features based on the global network topological structure.
In this work, we use a widely applied graph embedding technique,
named Node2vec (Grover and Leskovec, 2016), to extract the
topological features of nodes in a network. Node2vec (Grover and
Leskovec, 2016) is a graph embedding or representation method
by extending DeepWalk (Perozzi et al., 2014). It features in
finding neighborhood of a node using both deep-first-search
(DFS) and breath-first-search (BFS) in the random walk
strategy. Specifically, Node2vec first generate multiple random-
walk paths with fixed length for each node in a network.
Node2vec applies a biased random walk strategy using return
parameter (p) to control the probability of walking steps to
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previous visits, and in-out-parameter (q) to control the
probability of walking steps to directions more deeply (DFS)
or widely (BFS). Particularly, we set the in-out-parameter (q =
0.5) return parameter (p = 10) and other random walk-related
parameters in default.

The node feature vectors learned under this strategy have two
important characteristics: First, Homophily, that is, nodes in the
same community have similar feature vectors; Second, structural
equivalency, that is, nodes with similar structural characteristics
(even without directly connected edges) have similar feature
vectors. Next, our method uses skip-gram neuron network
model (Guthrie et al., 2006; Church, 2017) for data training,
during which stochastic gradient ascent method and negative
sampling strategy are used to efficiently fit the data. In detail,
given node u in a network G(V, E), suppose NS(u) represents
neighborhoods of node u under the random-walk strategy S, the
purpose is to find an encoder function f : f(u) ∈ Rd, where d is
the size of feature dimension. The optimization purpose is to
maximize the objective function shown in Eq. 1. Equivalently, the
loss function can be represented as Eq. 2, where P(v|f(u)) can be
calculated using Eq. 3 (in form of softmax function), which can be
further simplified using negative sampling strategy (Grover and
Leskovec, 2016).

maxf ∑
u∈V

log P(NS(u)|f(u)) (1)

L � ∑
u∈V

∑
v∈NS(u)

−log (P(v|f(u))) (2)

P(v|f(u)) � exp (f(u)Tf(v))
∑n∈Vexp (f(u)Tf(n)) (3)

For miRNA functional similarity network, the edges are
weighted by miRNA similarities, and the edge weights affect
the random walk process with the transition probabilities
proportionate to the weights. For miRNA-mRNA interaction
network, we simplify the network as a homogeneous

unweighted network without considering the node types. Only
miRNA features are used in the downstream prediction task. As a
result, we generate miRNA features with 512 dimensions in both
networks.

Convolutional Neuron Network-based
Prediction Framework
We construct a convolutional neuron network-based model to
further fuse miRNA features and predict MS-related miRNAs. As
shown in Figure 1, our framework can be divided into three parts:
feature encoder, backpropagation (BP) training with dropout,
and Gaussian Naive Bayes (GaussianNB) classifier. The BP
training part is used to train the CNN-based feature encoder
model. The novelty of our workflow is that we use CNN to encode
the miRNA features, while using traditional classifier
(i.e., GaussianNB) for the prediction task.

The feature encoder first transforms features using a
convolution layer with 16 one-dimensional convolution
kernels of size 1 × 3. The input feature of each miRNA is
concatenated from separate features from two networks
mentioned above (i.e., feature size equals 1024). If miRNA
only exists in one network, the miRNA feature will be padded
by zero values. The CNN layer is followed by a full connection
(FC) hidden layer with Relu as activation function. The FC
hidden layer has the same neuron size as the CNN layer
output (i.e., 16 × 1024). Next, a max-pooling layer with filter
size of 1 × 2 and step size of 2, and a linear FC layer with 256
neurons is followed, leading to a feature map of size 1 × 256. Next,
a dropout layer with 50% dropout probability, a linear FC layer
with 2 neurons, and a softmax layer is followed by the feature
encoder part for model BP training.

The function of the max-pooling layer is to perform a
downsampling process on the feature map. It has no
parameter weights and is simple to calculate, but it can reduce
dimensionality features, reduce the number of parameters,

FIGURE 1 | The CNN-based computational framework for predicting miRNA associated with Multiple Sclerosis.
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increase nonlinearity, prevent overfitting and improve the
generalization ability of the model. For BP training of
convolutional neural network, we introduce fully connected
layer and softmax function as the classifier during training
and use dropout to make the training more efficient. The
dropout layer reduces overfitting by failing half of the hidden
layer neurons to stop working during forward propagation. This
method can reduce the interaction between hidden layer nodes
and reduce the interdependence between hidden layers. Reducing
the redundancy of the intermediate layer of features will increase
the orthogonality between the various features of each layer,
which can lead the model more generalizable.

Instead of using the softmax layer as the final classifier, we
extract the features output from the first linear FC layer, and use a
traditional classifier, namely Gaussian Naive Bayes
(GaussianNB), for the prediction task, because only a small
number of positive cases (MS-related miRNAs) exist in our
sample. All parameters in GaussianNB are used in their
default values. In the experiment results, we will show our
design of the framework is capable to predict MS-related
miRNA accurately.

Metrics for Performance Evaluation
To evaluate the performance of our proposed model, and
compare it with other methods, we use five-fold cross-
validation and three widely-used matrices (i.e., ROC-AUC,
PR-AUC, and F1-score) for performance evaluation. ROC-
AUC estimates the area underlying the receiver operator
characteristic curve, and it summarizes the trade-off between
the true positive rate and the false positive rate. PR-AUC
estimates the area underlying the precision and recall rate
curves, and it summarizes the trade-off between true positive
rate and positive predictive rate. The precision represents the
proportion of all predicted true positive samples that are
predicted to be positive, and the recall rate measures the
proportion of actual positives that are identified correctly. F1-
score is the harmonic mean of precision and recall, which can
simultaneously reflect the precision and recall of a
prediction model.

PR-AUC and ROC-AUC perform differently when dealing
with unbalanced samples. The PR-AUC curve is sensitive when
the data is unbalanced and changes strongly as the proportion of
positive and negative samples changes. However, the ROC-AUC
curve is less sensitive towards the ratio of positive and negative
sample sizes. ROC-AUC is always applied to the balance of
observations between each class, while PR-AUC is better
matric when evaluating cases of imbalanced datasets.

RESULTS AND DISCUSSION

Dataset for Experiment
We download the miRNA-multiple sclerosis associations
from the disease-related miRNA database named HMDD (Li
et al., 2014), which is a manually collected database with
experiment-supported evidence (http://www.cuilab.cn/hmdd).
102 MS-related miRNAs are extracted from the database as

positive samples. Previous works usually randomly select the
negative samples from the unlabeled disease associations (Peng
et al., 2019;Wang et al., 2021). And they usually select a collection
of negative samples with size equal to the positive samples.
However, there are usually many more negative samples than
positive samples in disease gene prediction because only a few
genes are associated with the disease.

In this case, we randomly selected associations with n times
the number of positive samples from the unlabeled miRNA-MS
associations as negative samples in our experiments, where
n∈(2,10,20,30,40,50). And we also tested the performance
using all unlabeled miRNA-MS associations as the negative
samples. We use five-fold cross-validation and AUC-ROC,
AUC-PR, and F1-score as evaluation matrices (Kohavi, 1995).

Performance of Proposed Framework in
Predicting MS-Related Genes
We first evaluate the performance of our proposed framework in
the task of predicting MS-related genes. In this experiment, we
use n times the number of positive samples from the unlabeled
miRNA-MS associations as negative samples in our experiments,
where n∈(2,10,20,30,40,50). And we also tested the performance
using all unlabeled miRNA-MS associations as the negative
samples.

Figure 2 shows the receiver operator characteristic (ROC)
curve and precision-recall (PR) curve using two times the number
of positive samples from the unlabeled miRNA-MS associations
as the negative samples. The mean ROC-AUC reaches 0.8 and the
mean AUPR reaches 0.87 across five-fold cross-validation. We
also evaluate the prediction performance as the number of
negative samples increases. As shown in Table 1, the mean
ROC-AUC remains relatively stable and even increases to 0.87
when using all negative samples, which demonstrates the
predictive ability of our proposed model. As expected, as the
size of negative samples increases, the mean PR-AUC and mean
F1-score gradually decrease. Even though, we think using the “all
negative samples” is more similar to the real case whenmeasuring
the performance of prediction models. In the following
experiments, we will use “all negative samples” to evaluate the
performance.

Comparison With State-of-the-art Methods
We evaluate the performance of our proposed methods and four
widely used machine learning methods (decision tree, SVM,
logistic regression, and GaussianNB) on the task of miRNA-
MS association prediction, all unlabeled MS-related miRNAs as
the negative sample, i.e., unbalanced testing data. The four
methods we compared are all implemented in the python
package scikit-learn, and their default parameters are used in
this experiment. For fair comparisons, all of the four methods use
the same miRNA features as our model extracted from the two
input networks, i.e., miRNA similarity network and miRNA-
mRNA interaction network.

Figure 3 shows the results of average ROC-AUC, PR-AUC,
and F1-score of five-fold cross-validation in five compared
methods. And we can see our CNN-GaussianNB-based
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method has the best performance in all three metrics, and the
GaussianNB-based method has the second-best performance.
For the metric of ROC-AUC, our method achieves 0.87, and
three other methods, named N2V + SVM, N2V +
LogisticRegression, N2V + GaussianNB, achieve >0.75.

However, for PR-AUC and F1-score, all these methods
achieve less than 0.5 and 0.3 respectively. This is because
we use the extremely unbalanced dataset (i.e., using all
unlabeled miRNAs as negative samples) for the experiment,
and our proposed CNN-GaussianNB-based method still

FIGURE 2 | ROC (A) and PR (B) curves in five-fold cross-validation of the miRNA-disease association prediction task. The shaded area means the estimated
standard deviation of ROC and PR curves around the mean across five-fold cross-validation.

TABLE 1 | Average ROC-AUC, PR-AUC, and F1-score as the size of negative samples increases.

Negative sample size* Mean ROC-AUC Mean PR-AUC Mean F1-score

2 × P 0.8060 0.8704 0.7849
10 × P 0.7287 0.6469 0.6110
20 × P 0.7745 0.6193 0.5739
30 × P 0.8631 0.6438 0.5615
40 × P 0.8774 0.6217 0.5531
50 × P 0.8623 0.5594 0.5285
All 0.8696 0.4110 0.2693

*P represents the size of positive samples, in our case P = 102; and All represents all unlabeled miRNA-MS associations as the negative samples.

FIGURE 3 | The average ROC-AUC, PR-AUC, and F1-score of five methods on miRNA-MS association prediction task. N2V represents Node2Vec which extracts
miRNA features based on two miRNA networks.
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achieves the best performance in such an extremely
unbalanced case.

Effects of miRNA Similarity Network and
miRNA-mRNA Interaction Network
In order to verify the necessity of two networks we used to
extract features, i.e., the miRNA similarity network and
miRNA-mRNA interaction network, we perform prediction
tasks separately using different network features. The results
are shown in Table 2. It can be seen that when we only use
features extracted from the miRNA similarity network, the
average ROC-AUC is 0.78. When only the miRNA-mRNA
interaction network is used, the average ROC-AUC is 0.82. In
our method, we combine node features from two networks,
and the average ROC-AUC is 0.87. And the similar situation
can be seen in the metrics of PR-AUC and F1-score. We can
conclude that combining both network features is more
effective for this prediction task than using only features
from separate networks.

Effect of Feature Extraction Methods
We also evaluate the effect of graph representation methods
used for feature extraction. The previous study has shown
superior performance in learning latent representations of
vertices in a network of DeepWalk (Perozzi et al., 2014)
than traditional methods like SpectralClustering (Tang and
Liu, 2011), Modularity (Tang and Liu, 2009a), wvRN
(Macskassy and Provost, 2003), EdgeCluster (Tang and Liu,
2009b). DeepWalk has a similar strategy as Node2vec. It first
generates random paths with fixed length and then uses
Skipgram to maximize the co-occurrence probability among
nodes that appear within a window in random paths. The main
difference between the two methods is that Node2Vec uses a
biased random walk strategy to control the walking direction
(See Methods). And previous studies have demonstrated that
Node2Vec has achieved better performance in many
bioinformatics applications (Grover and Leskovec, 2016).

We evaluate the performance of our model in predicting the
MS-related miRNA using features extracted by Node2Vec and
DeepWalk, respectively. In detail, for Node2Vec, we use same in-

out-parameter (q = 0.5) return parameter (p = 10) as in above
experiments, and we use other parameters in default in both
methods. The results of mean five-fold cross-validation are shown
in Table 3. Similarly, in this experiment, we use all unlabeled
miRNA-MS associations as the negative samples. We can see that
using Node2Vec for feature extraction has better performance
than using DeepWalk in all three metrics.

Evaluation of Each Network Layer in
CNN-Based Framework
In order to verify the necessity of each network layer of the model,
we conducted ablation experiments on the model. It can be seen
from Table 4 that no matter reducing the convolutional layer,
pooling layer or nonlinear transformation layer, the performance
of the model will be detrimental to a certain extent. For the ROC-
AUC index, the performance drops by 4, 1, and 1% while
removing the layer of Relu transformation, the Pooling, and
the convolution layer, respectively. For the PR-AUC index, the
performance drops by 5, 1, and 3%, coordinately. And for F1-
score, the performance drops by 3, 2, and 1%, coordinately. Thus,
each network layer in the computational framework contributes
significantly in the task of predicting MS-related miRNAs.

Functional Analysis of Top Predicted
MS-Related miRNAs
We train the model using all annotated MS-related miRNAs and
use the model to predict the probabilities of all rest miRNAs to be
MS miRNAs. The top 10 predicted miRNAs are hsa-miR-605-5p,

TABLE 2 | The average ROC-AUC, PR-AUC, and F1-score of the proposed model using different network features.

Network Mean ROC-AUC Mean PR-AUC Mean F1-score

miRNA similarity network only 0.7824 0.4017 0.2344
miRNA-mRNA interaction network only 0.8222 0.2245 0.2357
Both miRNA networks 0.8696 0.4110 0.2693

TABLE 3 | The average ROC-AUC, PR-AUC, and F1-score of the proposed model using different feature extraction methods.

Feature extraction method Mean ROC-AUC Mean PR-AUC Mean F1-score

Node2Vec (Grover and Leskovec, 2016) 0.8696 0.4110 0.2693
DeepWalk (Perozzi et al., 2014) 0.8661 0.3985 0.2408

TABLE 4 | The average ROC-AUC, PR-AUC, and F1-score of the proposed
model with different layer ablation.

Methods Mean ROC-AUC Mean PR-AUC Mean F1-score

Relu FC-ablation 0.8237 0.3594 0.2404
Pool-ablation 0.8554 0.3992 0.2459
Convolution-ablation 0.8623 0.3751 0.2594
Full pipeline 0.8696 0.4110 0.2693
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hsa-miR-15b-5p, hsa-miR-16-5p, hsa-miR-17-5p, hsa-miR-
181a-5p, hsa-miR-181b-5p, hsa-miR-181c-5p, hsa-miR-18a-3p,
hsa-miR-195-5p, hsa-miR-196a-5p. The top 50 miRNAs with the
highest prediction probabilities are in Supplementary Table S1.
Specifically, miR-15b-5p was identified as a differentially
expressed exosomal miRNAs in relapsing-remitting MS
patients (Ebrahimkhani et al., 2017). It has been reported that
miR-16-5p decreased in PBMCs from MS patients after IFN-β
therapy (Hecker et al., 2013). And researchers also found altered
expression of miR-17-5p in CD4+ lymphocytes of relapsing-
remitting MS patients. The miR-181a-5p has been discovered
as a prognostic biomarker for amyotrophic lateral sclerosis
(Magen et al., 2021). In a recent study (Piotrzkowska et al.,
2021), Piotrzkowska et al. observed miR-181b-5p had a 2-fold
increase in level in MS patients compared to the control group
(p < 0.005). The target gene SMAD7 (a negative regulator of TGF-
β signaling) of miR-181c-5p has been shown engaged in Th17 cell
differentiation, being a major driver of CNS autoimmunity in MS
(Zhang et al., 2018).

We use miRNA enrichment analysis and annotation tool
(miEAA) for functional analysis of the top predicted miRNAs.
Over-representation analysis (ORA) is chosen as the
enrichment method. Twenty categories are selected for
enrichment analysis, such as target genes, diseases, KEGG
pathways, Gene Ontology (GO) (see Supplementary Table
S2), and FDR (Benjamini-Hochberg) adjustment is used for
multiple test correction. Using FDR < 0.05 as the threshold,
the full results of enrichment analysis for top predicted MS-
related miRNAs are shown in Supplementary Table S2. For
illustration, Figure 4 demonstrates the top twenty enriched
terms for the top 10 predicted MS-related miRNAs. The best-
enriched term is infection with an adjusted p-value of 1.43e-8.
It has been shown that patients with Multiple Sclerosis have
an increased risk of infections compared to the healthy
population (Celius, 2017). The second-best enriched term
is B-cell lymphoma. A previous study has reported that
B-cell lymphoma has some similar symptoms with MS, and

early treatment with corticosteroids can improve patient
symptoms in both conditions (Lyons et al., 2012). We can
also find more genetic or clinical links between Multiple
Sclerosis and acquired immunodeficiency syndrome
(Morriss et al., 1992), chronic kidney disease (Ruiz-
Argüelles et al., 2019), papillary thyroid carcinoma
(D’Amico et al., 2019), HIV Infections (Gold et al., 2015),
type 2 diabetes mellitus (Hussein and Reddy, 2006),
Parkinson’s disease (Delalić et al., 2020), Uterine Cervical
Neoplasm (Doosti et al., 2018), and Hepatitis (Cação et al.,
2018). Combining our findings, it can be indicated that
miRNAs may play important role in various phenotypes in
MS patients, and those predicted miRNAs may be potential
therapeutic targets for those related diseases and symptoms
after wet-lab evaluation.

CONCLUSION

Multiple sclerosis is a central nervous system disease that affects a
lot of young adults worldwide. For better diagnosis and treatment,
it is important to identify the biomarkers of Multiple Sclerosis. Mi-
RNA is a type of important biomarker for diseases. However, few
computational methods are designed for predicting the Multiple
Sclerosis-related miRNAs. In this work, we proposed a
computation framework to fill this gap. The proposed
framework mainly contains two components, including miRNA
features extraction from networks using graph embedding
technique and Multiple Sclerosis-related miRNA prediction
based on convolutional neural network. Firstly, based on a
protein-protein interaction network and a miRNA-gene
regulation network, a network representation learning-based
method is proposed for feature representation of miRNA.
Secondly, taking the low-dimensional features as input, a
convolution neural network-based model is proposed for
predicting Multiple Sclerosis-associated miRNAs. To
demonstrate the advantages of the proposed model, we compare

FIGURE 4 | Top twenty enriched terms for the top 10 predicted MS-related miRNAs.
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it with several existing methods. The evaluation test shows that the
proposed model performs better than existing methods and can
predict Multiple Sclerosis-related miRNAs precisely.
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