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Background: This study aimed to screen potential drugs targeting a new prognostic gene
signature associated with proliferation in hepatocellular carcinoma (HCC).

Methods: CRISPR Library and TCGA datasets were used to explore differentially
expressed genes (DEGs) related to the proliferation of HCC cells. Differential gene
expression analysis, univariate COX regression analysis, random forest algorithm and
multiple combinatorial screening were used to construct a prognostic gene signature.
Then the predictive power of the gene signature was validated in the TCGA and ICGC
datasets. Furthermore, potential drugs targeting this gene signature were screened.

Results: A total of 640 DEGs related to HCC proliferation were identified. Using univariate
Cox analysis and random forest algorithm, 10 hub genes were screened. Subsequently,
using multiplex combinatorial screening, five hub genes (FARSB, NOP58, CCT4, DHX37
and YARS) were identified. Taking the median risk score as a cutoff value, HCC patients
were divided into high- and low-risk groups. Kaplan-Meier analysis performed in the
training set showed that the overall survival of the high-risk group was worse than that of
the low-risk group (p < 0.001). The ROC curve showed a good predictive efficiency of the
risk score (AUC > 0.699). The risk score was related to gene mutation, cancer cell
stemness and immune function changes. Prediction of immunotherapy suggetsted the
IC50s of immune checkpoint inhibitors including A-443654, ABT-888, AG-014699, ATRA,
AUY-922, and AZ-628 in the high-risk group were lower than those in the low-risk group,
while the IC50s of AMG-706, A-770041, AICAR, AKT inhibitor VIII, Axitinib, and AZD-0530
in the high-risk group were higher than those in the low-risk group. Drug sensitivity analysis
indicated that FARSB was positively correlated with Hydroxyurea, Vorinostat, Nelarabine,
and Lomustine, while negatively correlated with JNJ-42756493. DHX37 was positively
correlated with Raltitrexed, Cytarabine, Cisplatin, Tiotepa, and Triethylene Melamine.
YARS was positively correlated with Axitinib, Fluphenazine and Megestrol acetate.
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NOP58 was positively correlated with Vorinostat and 6-thioguanine. CCT4 was positively

correlated with Nerabine.

Conclusion: The five-gene signature associated with proliferation can be used for survival
prediction and risk stratification for HCC patients. Potential drugs targeting this gene
signature deserve further attention in the treatment of HCC.

Keywords: hepatocellular carcinoma, proliferation, gene signature, immune checkpoint inhibitors, antitumor drugs

INTRODUCTION

As one of the most common cancers worldwide, hepatocellular
carcinoma (HCC) is currently the third leading cause of
cancer-related death (Cronin et al., 2018). In the past few
decades, the effects of drug resistance and long-term toxicity of
systemic therapy on overall survival (OS) have limited its
application, making systemic therapy only used for
advanced HCC. Before 2017, the anti-angiogenic tyrosine
kinase inhibitor sorafenib was almost the only option for
systemic  treatment for advanced HCC patients.
Subsequently, molecularly targeted therapeutic
agents, including lenvatinib, regorafenib, and ramucirumab,
have broadened the treatment options for advanced HCC. In
recent years, the important role of immune system regulation
in HCC has made immunotherapy the focus of HCC research
efforts.

Immune checkpoint inhibitors (ICIs) are monoclonal
antibodies that block the interaction of checkpoint proteins
with their ligands, thereby preventing T cell inactivation. The
antitumor effects of immunotherapy drugs are based on
immune checkpoint-mediated inhibition of programmed cell
death-1 (PD-1), programmed cell death ligand 1 (PD-L1), and
cytotoxic T lymphocyte-associated protein 4 (CTLA-4).
Previous studies have shown that immune checkpoint
inhibitors, including anti-PD-1, anti-PD-L1, and anti-
CTLA-4 antibodies, have shown potential therapeutic
promise for advanced HCC (Zongyi and Xiaowu, 2020). The
combination of the anti-PDL1 antibody atezolizumab and the
vascular endothelial growth factor-neutralizing antibody
avastin is about to become the standard treatment for HCC.
Compared with sorafenib, the immunotherapy combination
regimen based on atezolizumab and avastin showed a clear
advantage in improving the survival rate of patients with
unresectable HCC. In addition, the anti-PD1 drugs
nivolumab and pembrolizumab began to be used after the
use of anti-angiogenic tyrosine kinase inhibitors. Currently,
the combination of HCC checkpoint immunotherapy with
other systemic or local treatments is considered the most
promising treatment option for HCC. And immunotherapy
is expected to be integrated into early and mid-stage treatment
regimens.

However, on the one hand, the severe toxicity of systemic
drugs has slowed the development of new HCC drugs over the
past decade (Busato et al., 2019). On the other hand, the
predictive power and accuracy of traditional pathological
staging have been shown to be insufficient due to the

several

marked heterogeneity of HCC. The lack of predictive
biomarkers makes the choice of immunotherapy over kinase
inhibitors an empirical treatment decision that balances
antitumor efficacy and drug toxicity (Fulgenzi et al., 2021).
The identification and validation of predictive biomarkers and
the screening of more effective immunotherapeutic drugs or
drug combinations are urgently needed for HCC
immunotherapy (Sangro et al., 2021).

As we know, HCC cells are characterized by fast growth and
strong invasiveness. Therefore, proliferation-related gene
signatures are potential prognostic biomarkers for HCC.
Previous researches suggest that DEPDCI can promote the
occurrence and proliferation of HCC (Qu et al, 2019). High
expression of E2F1 can promote cancer cell proliferation by
activating PKC-a phosphorylation in HCC (Lin et al, 2019).
YTHDF2 can inhibit the proliferation of cancer cells by
destroying the stability of EGFR mRNA in HCC (Zhong L.
et al,, 2019). In addition, in terms of microRNA, miR-424-5p
can inhibit the proliferation and invasion of HCC cells by
targeting TRIM29 (Du et al,, 2019). MiR-125a-5p can inhibit
the growth and metastasis of liver cancer cells by targeting
TRIAPI and BCL2L2 (Ming et al., 2019). MiR-490-5p inhibits
the proliferation, migration and invasion of cancer cells by
directly regulating ROBO1 in HCC (Chen et al, 2019).
MiRNA-217 can inhibit the proliferation of cancer cells by
regulating KLF5 in HCC (Gao et al, 2019). MiR-664 may
target SIVA1 to promote proliferation, migration and invasion
in HCC (Wang X. et al., 2019). In terms of long non-coding RNAs
(IncRNAs), LncRNAs A1BG-AS1 can inhibit the proliferation
and invasion of HCC cells by targeting miR-216a-5p (Bai et al,,
2019). While LncRNA 01123, LncRNA HAGLROS, LncRNA
MNX1-AS1, LncRNA CRNDE, and LncRNA RNA CCAT2
can promote the proliferation and metastasis of HCC cells (Ji
et al., 2019a; Ji et al.,, 2019b; Liu et al., 2019; Wei H. et al., 2019;
Xiao et al., 2020). Therefore, the above genes have potential value
as prognostic biomarkers in HCC.

In this study, we used the CRISPR Library and the Cancer
Genome Atlas (TCGA) database to screen for important genes
related to the proliferation of HCC cells. Then, hub genes most
relevant to the prognosis of HCC patients were identified and
used to establish a gene signature for survival prediction.
Subsequently, the prognostic values of the gene signature were
confirmed both in the training set and validation set. Time-
dependent receiver operating characteristic (t-ROC) curve was
used to verify the prediction accuracy of the survival model.
Associations of risk scores with genetic mutations, cancer cell
stemness and immune function were analyzed, respectively.
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Finally, drugs targeting this proliferation-related gene signature
were identified. In conclusion, this study comprehensively
analyzed the prognostic value of a new proliferation-related
gene signature in HCC. This gene signature can not only be
used for prognostic assessment and risk stratification of HCC
patients, but also is expected to be a therapeutic target for HCC.
Furthermore, therapeutic drugs targeting this gene signature may
have potential therapeutic prospects.

MATERIALS AND METHODS

Data Source and Identification of
Proliferation-Related Differentially
Expressed Genes

The RNASeq data and clinical information used to construct the
prognostic gene signature were downloaded from the TCGA
HCC dataset (n = 365). The RNASeq data and clinical
information used to verify the gene signature were
downloaded from the International Cancer Genome
Consortium (ICGC) HCC dataset (n = 232). The limma
package was used to perform differentially expressed gene
analysis between tumor and matched normal tissues.
Candidates with false discovery rate (FDR) <0.05 and multiple
of change >1 were considered to be significantly upregulated in
tumor tissues. The genome-wide CRISPR screening of HCC cells
was downloaded from the DepMap portal (https://depmap.org/
portal/download/). The CERES algorithm was used to calculate
the dependency scores of candidate genes (Meyers et al., 2017).
Candidate genes were defined as proliferation-related genes. The
above three databases are public. Therefore, this study did not
require the approval of the local ethics committee.

Candidate Gene Selection and Gene

Signature Establishment

Random forest is a machine learning algorithm based on decision
tree, which is a nonlinear classifier and can be used for sample
classification or regression tasks. The method of random forest to
evaluate the importance of features is to calculate how much each
feature contributes to different decision trees in random forest,
then take the average value, and compare the contribution of
different features. In this study, using univariate Cox regression
with a p value < 0.01, the candidate genes that are most relevant to
the prognosis of HCC patients were identified. Next, we used
random forest to rank the importance of genes and selected the
top 10 hub genes. Subsequently, we identified a gene signature
with a smaller number of genes and a more significant p value
from multiple combinations of 10 hub genes to construct a
survival model. The single-sample gene set enrichment
analysis (ssGSEA) algorithm was used to quantify the
performance  of  proliferation-related  pathways  and
transcription factors. In addition, gene mutations, cancer cell
stemness and immune function changes can affect tumor
proliferation and the prognosis of HCC, so we explored the

Drugs Targeting a Gene Signature

correlations between the gene signature and gene mutations/
mRNSsi/immune functions.

Survival Analysis Based on Risk Score
Taking the median risk score as the cut-off value, we divided HCC
patients into high- and low-risk groups. Then the prognosis of the
two groups was compared in the training set and the validation
set, respectively. Kaplan-Meier method was used for survival
analysis. ROC curve was used to evaluate the predictive
accuracy of the risk score. And t-ROC was used to evaluate
the predictive ability (R package “survival-ROC”) (Heagerty et al.,
2000). Cox proportional hazard regression model was used to
evaluate the importance of each parameter to OS. In addition, a
two-factor survival analysis combining risk score and
proliferation-related pathways was also performed to evaluate
the impact of risk score and proliferation-related pathways on the
prognosis of HCC patients.

Establishment and Evaluation of Nomogram
for Predicting OS of HCC Patients

Nomogram is an effective tool for predicting the prognosis of
cancer patients by simplifying complex statistical prediction
models into maps that assess the probability of individual
patients’ OS (Park, 2018). In this study, we constructed a
nomogram based on the five-gene signature to evaluate the
probability of OS in HCC patients at 1-, 3-, and 5-year.
Meanwhile, the predicted probability of the nomogram was
compared with the measured probability by the calibration
curve to verify the accuracy of the nomogram. In addition,
t-ROC curve was used to evaluate the survival prediction
ability of the nomogram. Decision curve analysis (DCA) curve
was used to evaluate the clinical benefit of the nomogram.

Drug Discovery Based on Risk Score

In order to find candidate drugs that show potential efficacy in the
high-risk group, we used the half-maximum inhibitory
concentration (IC50) of each HCC patient to evaluate their
treatment response on Genomics of Drug Sensitivity in Cancer
(GDSC) (https://www.cancerrxgene.org/) (Geeleher et al., 2014).

Drug Sensitivity Analysis of Five Hub Genes
The drug sensitivity data was downloaded from the CellMiner™
database (version: 2020.3, database: 2.4.2, https://discover.nci.nih.
gov/cellminer/home.do) (Reinhold et al., 2012). The R packages
“impute,” “limma,” “ggplot2,” and “ggpubr” were used for data
processing and visualization.

Bioinformatics and Statistical Analysis

IBM SPSS Statistics 20 (IBM Corp., Armonk, NY, United States)
and R software (version 3.5.2, https://www.r-project.org) were
used to analyze data and draw graphs. Z-score were used to
normalize the ssGSEA score. Principal component analysis was
conducted by using the Rtsne R package. The log-rank test was
used to assess the differences. The “wilcox.test” function was used
to compare the risk scores between groups.
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FIGURE 1| Overall flowchart of this study. HCC, hepatocellular carcinoma; OS, overall survival; ROC, receiver operating characteristic; GSEA, gene set enrichment
analysis; GO, gene ontology; KEGG, kyoto encyclopedia of genes and genomes; mRNAsi, mRNA expression-based stemness index.

RESULTS

Schematic Diagram of Research Design

Figure 1 shows the entire workflow of this research. Firstly,
using the CRISPR Library and TCGA HCC dataset,
differentially expressed genes (DEGs) related to HCC
proliferation were screened out. Then, univariate Cox
regression analysis was used to screen promising candidates.
Next, the random forest algorithm and multiple combinatorial
screening methods were used to establish a prognostic gene
signature. Specifically, we screened genes associated with
overall survival in HCC by univariate COX regression, and
then used random forests to rank the importance of these
survival-related genes and listed the top 10 genes. We then
randomly combined these 10 genes and constructed a risk
model by multivariate COX regression. Subsequently, we
calculated and ranked the p-values for each model by K-M
survival analysis. Furthermore, we screened out the risk model
with the smallest p value and the relatively small number of
genes. Finally, the prognostic values of the gene signature were
evaluated in the training set and validation set, respectively.

Establishment of Proliferation-Related

Prognostic Gene Signature

A total of 640 DEGs in HCC were identified, with [log2FC| > 1 and
FDR < 0.05 as the thresholds. The heat map shows the expression
profiles of some DEGs related to proliferation in HCC (Figure 2A).
As shown in Figures 2B,C, biological processes significantly
enriched by 640 DEGs included ribosomal subunit, U2-type
spliceosomal complex, spliceosomal complex, cytosolic part and
cytosolic ribosome; Significantly enriched cell components
included mRNA splicing, via spliceosome, RNA splicing via
transesterification  reactions with bulged adenosine as
nucleophile, RNA splicing, viral transcription, and translational
initiation; Significantly enriched molecular function included
structural constituent of ribosome, catalytic activity acting on
RNA, helicase activity, nucleotidyltransferase activity and rRNA
binding. In addition, significantly enriched pathways included
spliceosome, ribosome, RNA transport, cell cycle and
spinocerebellar ataxia. Using p < 0.01 as the threshold for
univariate Cox regression, candidate genes related to the
prognosis of HCC patients were identified (Figure 2D).
Subsequently, we used random forest ranking to rank candidate
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genes and screened out the top ten relatively important genes
(Figure 2E). Next, we selected a gene combination with a smaller
number of genes and a more significant p value from multiple
combinations of ten hub genes to construct a survival prediction
model (Figure 2F). Finally, five hub genes were used to construct a
prognostic model of HCC: risk score = 0.010 * FARSB + 0.07 *
NOP58 + 0.001 * CCT4 - 0.026 * DHX37 + 0.022 * YARS.

Risk Score Based on the Five-Gene
Signature Was an Independent Prognostic

Factor for HCC

The TCGA HCC dataset was used as a training set to evaluate the
prognostic values of this five-gene signature. As shown in Figure 3A,
Kaplan-Meier analysis showed that the prognosis of the high-risk
score group was worse than that of the low-risk score group (p <
0.001). The high- and low-risk score groups were defined by risk
scores based on the five-gene signature. The median risk score
calculated from the risk model was 0.867. Taking the median risk
score of HCC patients as a cutoff value, we divided HCC patients

into high-risk and low-risk groups. Patients with a risk score higher
than 0.867 were classified as high-risk group, while those with a risk
score lower than 0.867 were classified as low-risk group.
Subsequently, in order to evaluate the relationship between the
five-gene signature and the prognosis of HCC patients, we took the
median of the risk scores of 338 HCC patients from the training set
as the cut-off value, divided these patients into high- and low-risk
groups, and compared the survival status and the expressions of the
five hub genes between the two groups. The results showed that the
prognosis of the high-risk group was worse than that of the low-risk
group, and the expression levels of five hub genes in the high-risk
group were higher than that of the low-risk group (Figure 3B). Next,
Principal component analysis suggested that risk score could be used
as a new dimension to assess the prognosis of HCC patients
(Figure 3C). The ROC curve showed that the AUCs of the risk
score for predicting 1-year, 3-year, and 5-year survival rates were
0.744, 0.699, and 0.743, respectively, indicating that the risk score
was a good model for predicting the survival rate of HCC patients
(Figure 3D). Univariate and multivariate Cox regression analysis
showed that risk score based on five-gene signature (HR = 248, p <
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0.001) and pathological stage (HR = 1.62, p < 0.001) were
independent risk factors affecting OS in HCC patients
(Figure 3E). Besides, tROC analysis showed that the survival
predictive ability of risk score was significantly higher than other
clinicopathological characteristics (Figure 3F).

Verifying the Prognostic Values of the

Five-Gene Signature in the Validation Set

The ICGC HCC dataset was used as a validation set to verify the
robustness of this five-gene signature. Kaplan-Meier analysis
showed that the prognosis of the high-risk group was worse
than that of the low-risk group (p < 0.001, Figure 4A). Similarly,
taking the median of the risk scores of 232 HCC patients from the
validation set as the cutoff value, we divided these patients into
high- and low-risk groups, and compared the survival status and
the expression levels of five hub genes between the two groups.
The results showed that the prognosis of the high-risk group was
worse than that of the low-risk group, and the expression levels of
the five hub genes in the high-risk group were higher than that of
the low-risk group (Figure 4B). Principal component analysis

also suggested that risk score could be used as a new dimension to
assess the prognosis of HCC (Figure 4C). The ROC curve showed
that the AUCs of the risk score for predicting 1-year, 3-year, and
5-year survival rates were 0.747, 0765, and 0.852, respectively,
which further indicated that the risk score was a good model for
predicting the survival rate of HCC patients (Figure 4D).
Univariate and multivariate Cox regression analysis showed
that risk score (HR = 2.29, p < 0.001) and pathological stage
(HR =1.57, p < 0.05) were independent risk factors affecting OS
in HCC patients (Figure 4E). In addition, tROC analysis showed
that the survival predictive ability of risk score was significantly
higher than that of other clinicopathological characteristics
(Figure 4F).

Correlations Between Risk Score and
Proliferation-Related Pathways and
Corresponding Two-Factor Survival

Analysis
Using the ssGSEA algorithm, the Z-scores of some proliferation-
related pathways and some proliferation-related transcription
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factors were calculated. Subsequently, the Z-scores of
proliferation-related ~ pathways and the Z-scores of
proliferation-related transcription factors between the high and
low-risk groups were compared, respectively. As shown in
Figure 5A, the Z-scores of the proliferation-related pathways
in the high-risk group were higher than those in the low-risk
group. Meanwhile, as shown in Figure 5B, the Z-scores of the
proliferation-related transcription factor of the high-risk group
were higher than those of the low-risk group. Subsequently, a
two-factor survival analysis combining risk score and
proliferation-related pathway Z-scores showed that high risk
score and high proliferation-related pathway Z-scores
predicted the worst prognosis (Figures 5C-G).

Differences in Gene Mutations Between
High- and Low-Risk Groups

The gene mutation data of HCC patients in TCGA was
downloaded to compare the gene mutation status between the
high- and the low-risk groups. The results showed that there were

some differences in gene mutation frequency between the two
groups. TP53 gene mutation status between the two groups was
significantly different (Figures 6A,B). The risk score of the TP53
mutant group was higher than that of the TP53 wild group (p <
0.001, Figure 6C). TP53 mutation rate of the high-risk group was
higher than that of the low-risk group (p < 0.001, Figure 6D). In
addition, the mRNAsi of the high-risk group was higher than that
of the low-risk group (p < 0.001, Figure 6E). There were
statistically significant differences between the high- and low-
risk groups in immune function of Type IL IFN Reponse, MHC
class T and Cytolytic activity (p < 0.01, Figure 6F).

Correlations Between Risk Score and

Tumor Progression in HCC Patients

To explore the correlations between the risk score and tumor
progression, the mortality and pathological stage of the high- and
low-risk groups were compared. The results suggested that in the
TCGA dataset, the mortality of the high-risk group was higher
than that of the low-risk group (p = 0.001, Figure 7A).
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Meanwhile, the proportions of patients with advanced
pathological stages (or pathological grades) in the high-risk
group were higher than those of the low-risk group (p =
0.001, Figures 7B-D). In the ICGC dataset, the mortality rate
of the high-risk group was also higher than that of the low-risk
group (p =0.001, Figure 7E). At the same time, the proportions of
patients with advanced pathological stages (or pathological
grades) in the high-risk group were also higher than those of
the low-risk group (p = 0.002, Figure 7F).

Risk Score Was an Indicator of Poor
Prognosis in the Subgroups Divided by

Various Clinicopathological Characteristics
Clinicopathological characteristics including age, gender, grade,
and pathological stage were used to divide multiple subgroups. As
shown in Figures 8 A-H, risk scores based on five-gene markers
can distinguish high-risk patients with poor prognosis in these
subgroups (p < 0.001).

Enrichment Analysis Based on the Risk

Score

Taking the median of the risk scores of all HCC patients from the
TCGA dataset as the cut-off value, we divided these samples into
high- and low-risk groups. GSEA analysis was conducted to
identify the significant enrichment pathways of the high and
low risk groups, respectively. Significantly enriched pathways in
the high-risk group included cell cycle, cytokine-cytokine receptor
interaction, DNA replication, ECM receptor interaction, and

hematopoietic cell lineage (Figure 9A). And significantly
enriched pathways in the low-risk group included drug
metabolism cytochrome p450, fatty acid metabolism, glycine
serine and threonine metabolism, metabolism of xenobiotics by
cytochrome p450 and peroxisome (Figure 9B). Subsequently, we
performed GO and KEGG analysis on DEGs between the high and
low risk groups. The results suggested that significantly enriched
BP included chromosome segregation, organelle fission, mitotic
sister chromatid segregation, nuclear division and mitotic nuclear
division; Significantly enriched CC included chromosomal region,
chromosome,  centromeric  region, spindle, condensed
chromosome, centromeric region, and condensed chromosome
(Figure 9C); Significantly enriched MF includes oxidoreductase
activity, acting on CH or CH2 groups, DNA replication origin
binding, steroid hydroxylase activity, arachidonic acid
monooxygenase activity, and arachidonic acid epoxygenase
activity. Besides, significantly enriched KEGG pathways
included metabolism of xenobiotics by cytochrome P450, ECM-
receptor interaction, central carbon metabolism in cancer, retinol
metabolism, and cell cycle (Figure 9D). These results suggested
that the five-gene signature may play an important role in
tumorigenesis and development.

Prediction of Immunotherapy Based on Risk

Score

In order to select appropriate checkpoint inhibitors for HCC
patients, we performed immunotherapy predictions based on risk
scores. The results showed that the high-risk group had lower
IC50s for six immunotherapy drugs including A-443654, ABT-
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888, AG-014699, ATRA, AUY-922, and AZ-628, while had
higher IC50s for six kinds of immunotherapy drugs including
AMG-706, A-770041, AICAR, AKT inhibitor VIII, Axitinib, and
AZD-0530 (Figure 10).

Drug Sensitivity Analysis of Five Hub Genes
To explore the potential correlations between the expressions of
five key genes and drug sensitivity, we conducted drug sensitivity
analysis using the CellMiner™ database. The results showed that
FARSB expression was positively correlated with the drug
sensitivity of Hydroxyurea (Supplementary Figure S1A),
Vorinostat  (Supplementary  Figure S1E), Nelarabine
(Supplementary Figure S1G), and Lomustine (Supplementary
Figure S1P), while negatively correlated with the drug sensitivity
of JNJ-42756493 (Supplementary Figure S10). DHX37
expression was positively correlated with the drug sensitivity
of Raltitrexed (Supplementary Figure S1B), Cytarabine
(Supplementary Figure S1D), Cisplatin (Supplementary
Figure S1F), Thiotepa (Supplementary Figure S1H), and
Triethylenemelamine (Supplementary Figure SIN). YARS
expression was positively correlated with the drug sensitivity
of Axitinib (Supplementary Figure S1C), Fluphenazine
(Supplementary Figure S1K), and Megestrol acetate
(Supplementary Figure S1M). NOP58 expression was
positively correlated with the drug sensitivity of Vorinostat
(Supplementary  Figure  S1I) and  6-Thioguanine
(Supplementary Figure S1J). The expression of CCT4 was
positively correlated with the drug sensitivity of Nelarabine
(Supplementary Figure S1L).

Constructing a Nomogram to Predict OS in
HCC Patients

In order to establish a clinically applicable method for predicting
the OS of HCC patients, we constructed a nomogram combining
risk score and pathological stage (Figure 11A), and then analyzed
the accuracy of the model using a calibration curve. The results
showed that the 1-year, 3-year, and 5-year survival probabilities
predicted by the nomogram were basically consistent with the
observed survival probabilities, confirming the reliability of the
nomogram (Figure 11B). Meanwhile, t-ROC curve suggested
that the nomogram combined with pathological stage and risk
score had the largest AUC. The AUCs of 1-, 3-, and 5-year
survival predictions were above 0.72, which suggested that
compared with the model constructed by a single prognostic
factor, the nomogram combining risk scores and pathological
stages was a better prognostic model for survival prediction in
HCC patients (Figure 11C). In addition, we plotted the calculated
net benefit with the threshold probabilities for HCC patients with
1-year, 3-year, and 5-year survival rates. As shown in Figure 11D,
the net benefit of the nomogram was better than other models.

DISCUSSION

In recent years, immunotherapy has become the focus of HCC
research. Immune checkpoint inhibitors, including anti-PD-1,
anti-PD-L1, and anti-CTLA-4 antibodies, have shown potential
therapeutic value in advanced HCC. At present, the anti-PDL1
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antibody Atezolizumab combined with the vascular endothelial
growth factor neutralizing antibody Avastin is expected to
become the standard treatment for HCC. Therefore, HCC
checkpoint immunotherapy combined with other systemic or
local treatments is considered to be the most promising treatment
option for HCC. Currently, there is an urgent need for the
identification and validation of predictive biomarkers and the
screening of more effective immunotherapy drugs for HCC
immunotherapy.

In this study, we focused on constructing a proliferation-
related gene signature for patients with HCC. Firstly, the
CRISPR Library and the TCGA database were used to screen
differentially expressed genes related to the proliferation of HCC
cells. Then, univariate COX regression analysis, random forest

algorithm and multiple combinations were used to construct a
prognostic five-gene signature (FARSB, NOP58, CCT4, DHX37,
and YARS). Next, the prognostic value of the five-gene signature
was confirmed in both the training set and the validation set.
Finally, we combined risk scores and pathological stage to
construct a nomogram for clinical practice. Meanwhile,
calibration curve, ROC curve and decision curve showed that
the nomogram can more accurately predict the ability of OS in
HCC patients. In addition, the roles of this five-gene signature in
gene mutation, cancer cell stemness and immune functions were
explored, respectively. Therefore, this five-gene signature is an
independent prognostic predictor of HCC.

Traditional pathological staging is commonly used method for
evaluating the prognosis of HCC patients. Alpha-fetoprotein
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(AFP) is a widely used biomarker to monitor treatment response
and improve prognosis. However, the high heterogeneity of HCC
increases the difficulty of survival prediction. Recently, some new
biomarkers have become effective tools for predicting the

prognosis of HCC. For example, CCL14, CBX3/HP1, APEXI,
and UBE2C are considered to be prognostic biomarkers for HCC
(Wei Z. et al,, 2019; Zhong X. et al., 2019; Cao et al., 2020; Gu
et al., 2020). In addition, a four-gene signature including PBK,
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CBX2, CLSPN, and CPEB3, a four-methylated mRNA signature
including BRCA1, CAD, CDC20, and RBM8A, a 5-gene IncRNA
signature including RP11-325L7.2, DKFZP4341187, RPI11-
100L22.4, DLX2-AS1, and RP11-104L21.3, as well as many
other polygenic gene signatures have been shown to have
prognostic value in HCC (Sun et al,, 2019; Wang Y. et al,
2019; Yan et al., 2019).

Based on the important role of HCC cell proliferation in tumor
progression and its impact on patient prognosis, this work
constructed a prognostic gene signature associated with HCC
cell proliferation. The results showed that the five-gene signature
including FARSB, NOP58, CCT4, DHX37, and YARS was with
good prognostic values. Meanwhile, the enrichment analysis
showed that the significant enrichment pathways in the high-
risk group included cell cycle, cytokine-cytokine receptor
interaction, DNA replication, ECM receptor interaction and
hematopoietic cell lineage. These results indicated that the five
hub genes were involved in the molecular mechanism of
proliferation and progression in HCC. Previous studies have
shown that FARSB is involved in amino acid metabolism and
tRNA aminoacylation, and plays a key role in the progression of
gastric cancer (Gao et al., 2021). NOP58 is involved in the
transport of mature mRNA and protein metabolism that do
not depend on SLBP. NOP58 is not only negatively related to
the OS of HCC patients, but may also be closely related to the
recurrence of lung adenocarcinoma (Shen et al, 2021; Wang
et al., 2021). CCT4 is involved in protein metabolism and is
significantly related to HCC cell growth and prognosis (Li F. et al.,
2021; Li W. et al,, 2021). In addition, downregulation of CCT4
can significantly inhibit the migration of lung adenocarcinoma
cells (Tano et al.,, 2010). DHX37 is an RNA helicase, which is
significantly upregulated in 17 kinds of tumors (Huang et al.,
2021). DHX37 could affect the prognosis of patients with HCC or
lung adenocarcinoma by immune infiltration, and can be used as
a prognostic biomarker for HCC and lung adenocarcinoma (Xu
et al., 2020; Chen et al., 2022). Moreover, DHX37 acts as a
function regulator of CD8 T cells (Dong et al,, 2019). YARS1
is involved in tRNA aminoacylation and gene expression. There
are no reports on the role of YARS1 in HCC for now.

It is worth mentioning that the gene signatures constructed by
different methods may have different applications. For example, a
four-gene metabolic signature for HCC can reflect the disorder of
the metabolic microenvironment, thereby providing potential
biomarkers for the metabolic treatment and treatment
response prediction of HCC (Liu et al, 2020). A ferroptosis-
related gene signature can be used to predict the prognosis of
HCC patients (Liang et al., 2020). An immune-related IncRNA
signature has the potential to measure the response to ICB
immunotherapy and guide the choice of HCC immunotherapy
(Zhang Y. et al,, 2020). An immune-related gene signature can
predict the response of HCC patients to immunotherapy (Dai
et al,, 2021). DNA methylation is an important regulator of gene
transcription in the etiology and pathogenesis of HCC. Two HCC

Drugs Targeting a Gene Signature

prognostic signatures related to DNA repair have recently been
reported to help explore molecular mechanisms related to DNA
repair (Li N. et al,, 2019; Li G. X. et al., 2019). A gene signature
related to glycolysis could help to analyze the role of glycolysis in
HCC (Jiang al., 2019). In addition, the tumor
microenvironment plays an important role in the progression,
recurrence and metastasis of HCC. A gene signature based on the
HCC microenvironment helps to explore the role of the tumor
microenvironment in HCC (Zhang F.-P. et al.,, 2020).

This study has some limitations. Although this study used the
method of mutual verification between two independent datasets
to verify the prognostic significance of the five-gene signature.
However, in vitro experiments are still an important step to
further confirm the prognostic value of this gene signature. In
addition, this is a retrospective study, so it is necessary to verify
the robustness of this five-gene signature in a prospective study in
the future.

et

CONCLUSION

In summary, the study identified a new prognostic gene signature
based on proliferation-related genes (FARSB, NOP58, CCT4,
DHX37, and YARS). Besides, a nomogram based on the five-
gene signature was constructed for clinical practice. The five-gene
signature can be used for survival prediction and risk
stratification for HCC patients. Moreover, potential drugs
targeting this gene signature deserve further attention in the
treatment of HCC.
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