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Patients with spread through air spaces (STAS) have worse postoperative

survival and a higher recurrence rate in lung adenocarcinoma, even in the

earliest phases of the disease. At present, the molecular pathogenesis of STAS is

not well understood. Therefore, to illustrate the underlying pathogenic

mechanism of STAS, we accomplished a comprehensive analysis of a

microarray dataset of STAS. Differential expression analysis revealed

841 differentially expressed genes (DEGs) between STAS_positive and

STAS_negative groups. Additionally, we acquired two hub genes associated

with survival. Gene set variation analysis (GSVA) confirmed that the main

differential signaling pathways between the two groups were hypoxia VHL

targets, PKC, and pyrimidine metabolism pathways. Analysis of immune activity

showed that the increased expression of MHC-class-Ⅰ was observed in the

STAS_positive group. These findings provided novel insights for a better

knowledge of pathogenic mechanisms and potential therapeutic markers for

STAS treatment.
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Introduction

Lung adenocarcinoma is the most frequent histologic subtype of lung cancer and

has a high risk of recurrence or metastasis at the early disease stage (Shi et al., 2016). It

has been proposed that lung cancer metastasis occurs through hematogenous spread,

lymphatic spread, and direct infiltration (Han et al., 2021). In 2015, the World Health

Organization (WHO) pointed out that spread through air spaces (STAS) is a recently

identified pattern of tumor invasion (metastasis) (Travis et al., 2015). STAS is defined as

tumor cells within air spaces in the lung parenchyma beyond the edge of the primary

tumor (Eguchi et al., 2019; Qi et al., 2021). Notably, several studies have demonstrated

that STAS is an independent factor indicating lung cancer recurrence and poor

outcomes in patients (Yang et al., 2018; Liu et al., 2020; Onozato et al., 2021).

OPEN ACCESS

EDITED BY

Ping-Ching Hsu,
University of Arkansas for Medical
Sciences, United States

REVIEWED BY

Guojun Lu,
Nanjing Chest Hospital, China
Erjia Zhu,
Tongji University, China

*CORRESPONDENCE

Yan Yu,
yuyan@hrbmu.edu.cn

†These authors have contributed equally
to this work and share first authorship

SPECIALTY SECTION

This article was submitted to Cancer
Genetics and Oncogenomics,
a section of the journal
Frontiers in Genetics

RECEIVED 21 March 2022
ACCEPTED 19 July 2022
PUBLISHED 22 August 2022

CITATION

Zeng Y, Zhou L, Jia D, Pan B, Li X and
Yu Y (2022), Comprehensive analysis for
clarifying transcriptomics landscapes of
spread through air spaces in
lung adenocarcinoma.
Front. Genet. 13:900864.
doi: 10.3389/fgene.2022.900864

COPYRIGHT

© 2022 Zeng, Zhou, Jia, Pan, Li and Yu.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 22 August 2022
DOI 10.3389/fgene.2022.900864

https://www.frontiersin.org/articles/10.3389/fgene.2022.900864/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.900864/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.900864/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.900864/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.900864&domain=pdf&date_stamp=2022-08-22
mailto:yuyan@hrbmu.edu.cn
https://doi.org/10.3389/fgene.2022.900864
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.900864


Additionally, STAS is an insidious pattern of invasion that is

invisible to pathologists on gross examination and surgeons on

external analysis of tumor specimens at the time of surgery.

Unfortunately, there is no current, reliable radiological method

to detect STAS (Kadota et al., 2015). Therefore, there is a

pressing need to investigate the novel potential and

pathogenic mechanisms of STAS.

In lung adenocarcinoma, STAS occurrence is related to the

interactions between neutrophils and the tumor. The tumor

environment releases interleukin-8 to promote the apoptosis

of the local tumor neutrophils and activates neutrophils to

promote tumor cell shedding from the primary tumor body,

allowing them to migrate along the lung basement membrane to

another alveolar cavity, resulting in STAS (Wislez et al., 2004;

Wislez et al., 2007). With the developments and broad

applications of high-throughput technology in biological and

biomedical research fields, these tools can monitor genome-wide

gene transcription levels and provide insight into biological

processes involved in gene regulation (Gerstner et al., 2020;

Hess et al., 2020). Therefore, we predicted the pathogenic

mechanisms and candidate markers of STAS using high-

throughput sequencing.

In our study, we performed an integrative analysis of the gene

expression dataset of STAS in lung adenocarcinoma. Firstly,

differential expression analysis showed that there were

841 differentially expressed genes (DEGs). Among them, two

hub genes, CXCL8 and CPB2, were identified as relevant to

survival. Finally, through gene set variation analysis (GSVA),

we found that hypoxia VHL targets, PKC, and pyrimidine

metabolism pathways were the three main differential

signaling pathways. We also observed increased MHC-class-Ⅰ
expression in the STAS_positive group by immune activity

analysis. In conclusion, the results provided novel insights

into the potential biomarkers and underlying molecular

mechanisms of STAS in lung adenocarcinoma.

Materials and methods

Tissue samples

Tumor samples were obtained fromMarch to July 2021 from

19 lung adenocarcinoma patients who underwent surgical

resection at Harbin Medical University Cancer Hospital. The

inclusion criteria of this study were as follows: 1) histologically

confirmed adenocarcinoma; 2) complete clinicopathological

information. Exclusion criteria were as follows: 1) preoperative

radiotherapy and/or chemotherapy and 2) tumor with other

components, including neuroendocrine or squamous

differentiation. The clinicopathological characteristics of

samples are shown in Table 1. The research was approved by

the Ethics Committees of Harbin Medical University Cancer

Hospital; all patients in this trial agreed to participate and signed

written consent.

TABLE 1 Clinical factors of STAS_positive and STAS_negative groups.

Factors Overall (n = 19) Positive (n = 11) Negative (n = 8) p-value

Age group (years, %) ≥60 11 (57.9) 7 (63.6) 4 (50.0) 0.658

<60 8 (42.1) 4 (36.4) 4 (50.0)

Gender (%) Female 9 (47.4) 4 (36.4) 5 (62.5) 0.37

Male 10 (52.6) 7 (63.6) 3 (37.5)

Tumor_size (cm) Median [IQR] 2.00 [1.35, 3.00] 2.50 [1.50, 3.00] 1.75 [1.15, 2.62] 0.558

N_stage (%) N0 17 (89.5) 9 (81.8) 8 (100.0) 0.228

N2 2 (10.5) 2 (18.2) 0 (0.0)

p stage (%) IA1 4 (21.1) 2 (18.2) 2 (25.0) 0.454

IA2 5 (26.3) 2 (18.2) 3 (37.5)

IA3 7 (36.8) 5 (45.5) 2 (25.0)

IB 1 (5.3) 0 (0.0) 1 (12.5)

IIIA 2 (10.5) 2 (18.2) 0 (0.0)

Smoking (%) No 11 (57.9) 6 (54.5) 5 (62.5) 1

Yes 8 (42.1) 5 (45.5) 3 (37.5)

EGFR (%) Mutant-type 4 (21.1) 2 (18.2) 2 (25.0) 1

Wild-type 15 (78.9) 9 (81.8) 6 (75.0)

ALK (%) Mutant-type 4 (21.1) 3 (27.3) 1 (12.5) 0.603

Wild-type 15 (78.9) 8 (72.7) 7 (87.5)

KRAS (%) Mutant-type 4 (21.1) 3 (27.3) 1 (12.5) 0.603

Wild-type 15 (78.9) 8 (72.7) 7 (87.5)
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Data collection

Clinicopathological characteristics were obtained from

medical records, such as age, gender, smoking status, tumor

size, N stage, TNM stage, EGFR mutation, KRAS mutation, and

EGFR mutation.

Two pathologists independently inspected all samples, and

disagreements were resolved through discussion and consensus.

STAS consists of micropapillary clusters, solid nests, or tumor

individual tumor cells at the outside edge of the surrounding

alveolar lacuna of lung parenchyma. Notably, micropapillary

clusters are defined as papillary structures without central

fibrovascular cores in the alveolar space. Additionally, solid nests

are defined as solid collections of tumor cells filling air spaces. It is

well understood that the tumor cells leave the edge of the lung cancer

mass and enter the alveoli and bronchioles of the peripheral

pulmonary parenchyma. Representative histopathologic images of

STAS in lung adenocarcinoma (arrows) are shown in Figures 1A,B.

According to the pathological results, samples were divided into the

STAS_positive and STAS_negative groups.

RNA isolation, quality control, library
preparation, and sequencing

Total RNA was isolated from paraffin-embedded tissue using

the RNeasy Mini kit (Qiagen). The quantity and quality of the

extracted total RNA were then determined using a Qubit RNA BR

Assay Kit and Agilent 2200 TapeStation. RNA-seq libraries were

constructed according to the manufacturer’s instructions using the

TruSeq Stranded mRNA Prep kit (Illumina). RNA quality control

was verified by applying the MultiNA Microchip Electrophoresis

System. Total RNA samples were transferred into 96-well plates and

diluted to 1 µg of 50 µl. The purification steps during library

preparation were performed using the MinElute PCR Purification

kit (Qiagen). After purification and PCR amplification, the final

cDNA library was generated according to Illumina’s RNA-seq

Library Preparation Protocol. We conducted deep sequencing on

the Illumina HiSeq 1500 platform using a TruSeq Rapid SBS kit

(Illumina) in a 50-base single-end mode.

Read preprocessing and gene count
normalization

The obtained raw paired-end reads were trimmed using the

fastp tool to remove low-quality reads and adapter contaminants.

Then, raw read data were aligned to the human reference genome

(build 37.2) using the hisat2 (version 2.1.0) tool. DESeq2 and the

upper quartile normalization method were used to normalize the

raw read counts.

Identification of differentially expressed
genes

FPKM was used to calculate the gene expression level. The

DEGs were calculated using the R package DESeq2 (Zhang et al.,

2021). p. adj <0.05 and |log2fold change| > 2 were defined as

thresholds. The R package ggplot2 was used to construct the

Volcano and Heat maps.

The construction of the protein–protein
interaction network

PPI network analysis has emerged as a useful approach to

identifying potential new targets and mechanisms from a

FIGURE 1
Representative histopathologic images of spread through air spaces (STAS) in lung adenocarcinoma. (A) Magnification×100 (B).
Magnification ×400.
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systematic perspective (Wu et al., 2020). PPI network was

constructed using the STRING database (https://string-db.org)

(Buttacavoli et al., 2020; Ying et al., 2020). The Cytoscape

software was used to analyze the hub genes (Szklarczyk et al.,

2017). Log-rank test was used to compare differences in overall

survival (OS) and progression-free survival (PFS) between the

low- and high-expression groups by median cutoff for each gene.

The statistical difference of hub genes between normal and tumor

samples was compared through the Wilcox test. All the

analysis methods and R package were implemented by R

version 4.0.3.

Gene functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analyses of DEGs were carried out using the

clusterProfiler package (Version 4.0.3) (Xu et al., 2018). In

addition, pathway enrichment analysis of DEGs

was conducted using the ReactomePA package (Chow et al.,

2020).

Gene set variation analysis

The gene sets of H (hallmark gene sets), C2 (curated gene

sets), and C5 (GO gene sets) were downloaded from the MSigDB

database (http://software.broadinstitute.org/gsea/msigdb/index.

jsp) for gene set variation analysis (GSVA) (Migliavacca et al.,

2019; Park et al., 2017). GSVA was used to identify pathways

enriched among expressed genes in two groups. The significant

difference was set at a p-value <0.05.

Analysis of factors related to immune
microenvironment

We used single-sample gene set enrichment analysis

(ssGSEA) to determine the proportions of 28 types of

immune cells in the tumor microenvironment (Thorsson

et al., 2018). The CIBERSORT software was applied to

evaluate the relative abundance of tumor-infiltrating immune

and stromal cells (Conley et al., 2021).

The proportions of 28 types of immune cells, the score of

immune activity, and the score of tertiary lymphoid structure

(TLS) between the two groups were compared and analyzed

using the Wilcoxon ranked-sum test.

CancerSEA

CancerSEA (http://biocc.hrbmu.edu.cn/CancerSEA/) was

used to comprehensively investigate the functional status of

cancer cells at the single-cell level (Yuan et al., 2019). It could

provide information on DEGs in various cancers with multiple

functional states.

FIGURE 2
Identification of DEGs between STAS_positive and STAS_negative groups. (A) Volcano plot. (B) Heat map. The top_100 of 841 DEGs.
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Results

Identification of DEGs between
STAS_positive and STAS_negative groups

The dataset was analyzed for DEGs, as shown in Figure 2A. A

total of 841 genes were differentially expressed, with

442 upregulated and 399 downregulated. Moreover, the

top_100 DEGs were subjected to cluster analysis. The results

showed that the top_100 DEGs could stratify patients in the

STAS_positive versus STAS_negative groups (Figure 2B).

Estimation of DEGs on the
protein–protein interaction network

We performed the PPI network analysis to further

investigate the interactions among the 841 DEGs

(Figure 3A). The results indicated that part of DEGs

strongly correlated with other genes. Six hub genes were

identified by overlapping the top 10 genes obtained using

MCC and MNC ranking methods (Figures 3B,C). The top

10 hub genes ranked by the MCC and MNC methods were

functionally annotated through GO terms and KEGG

FIGURE 3
Construction of PPI network and screening of hub genes. (A) PPI network of DEGs. (B) Top 10 genes ranked by the MCC method. (C) Top
10 genes ranked by the MNCmethod. (D–E)GO analysis of top 10 genes ranked by the MCC and MNCmethod. (F,G) KEGG analysis of top 10 genes
ranked by the MCC and MNC method.
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pathways (Figures 3D–G). Based on the GO and KEGG

analysis, these hub genes were mainly enriched in cytokine

and chemokine-related pathways.

The six hub genes were CXCL8, CXCL1, CCL3, C8A, CPB2,

and LCN2. The TCGA and GTE databases revealed that the

other five genes significantly differed in gene expression in

lung adenocarcinoma tumors versus normal tissues, except for

the CXCL1 gene (Figures 4A–F). Clinical data for lung

adenocarcinoma were obtained from TCGA. We then

performed the OS and PFS analyses of these six hub genes.

Figures 4G,H show that the high-CXCL8 expression group

had significantly worse PFS than the low-CXCL8 expression

group (p = 0.0398). It is worth noting that patients with high

CPB2 expression had significantly better PFS than those in the

low-expression group (p = 0.0343). However, no significant

differences were found in the other four genes.

Functional enrichment analysis of DEGs

GO analysis covers biological process (BP), cellular

component (CC), and molecular function (MF). BP

FIGURE 4
Gene expression levels in the tumor versus normal tissue. (A) CXCL8. (B) CPB2. (C) LCN2. (D) CXCL1. (E) CCL3. (F) C8A. Kaplan–Meier survival
curve. (G) CXCL8. (H) CPB2. *p < 0.05, **p < 0.01, ***p < 0.001.
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enrichment revealed that the identified DEGs were involved in

humoral immune response, complement activation, and

regulation of protein activation cascade (Figure 5A). CC

enrichment revealed that DEGs were involved in blood

microparticles, specific granule lumen, and membrane

attack complexes (Figure 5B). MF enrichment revealed that

DEGs were involved in bile acid transmembrane transporter

activity, carboxylic acid transmembrane transporter activity,

and organic acid transmembrane transporter activity

(Figure 5C). Slight enrichment of GO analysis was

observed, but the results were not statistically significant

(p > 0.05).

DEGs were also analyzed using the KEGG and Reactome

pathway enrichment analyses. KEGG pathway analysis

showed that the DEGs were enriched in IL-17 signaling

and involved in the interaction of neuroactive ligands with

the receptors and cell adhesion molecules (Figure 5D). The

Reactome pathway analysis indicated that the DEGs were

enriched in the transport of organic anions, bile acids, and

bile salt metabolism and recycling of bile acids and bile salts

signaling pathways (Figure 5E). However, the findings had no

statistical significance (p > 0.05).

Evaluation of gene set differences
between STAS_positive and
STAS_negative groups

GSVA was performed using the curated gene sets (C2), GO

gene sets (C5), and hallmark gene sets (H). The comparative

analysis result using the C2 gene set demonstrated that there

were 118 significantly different biological processes and

signaling pathways between STAS_positive and

STAS_negative groups. Only those biological processes and

pathways with p < 0.01 are shown in Figure 6A. The main

differential signaling pathways included hypoxia VHL targets,

PKC, and pyrimidine metabolism pathways. Figure 6B shows

a boxplot of hypoxia VHL targets.

The analysis result using the C5 gene set indicated that

247 biological processes and signaling pathways

FIGURE 5
Functional enrichment analysis of DEGs. (A) BP analysis of DEGs. (B) CC analysis of DEGs. (C)MF analysis of DEGs. (D) KEGG pathway of DEGs.
(E) Reactome pathway of DEGs.
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significantly differed between the two groups. Figure 6C

only considered biological processes and pathways with p <
0.01. The differential biological processes were mainly

involved in histone citrullination, protein arginine

deiminase activity, and positive regulation of Ⅰ-kappaB
phosphorylation.

The analysis result using the Hallmark gene set revealed that

50 signaling pathways differed in score values between the two

groups, but the differences were not statistically significant (p >
0.05). Figure 6D shows 16 signaling pathways with p < 0.3, such

as TGF-β, MYC_TARGETS_V2, IFN-γ response, and other

signaling pathways.

Integrative analysis of immune-related
factors between STAS_positive and
STAS_negative groups

The signature score of nine immune features of tumor

samples was calculated (Figure 7A). We performed a

comparative analysis and found that the expression of MHC-

Class-Ⅰ in the STAS_positive group was significantly higher than

that in the STAS_negative group (Figure 7B).

The proportions of 28 types of immune cells in the

tumor microenvironment are shown in Figure 7C.

Although not statistically significant, we did observe more

regulatory T cells (Tregs), type 2 T helper cells, neutrophils,

CD56dim natural killer (NK) cells, and myeloid-derived

suppressor cells (MDSC) in the STAS_positive group

(Figure 7D).

Figure 7E shows the abundance of 14 immune cell

populations. Wilcoxon test analysis indicated that the

abundance of Tregs tended to increase in the STAS_positive

group (p = 0.0754) (Figure 7F).

TLS is an aggregate of immune cells (mainly T cells and

B cells). The scores of two TLS signatures were calculated

according to the TLS signature-related gene expression

levels reported in the studies (Figure 7G). However, no

significant differences were found between the two groups

(p > 0.05).

FIGURE 6
Gene set variation analysis (GSVA) between STAS_positive and STAS_negative groups. (A) Heat map derived by C2 gene set. (B) Box plot of
Hypoxia VHL targets up. (C) Heat map derived by C5 gene set. (D) Heat map derived by Hallmark gene set.
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FIGURE 7
Analysis of related factors of immune microenvironment between STAS_positive and STAS_negative groups. (A) Heat map of immunoactivity
analysis. (B) Box plot of immunoactivity analysis. (C) Box plot of proportions of 28 types of immune cells. (D)Heat map showing comparative analysis
among five cell subsets. (E) Box plot of the abundance of 14 immune cell populations. (F) Box plot of Treg. (G) Box plot of comparison of TLS.
*p < 0.05.

FIGURE 8
Box plot analysis of 14 functional status features between STAS_positive and STAS_negative groups.
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Assessment of functional status features in
CancerSEA

Fourteen functional status features collected from the

CancerSEA database were analyzed. Results exhibited that

metastasis, hypoxia, DNA damage, proliferation, apoptosis,

and cell cycle showed a trend to be higher in the

STAS_positive group but failed to reach statistical significance

(p > 0.05) (Figure 8A).

Discussion

More than half of stage IA lung adenocarcinoma patients

with STAS who receive radical surgery will relapse within 5 years

(Onozato et al., 2013). Investigations have demonstrated that

STAS occurrence is closely related to clinical outcomes, such as

disease recurrence and survival rates. Furthermore, STAS is

considered an independent prognostic factor for OS and DFS

(Lu et al., 2017; Yanagawa et al., 2018; Aly et al., 2019). However,

the current knowledge about markers and molecular

pathogenesis of STAS in lung adenocarcinoma is limited. In

our study, we performed a comprehensive bioinformatics

analysis of gene expression in STAS_positive and

STAS_negative samples and screened key genes that may be

involved in the pathogenesis of STAS. We found that high

CXCL8 and low CPB2 expressed in STAS_positive samples

were clinically significant. In addition, high CXCL8 and low

CPB2 expression levels were risk factors for unfavorable survival

through analysis of TCGA. Consequently, we identified

CXCL8 and CPB2 as valuable biomarkers for the diagnosis

and prognosis of patients with STAS, and these may be

promising therapeutic targets for the treatment of STAS as well.

CXCL8 is a chemokine that severely promotes neutrophilic

inflammation through its receptors, CXCR1/CXCR2 (Ha et al.,

2017). CXCR1 and CXCR2 are widely expressed on neutrophils,

endothelial cells, cancer cells, and tumor-associatedmacrophages

(Gregson et al., 2013). The CXCL8-CXCR1/2 axis plays a crucial

part in tumor progression and metastasis by regulating the

proliferation and self-renewal of cancer stem cells (Li et al.,

2019). CXCL8 is overexpressed in many solid tumors,

including lung, esophageal, breast, and colon tumors. Notably,

CXCL8 binds CXCR1/2 in the tumor microenvironment,

promoting tumor cell proliferation and growth through

autocrine and paracrine mechanisms (Xie, 2001; Lin et al.,

2004). Additionally, CXCL8 regulates hepatocellular

carcinoma (HCC) cell proliferation and migration. The

increased expression of CXCL8 in HCC cells accelerates

tumor proliferation, migration, and invasion and is strongly

correlated with clinical stage and tumor infiltration (Yang

et al., 2020).

In addition to its regulatory properties, CXCL8 is a

potential biomarker to predict tumor progression and

prognosis in many malignancies. For example, in

melanoma and breast cancer, CXCL8 overexpression plays

a key role in metastasis and poor patient survival outcomes

(Wu et al., 2012; Fang et al., 2017). In addition, higher

expression of CXCL8 has been noted in ovarian cancer cell

lines with high metastasis compared with the parental cell

lines (Milliken et al., 2002). Similarly, CXCL8 promotes tumor

growth and metastasis and predicts bad outcomes in

colorectal cancer (Xiao et al., 2015). Therefore, these

studies demonstrate an important role for CXCL8 in

tumorigenesis and metastasis. In the present study, we

found that high CXCL8 expression could promote the

occurrence of STAS, which is consistent with previous

studies noted above.

CPB2, also known as thrombin activatable fibrinolysis

inhibitor (TAFI), plays a central role in coagulation and

fibrinolysis (Mosnier and Bouma, 2006). It is understood

that coagulation and fibrinolytic systems are correlated

with physiologic and pathological processes such as tumor

growth and invasion (Higuchi et al., 2009). Additionally,

plasma CPB2 levels are positively associated with many

human diseases (Boffa and Koschinsky, 2007). Similarly,

increased expression of CPB2 has been reported in breast,

ovarian, lung, gastric, and hepatic cancer cells (Yeung et al.,

2013; Miller et al., 2011; Hataji et al., 2004; Fidan et al., 2012).

Furthermore, tumors with high CPB2 expression have been

related to more advanced tumor stages (Balcik et al., 2011).

Conversely, it has been reported that downregulation of

CPB2 expression by siRNA reduces breast cancer cell

proliferation, migration, and invasion (Yu et al., 2017).

Contrary to the findings of the above studies, our results

showed that low expression of CPB2 may facilitate the

appearance of STAS and be relevant to worse PFS in

adenocarcinoma. At the same time, previous research in

cell line models has demonstrated that CPB2 results in the

suppression of breast cancer cell invasion and migration,

which is consistent with our findings (Bazzi et al., 2016).

The reason for this difference may be that there are fewer

articles about the CPB2 gene. Therefore, the CPB2 gene is

worth exploring further to shed light on underlying

mechanisms in cancer cells.

There are some noted limitations in our study. Firstly, a

major limitation is the heterogeneity of the analyzed samples, so

all significant results should be interpreted with caution.

Secondly, multiple lines of evidence suggest that these

predictions based on epigenetic profiling are largely accurate

(Sharp et al., 2011). However, these computer-based predictions

do not obligatorily reflect the actual gene pool and need to be

verified experimentally in future work.

In conclusion, we revealed the potential markers and

underlying molecular mechanisms of STAS in lung

adenocarcinoma through a systematic and comprehensive

analysis of the high-throughput sequencing RNA-seq dataset.
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Our results provided promising clues and laid the groundwork

for developing new effective clinical therapies for STAS.

However, further study is needed to better understand STAS

and develop new treatments by integrating more data.
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