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Genetic risk scores (GRS) and polygenic risk scores (PRS) are weighted sums of,

respectively, several or many genetic variant indicator variables. Although they

are being increasingly proposed for clinical use, the best ways to construct them

are still actively debated. In this commentary, we present several case studies

illustrating practical challenges associated with building or attempting to

improve score performance when there is expected to be heterogeneity of

disease risk between cohorts or between subgroups of individuals. Specifically,

we contrast performance associated with several ways of selecting single

nucleotide polymorphisms (SNPs) for inclusion in these scores. By

considering GRS and PRS as predictors that are measured with error,

insights into their strengths and weaknesses may be obtained, and SNP

selection approaches play an important role in defining such errors.

KEYWORDS

polygenic risk scores, measurement error, instrumental variable methods, mendelian
randomization, regularized models, high-dimensional data, feature selection

1 Introduction

Genetic risk scores (GRS) and polygenic risk scores (PRS) are increasingly used as

predictors of disease risk (Khera et al., 2018), and active discussions are ongoing on how to

incorporate them effectively into health care (Inouye et al., 2018; Forgetta et al., 2020; Lu

et al., 2021a). These scores can display variable abilities to accurately estimate disease risks

in different contexts. For example, in Howe et al. (2020), a coronary artery disease PRS

was shown to predict incident coronary artery disease (CAD) events more accurately

amongst individuals with no prevalent CAD history than those with prevalent CAD;

analogous examples of differential discrimination have been shown by diabetes status

(Udler et al., 2019) and atherosclerotic heart disease (Aragam and Natarajan, 2020). A
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compelling rationale for differential score performance can be

made for males versus females (Roberts et al., 2020; Manikpurage

et al., 2021), since sex-specific disease incidence and regulation is

the norm rather than the exception (Ober et al., 2008).

Furthermore, not only are there loci whose effects vary across

subgroups, but loci exist that are associated with increased

prediction variability in phenotypes (Wang et al., 2019; Lu

et al., 2022). Without a good understanding of the contexts

where genetic or polygenic risk scores perform well, it is more

challenging to argue for their clinical use.

A genetic score or polygenic score is a weighted sum of allele

indicators at each element of a set of single nucleotide

polymorphisms (SNPs). The distinction between GRS and

PRS is loosely a function of how many SNPs are in the set,

with ‘poly’genic risk scores often containing hundreds of

variants, and GRS including only a few. The theoretical

performance of PRS as a function of sample size, heritability,

and the distribution of the true effect sizes has been expertly

discussed by Dudbridge (2013) and Chatterjee et al. (2013),

among others.

Commonly, SNP set inclusion is initially defined by a

p-value filter, and then refined through one or more filtering

strategies to include only variants that contribute non-

redundant information. Selection of SNPs for inclusion in

a GRS or PRS can be considered to be the most challenging

aspect of their construction. One commonly-used approach

for SNP selection is clumping and thresholding (C + T) (also

termed pruning and filtering), where SNPs are selected on the

basis of their individual statistical significance and low

linkage disequilibrium patterns with other nearby SNPs.

However, many more sophisticated methods have been

developed for SNP selection after GWAS, to improve

accuracy of disease risks estimates. Among the methods

proposed, some attempt to increase the likelihood that the

selected SNPs are truly causal. For example, fine mapping

after a Genome-Wide Association Study (GWAS) predicts

the most likely causal SNP(s) at a locus (e.g., (Kichaev et al.,

2014; Chen et al., 2015; Benner et al., 2016; Wang et al., 2020;

Zhang et al., 2021; Forgetta et al., 2022)). Even if the SNPs

retained after such fine mapping algorithms are not truly

causal, they are likely to be strongly correlated with the causal

SNPs. Other strategies for improving SNP selection include

improved characterizations of genetic architecture (Ni et al.,

2021), and suggestions for keeping SNPs with relevant

functional annotations (Udler et al., 2019; Amariuta et al.,

2020). Score performance–i.e., accurate prediction of

risks–using these more nuanced methods is usually better

than simply using C + T. Shrinkage of the estimated

coefficients has also been proposed with the goal of

minimizing winner’s curse bias from the univariate GWAS

(Zollner and Pritchard, 2007). Alternatively, rather than

performing score construction based on results from

GWAS, PRS can be directly estimated from the linear

predictor obtained after fitting a high dimensional

regression model, such as the LASSO or other penalized

regression models (Lello et al., 2018; Forgetta et al., 2020;

Lu et al., 2021a; Lu et al., 2021b). These approaches directly

estimate independent contributions from correlated sets of

SNPs without requiring explicit clumping or fine mapping,

but implementation requires very large sample sizes and

computational capacity.

Recently, the potential uses of GRS have gone beyond

prediction of clinically relevant outcomes. Genetic scores are

also being considered as tools for inferring causal relationships in

the context of Mendelian randomization (MR) studies (Palmer

et al., 2012; Burgess and Thompson, 2013; Davies et al., 2018). In

an observational study, MR can leverage genetic variants as

instruments to estimate the evidence for a causal relationship

between a risk factor and an outcome (Burgess et al., 2015).

Conceptually, a GRS combines the power of multiple SNPs to

construct a stronger instrument, thus improving statistical power

and avoiding bias in the causal effect estimate due to weak

instruments (Davies et al., 2015). When all SNPs in the score

satisfy the assumptions required for MR, the GRS will also be a

valid instrument. However, valid inference may still be obtained

even when some SNPs are invalid (e.g., Bowden et al., 2016; Guo

et al., 2018; Ye et al., 2021). A brief discussion of these methods is

deferred to Section 3.3.

One elemental example of variation in GRS and PRS

performance is the differential performance across ancestral

populations (Martin et al., 2017). These differences are

partially a consequence of genetic architecture differences,

i.e., different causal variants, linkage disequilibrium patterns,

and allele frequencies, but they are also due to the use of

European-centric genotyping panels and imputation

algorithms. However, in this commentary, we will not

specifically address ancestry differences in score performance,

since it is a topic that would require its own manuscript to do it

justice.

Instead, our goal here is, through the use of a few case studies,

to examine variability in genetic score performance as a function

of SNP selection and context. First we briefly describe three sets

of data. In the Methods section, we briefly introduce a few

different approaches for SNP selection. Then in Results, we

illustrate the performance of these method choices through

illustrative analyses of three datasets. Finally we discuss how

SNP selection influences performance in different datasets and

contexts.

2 Datasets

2.1 Temporomandibular disorder

Temporomandibular disorder (TMD) is a painful disease of the

jaw. We used data on independent subjects from four cohorts
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containing TMD information: the Orofacial Pain: Prospective

Evaluation and Risk Assessment (OPPERA) study; the Sao Paulo,

Brazil, TMD case-control (SPB) study; the OPPERA II Chronic

TMD Replication case-control study, and the Complex Persistent

Pain Conditions (CPPC): Unique and Shared Pathways of

Vulnerability study. Significant associations between TMD and

three distinct loci have been previously reported in combined or

sex-segregated analyses on the OPPERA cohort (Smith et al., 2018).

Sample sizes and country of recruitment for the four studies are

shown in Table 1, and further details on study design, recruitment,

subject characteristics, and phenotyping for each study are provided

in the Supplementary Materials of Smith et al. (2018) (available at

http://links.lww.com/PAIN/A688).

2.1.1 Unrelated individuals
Before combining data across the four cohorts, we estimated

the relationships between all pairs of individuals. For each pair of

related subjects up to 1st degree, defined such that the kinship

coefficient >0.177, we removed one individual with the lowest

call rate, resulting in 71 individuals being dropped. Also, we

removed 199 subjects from the SPB study who were classified as

having TMD without any pain.

2.1.2 Quality control and pruning
Before merging the raw genotyped data (before

imputation) for the four cohorts, we filtered for minor

allele frequency greater than 1% and SNP call rate greater

than 95%, using PLINK 1.9 (Chang et al., 2015). Then, we

merged the four cohorts together into one dataset, and filtered

once again for SNP call rate greater than 95%, to retain only

SNPs that were present in all cohorts. This led to a total of

67,930 variants. We pruned the samples using the “indep-

pairwise” option in PLINK 1.9 such that all SNPs within a

window size of 100 had pairwise r2 < 0.2. As recommended by

Price et al. (2008), we also removed SNPs from a list of

predetermined long-range LD regions. After pruning,

49,750 genotyped variants remained, and all of these were

used to calculate principal components (PCs) of ancestry.

2.1.3 Imputation of genetic data
We used the imputed data described in Smith et al.

(2018). Genotypes were imputed to the 1000 Genomes

Project phase 3 reference panel using the software

packages SHAPEIT (Delaneau et al., 2011) for prephasing

and IMPUTE2 (Howie et al., 2009). For each cohort

independently, we assessed imputation quality taking into

account the number of minor alleles as well as the

information score such that a SNP with rare MAF must

pass a higher quality information threshold for inclusion:

all imputed markers satisfying the following inequality were

retained in the analysis

2 × MAF × 1 −MAF( ) × INFO≥ 0.05.

After merging all four cohorts, we filtered for HWE

separately in cases and controls, using a more strict

threshold among cases to avoid discarding disease-

associated SNPs that are possibly under selection Marees

et al. (2018) ( < 10−6 in controls, < 10−11 in cases). We also

filtered, again, using a SNP call rate greater than 95% on the

combined dataset to retain imputed variants present in all

cohorts. The final merged dataset thus included a total of

4.8M imputed SNPs.

2.2 United Kingdom biobank

We followed Forgetta et al. (2022) when using data from the

UK Biobank (ukbiobank.org (Bycroft et al., 2018)). We extracted

11 Ei phenotypes of interest as well as age, sex, and genetic

principal components for 502,616 participants recruited into the

UK Biobank dataset. Then for each phenotype, we excluded those

with missing covariates or phenotypes. Due to incomplete access

TABLE 1 Demographic data for the four cohorts on Temporomandibular Disorder.

Study name

Orofacial pain:prospective
evaluation
and risk assessment

Sao Paulo,
Brazil,
TMD case-
control

OPPERA-II chronic
TMD
replication

Complex persistent
PAIN
conditions

Total

Acronym OPPERA SPB OPPERA2 PPG

Country United States Brazil United States United States

N (% female) 3030 (64.6) 436 (100.0) 1342 (66.0) 390 (84.4) 5196
(69.4)

Cases (%) 999 (33.0) 144 (33.0) 444 (33.0) 164 (42.0) 1751
(33.7)

Ancestry (%
white)

61 100 79 68 69
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to individual level hypothyroidism in the UK Biobank, our

analysis incorporates only 11 of the 12 traits reported in

(Forgetta et al., 2022).

For calculating PRS scores, GWAS results for the 11 traits

were taken from the Polygenic Score (PGS) catalog (https://

www.pgscatalog.org/), and the numbers of SNPs in the

PRS for different phenotypes are shown in Table 5). Only

SNPs with MAF > 0.01 were used when matching to the

UKbiobank imputed genotypes (previously imputed with

the IMPUTE4 program, https://jmarchini.org/software/,

using the merged UK10K and 1000 Genomes phase

3 reference panels). The individual level phenotype data

for each one of the 11 traits was collected from the UK

Biobank browser (https://biobank.ndph.ox.ac.uk/).

2.3 Wisconsin longitudinal study

The Wisconsin Longitudinal Study (https://www.ssc.wisc.

edu/wlsresearch/) (Herd et al., 2014) is a population cohort of

over 10,000 individuals who graduated from high school in

Wisconsin in 1957 and were followed intermittently until

2011. The data contain extensive information on lifestyle

and behaviours as well as genetic data. We examine

whether obesity, as measured by body mass index (BMI),

influences Health-Related Quality of Life (HRQL), where the

latter was measured by the Health Utility Index Mark-3.

Unrelated individuals with BMI ≥ 25 were retained for

analysis, resulting in a dataset containing 3023 subjects.

We focused on the imputed genetic data. Imputation was

implemented using the software IMPUTE2 (Howie et al., 2009),

which was based on a refined collection of genetic variants that

passed quality control (Laurie et al., 2010), including filtering for

minor allele frequency (MAF) ≥ 0.01, missing call rate < 2%,

Hardy-Weinberg Equilibrium (HW) p-value ≥ 10−4, etc. The
performance of imputation was evaluated via BEAGLE allelic r2

(Li et al., 2010) and gave a total of 3,683,868 SNPs (BEAGLE

allelic r2 no less than 0.3) used in our analysis. Basic descriptive

statistics regarding the genotype and phenotype data can be

found in Table 2.

3 Materials and methods

The standard, generic formula for a GRS is:

GRSi � ∑
j∈S

βjgij (1)

where gij are the genotypes for a set of individuals i = 1, . . .N, and

for SNPs indexed by j ∈ S, where S is a selected set of SNPs. The

same formula applies for PRS although set S will be larger. Often

the genotypes will be coded as 0, 1, 2, counting the number of

minor alleles at the SNP. In another common approach, the

genotype data are centered and scaled to have mean zero and unit

variance prior to score construction. How to choose the set S is a

crucial question involving considerations of ancestry and linkage

disequilibrium, as well as statistical significance thresholds and

the analysis methodology used when associating the SNPs with a

phenotype. The notation βj represents the weight attributed to

each copy of the minor allele; if genotypes are scaled then βjmust

also be scaled correspondingly. The estimated coefficients β̂j are

frequently obtained from large, published GWAS for a particular

phenotype; clearly the standard error of β̂j will depend on the

GWAS sample size and allele frequency at SNP j as well as

methodology choices. Therefore, any inaccuracy or error in a

genetic score could be due to having the wrong set of SNPs (S),

the wrong coefficient estimates βj, or incorrect genotype

measurements. Dudbridge (2013) and Chatterjee et al. (2013)

have described how predictive accuracy (measured by R2 for a

continuous phenotype or by area under the curve (AUC) for a

binary phenotype) depends on the heritability, sample size, and

distributions of true effect sizes. AUC can be interpreted as the

probability that a randomly selected case will have a higher score

than a randomly selected control (Hanley and McNeil, 1982). A

random classifier will yield an AUC of 0.5. Examining prediction

accuracy for individuals, Ding et al. (2021) have estimated the

width of an individual’s risk credible interval, and have shown

that these widths vary with the magnitude of risk and with the

genotype profile of the individual.

If we assume that all genotypes are accurate, and that a score

contains the correct set S, variation in score performance across

subgroups of the population or across different study contexts

must be due to variability in the values of βj across these

subgroups. Such variability could either be due to different

true values across subgroups, or to inaccurate estimated

values. For example, a SNP in a gene that transcribes a sex-

specific hormone could have different true effects in males versus

females. Supplementary Materials SA, SB provide a simple

algebraic look at bias and variance associated with one

estimated SNP effect when it differs between two subgroups,

and the consequences for a genetic score. Mean squared error

may be smaller for subgroup-specific estimates, if there is a large

enough difference between groups. On the other hand,

particularly in small studies, imprecise and inaccurately-

estimated coefficients are to be expected. Estimates β̂j will

TABLE 2 Descriptive statistics for the Wisconsin Longitudinal Study.
HRQL: Health related quality of life was measured by the Health
Utility Index Mark 3. BMI: Body Mass Index. s.d.: Standard deviation.

Variable Metric Value

Gender Percentage 51

BMI Mean (s.d.) 30.6 (4.93)

Age Mean (s.d.) 71.2 (0.9)

Year of Education Mean (s.d.) 13.8 (2.38)

HRQL Mean (s.d.) 0.786 (0.227)

SNPs Number available 3,683,868
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have large standard errors and the most significant SNPs are

likely to show estimates biased away from the null due to

winner’s curse (Palmer and Pe’er, 2017). Replication of results,

either through cross-validation or through use of an independent

dataset, can provide insight into whether genetic effects have

been over-estimated.

3.1 Meta-analysis, cross-validation and
single nucleotide polymorphism selection
in temporomandibular disorder data

When GWAS data are available from several separate

datasets or cohorts, choices must be made for how to

combine or aggregate information across the datasets to

construct scores with the most accurate risk estimates. If

there are differences between the true cohort-specific

coefficients for some of the SNPs, with or without

differences in disease prevalence, this aggregation choice

will have a strong impact on the predictive performance of

the cohort-combined score. In fact, if the cohorts are very

different–e.g., different exposures or comorbidities–it may not

be advantageous to combine.

When the score coefficients, βj, are estimated in the same

data used to develop the genetic scores, estimates for the most

significant SNPs will be biased away from the null (Palmer and

Pe’er, 2017). To separate comparisons of modelling strategies

from overfitting in our analyses of the TMD datasets, we

implemented a careful data splitting strategy including

training, validation and test datasets. First, all four cohorts

were combined into one large dataset. Then we performed 5-

fold cross-validation of all analyses described below, such that

each training dataset contained 80% of the full dataset, and the

validation and test datasets each contained 10% of the

combined data. Sampling for the cross-validation was

performed to ensure that balanced numbers of cases and

controls were selected from each of the four TMD datasets

at each split. Generally speaking, GWAS analyses were

performed in the training datasets, parameter estimation in

the validation sets, and estimation of performance in the test

sets; specific details are provided below. All analyses were

repeated over 10 random cross-validation splits of the data,

and results are summarized by medians and interquartile

ranges of performance metrics. Note that these resampling

steps were designed so that the same datasets were used for

each modelling strategy.

We implemented three modelling strategies:

• First, using the four-cohort combined training datasets

(the C + T method), we tested association with TMD

genome-wide using PLINK, employing a logistic

regression for additive SNP effects, with age, sex,

enrollment site and cohort as covariates and the first

10 principal components (PCs) of the genotype data.

The PCs were calculated after merging the raw genotypes

from all cohorts, to account for population stratification.

The PRS was then calculated on a subset of genetic

markers obtained after LD-clumping, which removes

highly correlated SNPs, followed by P-value

thresholding (see Results). We then used the

validation set to re-estimate the coefficients of the

covariates (age, sex, enrollment site, cohort and the

top 10 PCs), as well as the coefficient of the calculated

PRS, and then predicted TMD status on the test set.

• In contrast to the combined TMD data analysis, our second

approach used meta-analysis to estimate single-SNP

associations with weighted averages of cohort-specific

SNP effects (Borenstein et al., 2007). Since all four

studies contain both cases with TMD and controls, the

meta-analytic estimates are:

β̂
meta

j � ∑K
k�1wjkβ̂jk

∑K
k�1wjk

, (2)

where the weights wjk for study k = 1, . . . K are defined as wjk = 1/

vjk, and vjk is the variance of β̂jk for the kth study and for SNP j.

For this meta-analysis implementation, cohort-specific

training datasets were used to obtain β̂jk and their variance

estimates, and the meta-analyzed summaries β̂j. C + T was

applied using the meta-analytic summary estimates for p-value

thresholds, and the clumping was applied to data from all

training data cohorts combined. The validation datasets were

used to re-estimate the coefficients of the resulting PRS and the

other covariates, and test data was used for estimation of

the AUC.

• A third analysis of the TMD data used multivariable

penalized logistic regression. When it is

computationally possible, multivariable penalized

models may more accurately clump or prune SNPs

than any C + T method (Forgetta et al., 2020), while

also more accurately estimating the non-redundant

contribution of each retained SNP. Using the

bigsnpr package in R (Privé et al., 2019), we fit

penalized logistic regressions on the TMD training

combined data. For this method, we did not use the

validation set, because the bigsnpr package includes

tuning parameter estimation while training the model.

In addition to age, sex, enrollment site, cohort and the

top 10 genetic principal components of ancestry, the

penalized regression models included all SNPs with a

combined GWAS p-value from the first modelling

strategy (on the combined data) below PT, for a

range of values for PT. The LASSO penalty was used

to force some coefficients to be exactly zero, thereby

performing simultaneous variable selection.

Frontiers in Genetics frontiersin.org05

St.-Pierre et al. 10.3389/fgene.2022.900595

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.900595


3.2 Single nucleotide polymorphism
selection with the effector index, Ei

C + T depends on linkage disequilibrium patterns at each

GWAS locus. However, algorithms based only on this

population-level correlation structure do not take into account

whether a SNP is likely to be functional or causal for the disease,

or is merely correlated with such SNPs. Numerous methods have

been developed to improve on C + T, such as PRS-CS (Ge et al.,

2019), LDpred (Vilhjálmsson et al., 2015), LDpred-func

(Márquez-Luna et al., 2021), LDAK (Speed et al., 2012), or

SBayesR (Lloyd-Jones et al., 2019); most of these methods

simultaneously consider the linkage disequilibrium and the

association rather than doing so in 2 steps (as does C + T).

A complementary set of methods have been designed for

identifying causal genes at a GWAS locus. These can be grouped

into several classes: methods based expression Quantitative Trait

Loci (eQTL) such as eCAVIAR (Hormozdiari et al., 2016) restrict

attention to genes whose expression is influenced by associated

SNPs; methods such as DEPICT (Pers et al., 2015) assume that

functional annotation of genes will prioritize effectively;

approaches such as MAGENTA (Segrè et al., 2010) leverage

information in biological annotations; and methods that

implement detailed fine-mapping (e.g., PAINTOR (Kichaev

et al., 2014) use a combination of statistical arguments and

functional annotations. In this latter category of methods, we

recently published the Effector Index (Ei) for predicting which is

the most likely causal gene at a locus showing multiple GWAS

signals (Forgetta et al., 2022). For Ei, the predictions of the most

likely causal gene are based on many types of information

including features of the associated SNPs at a locus, and

include the magnitudes of the β̂ coefficients, linkage

disequilibrium patterns, fine mapping results, and DNase

hypersensitivity sites. The Ei algorithm was built on a dataset

containing information for 12 quantitative traits and diseases for

which highly-powered GWAS have been published, and for

which several true causal genes are well known and validated

(Forgetta et al., 2022). For each of the 12 traits, a set of putatively

causal SNPs was selected and annotated at GWAS-identified loci.

The Ei algorithm then used xgboost, a machine learning

algorithm (Chen and Guestrin, 2016) to predict the most

likely causal genes, based on carefully-constructed features

derived from GWAS SNP summary statistics, SNP

annotations, and locus characteristics.

We wished to ask whether gene prioritization methods could

also be useful in SNP selection for PRS or GRS construction. This

idea can be considered as similar to methods for improving SNP

annotation. However, here we propose to estimate SNP

contributions indirectly through their role in causal gene

identification, rather than directly through annotation of the

SNP genomic position. Using data from UK Biobank and by

reverse engineering the Ei algorithm, we implemented a form of

leave-one-out sensitivity analysis to investigate identify which

SNPs had the largest influence on the causal gene predictions at

each locus. In this exploration, we used the same dataset that was

assembled to build the Ei algorithm (Forgetta et al., 2022). For

each locus with a GWAS signal at any of the traits used to build

Ei, we dropped each SNP one at a time from the Ei xgboost

model, and calculated the changes in the predicted probabilities

of causality for each gene. Then, we defined locus-specific weights

by summarizing the changes at a locus across the locus-

associated SNPs. If dropping a SNP results in a large change

in the probability of a gene being causal, then we argue that it

could be an important SNP, and we use this rationale to create

locus-level weights. Define

δj,g � Ei g( ) − Ei g( )−j (3)

δj �
∑g∈Gj

δj,g

|Gj| (4)

wj � |δj|
∑j∈J |δj|

(5)

Where Ei(g) is the original Ei score for gene g, Ei(g)−j is the

updated Ei score for gene g obtained by re-estimation of the

algorithm after removing SNP j. Therefore, δj,g captures the

change in the predicted probability for gene g by removing

SNP j. We use the notation Gj to denote the set of all genes

related to SNP j, i.e. at the same locus. Then δj denotes the average

difference of δj,g across the set of genes Gj for SNP j. Finally we

definedwj to be the weight assigned to SNP j in PRS construction,

by summarizing the mean differences across all SNPs at the same

locus (J) as SNP j.

3.3 Improving single nucleotide
polymorphism selection in genetic risk
scores for Mendelian randomization
studies

In Mendelian randomization (MR), genetic data are used as

instruments to infer whether a modifiable risk factor has a causal

effect on a disease phenotype or trait of interest. A genetic variant

must satisfy three core assumptions in order to be a valid

instrument: (i) it is informative of the modifiable risk factor;

2) there is no association between the genetic variant and

unmeasured confounders; 3) each genetic variant has no effect

on the outcome of interest except through the modifiable risk

factor of interest (e.g. Wang and Tchetgen Tchetgen, 2018).

Combining several genetic variants into GRS can enhance

causal inference in observational studies (Pingault et al., 2018).

Previously, selection of appropriate instruments has primarily

relied on expert knowledge and detailed annotation of the

genome. However, the recent explosion of validated and

robust genetic associations through GWAS makes it tempting

to consider a larger number of genetic variants as potential

instrumental variables. Inclusion of more SNPs may enable
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creation of a stronger instrument that explains more of the

variance in the risk factor, and hence enables a more accurate

MR-derived causal estimate (Sleiman and Grant, 2010; Brion

et al., 2013). However, some genetic variants included in GRS

may not satisfy the MR assumptions (1)–(3). Therefore, for MR

studies, construction of GRS and specifically SNP selection is

subject to specific challenges.

One challenge is that the SNPs used to construct the GRS

may violate assumption 3) due to pleiotropy, a phenomenon

where a genetic variant may influence a disease or trait through

independent pathways (Hemani et al., 2018). Inclusion of

pleiotropic instruments in MR can lead to biased causal

estimates (Burgess and Thompson, 2013). Therefore, new MR

methods have been proposed for making valid causal inference in

the presence of invalid instruments. One line of research has

focused on one-sample study designs, and assumed that the

number of valid instruments is subject to some minimal

constraints. For example, Bowden et al. (2016) and Kang et al.

(2016) provided consistent estimates by assuming that a majority

of instruments (more than 50% of instruments) are valid. This

assumption is known as the majority rule. More recently, Guo

et al. (2018) and Windmeijer et al. (2019) considered a weaker

assumption that the number of invalid instruments giving an

equivalent Wald ratio is strictly less than the number of valid

instruments; this assumption has been termed the plurality rule.

For two-sample MR, when SNP-risk factor associations are

determined in one dataset but risk factor-disease associations

are measured in another, Zhao et al. (2020) used an adjusted

profile score for constructing consistent causal estimates. Also,

Ye et al. (2021) have proposed a debiased inverse-variance

weighted (IVW) estimator.

A second challenge is that when the sample size is small to

moderate (e.g. in the hundreds or thousands), GWAS will have

limited power to detect small SNP effects. The industry-standard

GWAS p-value threshold of 5 × 10–8 controls the family-wise

error rate at 5%, but may exclude many SNPs with small effects.

In other words, a genome-wide significance threshold applied to

a small or moderate sample size study may result in few or even

no SNPs for construction of a GRS. Therefore, it may be tempting

to use a less stringent significance threshold to obtain a larger

number of SNPs and hence a potentially-stronger GRS

instrument. However, a less conservative threshold is likely to

include more false positive associations, i.e. SNPs having

spurious correlations with the risk factor of interest. We refer

to such SNPs that are falsely selected as “spurious instruments”.

In Zhang et al. (2022), we showed that–as

expected–including such spurious variables can bias causal

effect estimates. We also showed that the spurious

instruments behave similarly to each other. We then

developed a resampling method that generates independent

noise variables, and we used these resampled noise variables

to help identify candidate instruments with spurious correlations

with the risk factor. This strategy then allows us to disregard

potentially spurious instruments, and hence to alleviate the effect

of spurious instruments when constructing a GRS.

Using data from the Wisconsin Longitudinal Study, we

compared performance of a standard GRS (Eq. 1) for BMI, to

a GRS constructed with this resampling-based approach for

excluding spurious instruments, i.e., a GRS from a smaller set

of SNPs S. Both scores are then used to assess whether BMI is

causally related to quality of life (HRQL) in the Wisconsin data.

Unlike a standard GRS, this resampling method also uses

information from the disease or outcome variable when

performing SNP selection. Detailed methods and discussions

can be found in Zhang et al. (2022).

3.4 Evaluation of genetic score
performance

We evaluated each GRS’s or PRS’s ability to discriminate

between cases and controls by determining the area under the

receiver-operator characteristics curve (AUC). For continuous

traits, we used the R2 between predicted and observed values to

assess performance. We also evaluated the number of SNPs

retained in the GRS or PRS scores by different methods.

4 Results

4.1 Comparing single nucleotide
polymorphism selection and polygenic
risk scores performance in
temporomandibular disorder

With data from the four TMD cohorts (Table 1), and

implementing a repeated 5-fold cross-validation (see

Methods), we compared the performance of three different

methods for PRS construction: the Clumping + Thresholding

(C + T) method applied to the combined dataset, the meta-

analysis version of the C + T method (META C + T) and

multivariable penalized logistic regression.

The best overall achieved prediction of TMD, measured by

the median AUC across the 10 repetitions of the cross-validation,

is obtained by the joint penalized PRS where all SNPs are

included, as presented in Table 3. The predictive

performances of the C + T and META-PRS models are

comparable and do not vary much with the inclusion

threshold PT, as opposed to the prediction performance of the

joint model, which is highly affected by the value of PT. Indeed,

for values of PT ∈ {0.05, 10–2, 10–3, 10–4}, predictions for the joint

PRS are less accurate than for the scores derived from univariable

calculations. This is in line with previous findings which have

shown that reprioritizing SNPs found by univariable tests

reduces predictive power in penalized regression models

(Abraham et al., 2012; Privé et al., 2019). This result can be
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explained by a bias-variance tradeoff. For values of PT ∈ {10–2,

10–3, 10–4, 10–5}, almost all predictors that enter the model are

selected, as can be seen in Table 4. Hence the low level of

regularization encourages models with more predictors, which

results in estimated coefficients that tend to overfit the training

data. Therefore, these models will have lower bias, but higher

variance, and they will not generalize adequately to new data. For

values of PT higher than 0.01, the number of predictors that enter

the model increases drastically over the number of subjects in the

sample, regularization is more important, and the predictive

performance of the joint PRS increases. See also

Supplementary Material SC.

In Figure 1, we compare for each method the distribution of

the PRS cross-validation sample means for cases and controls

separately, excluding the contribution from the non-genetic

predictors. For the univariable C + T and META-PRS

methods, as we increase the number of predictors in the

model, distributions of sample means move away from zero,

and variances of sample means increase. For the joint PRS,

increasing the number of predictors in the model also

increases variance of the PRS sample means until the number

of predictors becomes significantly higher than the number of

subjects. Thus, joint estimation potentially reduces prediction

error by reducing bias in estimation of SNPs effects, while

regularization, by simultaneously controlling the number of

predictors retained in the model and reducing the size of

estimates, avoids overfitting on the training data and reduces

variance of predicted sample means in both cases and controls.

Of note, even though the C + T PRS sample mean distributions

discriminate well between cases and controls for higher values of

PT, the model still performs poorly for predicting individual

probabilities compared to the joint PRS, as assessed by the AUC

values reported in Table 3.

4.2 Single nucleotide polymorphism
prioritization through reverse
engineering Ei

Only a subset of the SNPs included in the PGS catalog for any

particular phenotype were used in the construction of the Ei

algorithm, due to the annotation of associated SNPs (see Forgetta

et al. (2022)). After re-estimating the Ei predictor leaving out

each of these SNPs in turn, we used Eq. 3 to calculate the SNP

specific changes for each related gene. Then for each SNP we

summarized across genes to obtain its contribution score (Eq. 4).

Finally, the contribution scores for SNPs at the same locus were

summarized to create the locus-specific weights (Eq. 5). The

resulting weights are illustrated in Figure 2 for one phenotype,

diastolic blood pressure (DBP). For a subset of the SNPs, weights

were exactly 1.0 (points on the diagonal line), and these are SNPs

where there was only one potentially-causal gene at a GWAS

locus. Most weights were smaller than 1.0, and many were zero.

In fact, for DBP, 69 out of 139 (50%) GWAS significant SNPs in

the Ei set were assigned locus-specific weights of 0; that is for

DBP, the approach we proposed estimates 50% of these SNPs to

have no influence on whether a nearby gene is causal.

TABLE 3 Median and interquartile range for AUC of different PRS
models as a function of p-value threshold PT. For each model and
value of PT, estimates are obtained by averaging results across ten
repeated instances of 5-fold cross-validation.

PT C + T PRS META-PRS Joint PRS

10–5 0.618 (0.0346) 0.612 (0.0383) 0.627 (0.0393)

10–4 0.615 (0.0401) 0.611 (0.0406) 0.586 (0.0345)

10–3 0.616 (0.0367) 0.614 (0.0375) 0.564 (0.0322)

10–2 0.612 (0.0323) 0.615 (0.0368) 0.591 (0.0348)

0.05 0.614 (0.0365) 0.615 (0.0335) 0.609 (0.0350)

0.1 0.616 (0.0333) 0.615 (0.0330) 0.621 (0.0295)

1 — — 0.643 (0.0418)

TABLE 4 Median and interquartile range for the number of SNPs included in different PRS models, as a function of p-value threshold PT. For each
model and value of PT, numbers are the average result across ten repeated instances of 5-fold cross-validation. For the Joint PRS, we present the
number of predictors that were entered into the model, in addition to the number of predictors selected after LASSO regularization.

PT C + T PRS META-PRS Joint PRS

Predictors
in the model

Predictors selected

10–5 12 (4) 12 (3) 27 (3) 27 (3)

10–4 100 (11) 101 (12) 78 (7) 78 (7)

10–3 860 (46) 852 (46) 538 (33) 534 (29)

10–2 6530 (89) 6412 (77) 3848 (103) 3186 (72)

0.05 23 784 (134) 23 464 (202) 13 824 (143) 5920 (549)

0.1 39 916 (198) 39 496 (219) 22 994 (169) 4802 (855)

1 — — 3 726 754 (21) 212 (497)
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We repeated a similar analysis for 10 additional UK Biobank

phenotypes and then built PRS scores in three ways. Firstly, we

calculated PRS scores using the published PGS catalog entries for

these phenotypes (catalog entry IDs are in Table 5). Then we

recalculated the PRS using only SNPs where we had obtained Ei-

derived weights. On this subset, we calculated the PRS with and

without using the Ei weights. The numbers of SNPs going into

the published PRS, used in constructing the published Ei scores,

and the numbers with non-zero weights following Eq. 5, are

shown in Table 5 for each phenotype. Finally for each PRS

method, we fit a regression model using the PRS as a covariate on

a (randomly selected) 80% of the individuals, and predicted the

results to a test set consisting of the rest of individuals with non-

missing phenotype values. The prediction performances for each

of the 11 phenotypes are measured with R2 values (Table 5). For

the R2 (Ei_snp) and R2 (Ei_weighted) columns of Table 5, SNPs

without Ei weights were not included in the calculations.

We used the recommended SNP selections from the PGS catalog

when building the basic PRS, so the GWAS p-value thresholds and

corresponding numbers of SNPs in each PRS vary across the

phenotypes. Hence, the numbers of SNPs contributing to the

causal gene predictions in the Ei algorithm can be very different

from number of SNPs in the PGS catalog, since different selection

strategies were used. Predictions using the PGS catalog have higherR2

values for all traits except height, even though only about half of the

phenotypes (calcium, Bilirubin, EBMD, glucose, height, and type II

diabetes) used scores built from larger numbers of SNPs than went

into the Ei algorithm. For example, for height, there are 33,937 SNPs

in the PRS, and only 650 of them contribute to the Ei algorithm for

this trait.

FIGURE 1
PRS sample means obtained from 10 times 5-fold cross-validation for different models as a function of p-value threshold PT.
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FIGURE 2
Scatter-plot showing the published GWAS association statistics (β̂; horizontal axis) against the Ei-weighted estimated β for diastolic blood
pressure (vertical axis). Only SNPs which contributed to the construction of Ei are shown.

TABLE 5 Predicted R-squared values, sample size and numbers of SNPs used, when using PRS to predict eleven phenotypes for three different PRS
constructions.Catalog ID: the PGS catalog IDwhichwas used to identify SNPs.R2 PGS:R2 for PRS scores using SNPs from the PGS catalog (https://
www.pgscatalog.org/). R2 Ei_snp: PRS scores built using only SNPs that were included in the Ei project. R2 Ei_weighted: PRS scores built with
(nonzero) SNP-specific weights as defined in the text. Samples (N): Numbers of individuals included in training and test sets (combined) for
calculation of R2. SNPs (PGS): the number of SNPs in the corresponding PGS catalog that contributed to R2 (PGS). SNPs (Ei + PGS): the number of
SNPs contributing toR2 (Ei_snp), i.e., SNPs thatwere in the PGS catalog and used in the Ei project. Ei + PGS+ω ≠0: the number of SNPs contributing
to R2 (Ei_weighted). i.e., SNPs that were 1) in the PGS catalog; 2) used in the Ei project, and 3) had nonzero Ei-derived weights ωj.

Phenotype Catalog
(ID)

R2

PGS
R2

Ei_snp
R2

Ei_weighted
Sample
(N)

SNPs
(PGS)

SNPs
(Ei +
PGS)

SNPs
(Ei +
PGS+ω
≠ 0)

Calcium PGS000676 0.028 0.011 0.010 425,150 12,239 85 39

Direct bilirubin (Dbilirubin) PGS000681 0.249 0.049 0.049 394,374 3,067 36 16

Diastolic blood pressure (DBP) PGS000302 0.049 0.031 0.031 394,374 961 139 70

EBMD (Estimated bone mineral
density)

PGS000121 0.066 0.062 0.062 274,378 61 3 3

Glucose PGS000684 0.021 0.015 0.013 15,593 3,279 27 13

Height PGS000758 0.541 0.537 0.546 21,907 33,937 650 275

LDL (low-density lipoprotein) PGS000824 0.072 0.022 0.018 463,556 808 437 165

RBC (red blood cell counts) PGS000187 0.337 0.303 0.299 472,516 675 280 155

SBP Systolic blood pressure) PGS000301 0.145 0.129 0.127 456,230 969 146 71

Type II Diabetes PGS000330 0.021 0.017 0.015 486,866 6,437,379 482 157

Triglycerides PGS000826 0.095 0.064 0.063 464,055 768 31 15
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The performance of scores from the PGS catalog and scores

from the Ei subset of SNPs are difficult to compare since SNP

selection is so different. However, when comparing the R2

columns that start from the Ei SNPs, incorporation of Ei-

derived weights leads to very similar or slightly worse R2

values for most phenotypes with the exception of height.

Therefore, our Ei-weighting strategy, at least as currently

implemented, does not reliably lead to improved PRS

performance for these phenotypes. Of the 650 SNPs used in

building the Ei predictor for height, only 275 had non-zero

weights in our adaptation, and a similar ratio applies to many

phenotypes. Despite this, the R2 values changed very little,

suggesting that the most important SNPs may be accurately

highlighted.

4.3 Obesity and health-related quality of
life in the Wisconsin longitudinal study

In our recent work (Zhang et al., 2022), we simulated an

dataset with 500 samples and 50,000 candidate instruments

(SNPs), in which only 9 candidates were truly related to the

exposure, and all the others were noise variables. GWAS-like

screening procedures were used to select the SNPs that appear

relevant to the exposure, but with a liberal selection threshold.

On average, 9 relevant instruments and 15 spurious instruments

passed the screening steps.

We found that the valid instruments had effect estimates that

were similar to each other, and also that the spurious instruments

displayed similar estimates, although this latter group of

estimates were very different from the true causal effect. As a

result, the largest group of candidate instruments with similar

causal effect estimates corresponded to the noise variables that

have spurious correlations with the exposure! In fact, these

spurious instruments had estimates that were close to the

ordinary least squares (OLS) estimate, an estimate that one

would expect to obtain without accounting for unmeasured

confounding. In other words, the causal effect estimate from

MR studies would be subject to a similar amount of confounding

as OLS, if one blindly applies existing methods for causal

inference with invalid instruments to construct the GRS.

Using the Wisconsin Longitudinal Study data, together with

the resampling method developed in (Zhang et al., 2022), we

estimated the effect of obesity (as measured by BMI) on Health-

Related Quality of Life (HRQL). The original candidate set

included 3,683,868 true genetic variants, we then generated

the same number of pseudo SNPs or noise variables. By

applying the proposed resampling procedure to the expanded

set of 7,367,736 candidate SNPs in total, we estimated that there

were only 3 valid instruments, which were used for the

construction of GRS. We obtained a causal effect estimate of

−0.039 (95% confidence interval [ − 0.052, −0.025]). For

comparison, we also used a standard GRS that did not

exclude spurious instruments (Guo et al., 2018). Starting from

the true genetic variants only, there were 29 genetic variants

selected for the GRS based only on the strength of the association,

and the resulting causal effect was estimated to be −0.010 (95%CI

[ − 0.015, −0.005]). Consistent with our findings from the

simulations, the standard SNP selection-based GRS led to a

causal effect estimate close to the OLS estimate −0.011 (95%

CI [ − 0.013, −0.009]). We refer readers to Zhang et al. (2022) for

detailed discussions.

For a simple comparison of this approach to robust

methods, we ran an Egger regression on the 29 SNPs

selected for the standard GRS approach. This led to a

causal estimate of −0.010 with 95% CI [ − 0.012, −0.008],

values that are similar to the OLS estimate, and still quite

different from the one that eliminated spurious instruments.

Hence, more accurately identifying the truly associated

SNPs makes an important difference in the causal effect

estimates.

5 Discussion

We have presented several case studies that show challenges

and opportunities associated with with PRS or GRS construction

and interpretation. The accuracy of SNP selection with C + T

versus multivariable penalized models is examined through

analysis of several datasets containing patients with TMD; and

we show that in these data, SNP selection through multivariate

penalized models rather than p-value based filters can be

beneficial. The SNP selection strategy had a strong impact on

PRS performance in new datasets. These results add to ongoing

community discussion on marginal versus joint estimation, since

penalized models only performed well when given a large set of

SNPs to start. Initial pre-filtering can negatively impact their

performance.

Also, using some data from UK Biobank, we touched on the

potential benefits and risks associated with basing SNP selection

through a new SNP annotation derived from an algorithm

originally designed to predict causal genes at GWAS loci. One

might expect that improved SNP selection for the GRS or PRS set

S should lead to improved predictive accuracies. However,

including estimated weights into the score construction may

also increase the weighted score’s measurement error. For now,

only a small subset of the SNPs in large published PRS scores

were annotated by our algorithm, and this may explain why only

small effects were seen.

We also illustrated, with an example, that improved

identification of SNPs that are invalid instruments for

Mendelian randomization substantially altered inference of the

causal effect of BMI on HRQL. The potential confounding of

PRS–phenotype (or GRS–phenotype) relationships is always a

concern when the predictor (the PRS) is not easy to interpret or

decode. When selecting valid instruments for MR, possibly due
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to certain study design biases, invalid SNPs may all be associated

with the same unknown confounders, and this potential situation

leads to a bias that is consistent across invalid SNPs. Unlike

median-based or robust regression methods for MR, the

resampling-based method used here identifies the invalid

instruments directly so that they can easily be removed prior

to score construction.

Differences in coefficients in subgroups of a

population–sex-specific effects for example–can certainly be

expected to decrease the predictive performance of PRS if

these differences are not captured. However, the benefits

associated with obtaining less biased estimates of β̂ may be

offset by the increased variance of the resulting estimate, a

consequence of estimating the coefficient from a smaller

sample size. We took one example of a well-studied disease

just to see whether these kinds of subgroup differences might

be of concern. We built three PRS for cardiovascular disease in

UK Biobank data white British participants with and without

type 2 diabetes (see Supplementary Material SD). Perhaps

surprisingly, the PRS performed very similarly in the two

subgroups when considered alone. However, in contrast,

other covariates with known diabetes associations had very

different impact in the two groups. Hence, differences in

disease prevalence and in covariate profiles between

datasets may have stronger influence on PRS performance

than differences in the SNP effects.

We have discussed SNP selection strategies that consider the

SNPs one at a time (i.e., a filtering approach), or jointly (i.e., a

penalized or regularized model fitting procedure). When

analyzing the TMD data, we found that pre-selection of SNPs

through p-value filters influences the joint fitting performance.

That is, filtering can lead to winner’s curse bias even after

penalized model fitting.

It may be interesting to consider methods for constructing

PRS that are designed to optimize for more than one criterion

at the same time. That is, methods for pre-filtering or joint

modelling could be combined with identification of valid,

possibly causal variants (Swerdlow et al., 2016). Combining

techniques may lead to further improvements in risk

predictions.
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