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Gastric cancer (GC) is one of themost common tumors in theworld, and apoptosis

is closely associated with GC. A number of therapeutic methods have been

implemented to increase the survival in GC patients, but the outcomes remain

unsatisfactory. Apoptosis is a highly conserved form of cell death, but aberrant

regulation of the process also leads to a variety of major human diseases. As

variations of apoptotic genesmay increase susceptibility to gastric cancer. Thus, it is

critical to identify novel and potent tools to predict the overall survival (OS) and

treatment efficacy of GC. The expression profiles and clinical characteristics of

TCGA-STAD and GSE15459 cohorts were downloaded from TCGA and GEO.

Apoptotic genes were extracted from the GeneCards database. Apoptosis risk

scores were constructed by combining Cox regression and LASSO regression. The

GSE15459 and TCGA internal validation sets were used for external validation.

Moreover, we explored the relationship between the apoptosis risk score and

clinical characteristics, drug sensitivity, tumor microenvironment (TME) and tumor

mutational burden (TMB). Finally, we used GSVA to further explore the signaling

pathways associated with apoptosis risk. By performing TCGA-STAD differential

analysis, we obtained 839 differentially expressed genes, whichwere then analyzed

by Cox regressions and LASSO regression to establish 23 genes associated with

apoptosis risk scores. We used the test validation cohort from TCGA-STAD and the

GSE15459 dataset for external validation. The AUC values of the ROC curve for 2-,

3-, and5-years survivalwere0.7, 0.71, and0.71 in the internal validation cohort from

TCGA-STAD and 0.77, 0.74, and 0.75 in the GSE15459 dataset, respectively. We

constructed a nomogram by combining the apoptosis risk signature and some

clinical characteristics from TCGA-STAD. Analysis of apoptosis risk scores and

clinical characteristics demonstrated notable differences in apoptosis risk scores

between survival status, sex, grade, stage, and T stage. Finally, the apoptosis risk

score was correlated with TME characteristics, drug sensitivity, TMB, and TIDE

scores.
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Introduction

Gastric cancer (GC) is the fifth most commonly diagnosed

malignancy in the world with over one million new cases estimated

to occur each year (Bray et al., 2018; Smyth et al., 2020). The high

mortality rate of GC is attributed to the absence of symptoms in the

early stages, andmost patients are already at an advanced stage when

diagnosed (Digklia and Wagner 2016). There is much research on

the pathogenesis of GC, but the pathogenesis is remains unclear. A

number of factors have a significant role in increasing the risk of

developing GC, such as Helicobacter pylori infection, family history,

diet, and alcohol consumption (Machlowska et al., 2020). Currently,

GC is treated with a combination of mainly surgical procedures.

However, despite the application of neoadjuvant or adjuvant

chemotherapy, immune-targeted therapy and surgical treatment,

the overall survival of GC patients is still dismal (Tan 2019). Indeed,

GC is the third leading cause of cancer-related deaths (Bray et al.,

2018). AJCC TNM staging is the most commonly used staging

method in GC (Neves Filho et al., 2017; Ji et al., 2018). Patients with

the same stage of GC and similar treatment often have different

prognoses (Shao et al., 2016), which may be related to the high

heterogeneity of the disease. Therefore, it is essential to explore novel

tools to predict prognosis and treatment efficacy.

Over the past few decades, researchers have identified many

forms of regulated cell death (RCD), such as necrosis, apoptosis,

ferroptosis, pyroptosis, and autophagy (Xu et al., 2021; Tsvetkov

et al., 2022). For example, miR-522, secreted by cancer-associated

fibroblasts (CAFs), has been found to inhibit ferroptosis by targeting

ALOX15 in GC (Zhang et al., 2020a). In addition, valproic acid, an

anticonvulsant drug, has been reported to inhibit HDAC1/2 and

triggered autophagy in GC (Sun et al., 2020). Apoptosis is broadly

referred to as programmed cell death, which does not cause an

inflammatory response, and Kerr et al. (1972) first used the term

“apoptosis” in 1972 to describe a unique form of cell death in 1972.

Apoptosis plays a vital role in normal cell turnover, immune cell

homeostasis, treatment resistance, and embryonic development

(Druwe et al., 2015; Voss and Strasser 2020; Zheng et al., 2020).

Aberrant apoptosis can lead to diverse pathologies, such as excessive

or limited number of apoptotic cells or the occurrence of apoptosis

at an incorrect time or location (Voss and Strasser 2020). Based on

many studies, promoting apoptosis has become a promising

treatment option that can lead to cancer cell death. N-myc

downstream-regulated gene 2 (NDRG2) is a positive regulator of

apoptosis that increases tumor sensitivity to anticancer drugs, delays

tumor progression and inhibits metastasis (Kim et al., 2021). In

addition, many genes have been identified as regulators of apoptosis,

including THBS1 (Zhu et al., 2019), TP53 (Napolitano et al., 2020)

and MUC16 (Matte et al., 2014), which are closely associated with

tumorigenesis and progression. Caspase-3 has been shown to

activate nuclear translocation of YAP and regulate cell

proliferation and organ size (Yosefzon et al., 2018). Moreover,

prostaglandin E2 (PGE2), which is secreted by apoptotic cells

mediates the stimulation of cancer proliferation (Fogarty and

Bergmann 2017). In vitro assays have shown that elevated

FAT4 expression leads to decreased proliferation, migration,

invasiveness and neovascularization of CRC cells (Pan et al.,

2020), and Junfen et al. found that sortilin-related

VPS10 domain-containing receptor one and cubilin inhibit the

development of cervical adenocarcinoma (Xu and Lu 2021).

Nevertheless, the molecular basis of apoptosis and its function in

cancer prognosis and therapy are still poorly understood and need to

be further explored.

In the present study, we generated an apoptosis risk score

model for 23 genes associated with apoptosis that can distinguish

the association between gene expression andGC prognosis, andwe

validated the model using TCGA and GEO datasets. This model

may provide a new reference for prognosis prediction in GC. We

also confirmed the correlation of the apoptosis risk score with

clinical case characteristics, immune cell infiltration, tumor

mutation burden and drug sensitivity. Overall, we generated a

predictive model for GC prognosis and also verified its potential

function in the development and progression of the disease.

Materials and methods

Sources of data and clinical characteristics

TCGA database (https://portal.gdc.cancer.gov/), the largest

database of cancer gene information available, contains data,

including gene expression data, miRNA expression data, copy

number variants, DNA methylation and SNPs. We downloaded

the STAD raw mRNA expression data (FPKM), including data for

the normal (n = 32) and tumor groups (n = 375). The clinical

characteristics, such as age, sex, mutation status, survival time and

survival status, were extracted from the dataset. The

GSE15459 dataset was obtained from the GEO database (http://

www.ncbi.nlm.nih.gov/geo/), annotated on GPL570, including

192 STAD patients with complete expression profiles and

survival information. A total of 3,767 apoptosis gene sets were

obtained through the GeneCards database (https://www.

genecards.org/). Differentially expressed genes (DEGs) were

identified between tumor patients and normal patients using

“limma,” and the differential apoptosis-related genes were

screened with cutoffs of Padj < 0.05 and | log2FC| > 0.585. The

entire process of apoptosis-related gene model construction and

multi-omics data analysis were demonstrated in Figure 1.

Gene ontology and kyoto encyclopedia of
genes and genomes annotation of
differentially expressed apoptosis gene
sets and PPI network establishment

Functional annotation of DEGs was performed using the

“ClusterProfiler” R package to fully explore the functional
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relevance of DEGs. Gene Ontology (GO) and the Kyoto

Encyclopedia of Genes and Genomes (KEGG) analyses were

performed to assess relevant functional categories. The

protein–protein interaction (PPI) network of DEGs was

evaluated by utilizing the Search Tool for Retrieval of

Interacting Genes/Proteins (STRING, https://string-db.org)

database. The PPI network was then reconstructed with

Cytoscape software. Core clusters located in densely connected

regions were found using the MCODE plugin, and the

connectivity of network nodes was calculated.

Establishment of a prognostic apoptosis-
related gene signature

The dataset TCGA-STAD was classified into training and

validation groups at a 4:1 ratio with a randomized approach. We

performed univariate Cox regression survival analysis with the

“Survival” package in R software. Apoptosis-related genes

associated with survival were extracted for further study.

Apoptosis-related genes associated with survival in apoptosis

were selected for LASSO regression using the “glmnet” package

to further construct prognostic correlation models. After

incorporating the expression values of each specific gene, a

risk score (RS) formula was explored for each sample and

weighted by its estimated regression coefficient in the LASSO

regression analysis. The RS of each sample was calculated using

the following formula:

Risk Score (RS) = MKNK2 × (−0.224005905974604) +

INCENP × (−0.128359170901958) + MSX2 ×

(−0.0489015408467461) + CKS2 × (−0.015445913414839) +

TFF1 × 0.000656550614025462 + TTR ×

0.00996710615554725 + IBSP × 0.0100666591137116 + F2R ×

0.0112147264956773 + GRP × 0.0434762335766126 + FRZB ×

0.0541881827853097 + APOB × 0.0552096785167862 +

TUBB4A × 0.061903840751161 + ZFP36 ×

0.0619726749892716 + KIT × 0.0720220065121335 + KRT7 ×

0.0789272155075932 + ACKR3 × 0.083145441094113 + SNCG ×

0.0852199231104383 + HBB × 0.0867586669714403 + CDC6 ×

0.125436438794775 + CXCR4 × 0.145672972631166 + SYT13 ×

0.184991923388196 + CAST × 0.213930687288837 + CCT6A ×

0.319958370169231.

Each sample was classified into low-risk and high-risk groups

with the median RS as the cutoff point, and the difference in

FIGURE 1
Schematic presentation of our research.
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survival between the two groups was estimated using

Kaplan–Meier analysis. The role of the risk score in predicting

patient prognosis was examined using LASSO regression analysis

and stratified analysis. Finally, we used the “survivalROC”

package in R to generate the ROC curves.

Development of a nomogram and
correlation analysis of clinical
characteristics

First, we performed univariate andmultivariate Cox regression

analyses to establish the clinical characteristics related to prognosis.

We utilized the “rms” package to explore a nomogram according

to apoptosis risk scores and clinical characteristics. The clinical

characteristics inclued in the nomogram were identified via the

inverse stepwise selection of variables based on the Akaike

information criterion. Calibration curves (consistency index,

C-index) were used to measure the predictive accuracy of the

nomograms. The apoptosis risk score and the clinical

characteristics of GC were compared with survival status and

survival time to determine whether the apoptosis risk score can be

regarded as an independent prognostic factor. We generated box

plots to analyze the correlation between the apoptosis risk score

and clinical characteristics.

Internal validation cohort and external
validation cohort to validate the prediction
model

We used the internal validation set TCGA-STAD and the

GSE15459 dataset as the validation set, which were classified into

high-risk and low-risk groups according to the median apoptosis

risk score. Kaplan–Meier survival analysis was used to explore

the differences between the two subgroups. To further evaluate

the accuracy of the apoptosis score estimation model, the internal

validation set from TCGA and the GSE15459 dataset were used

to generate AUC values for 2, 3, and 5 years in R. p < 0.05 was

considered statistically significant.

Tumor mutational burden analysis of
TCGA data in gastric cancer

In the present study, we analyzed somatic mutation data for

each sample with VarScan2 and then calculated the tumor

mutational burden (TMB) as the total number of somatic

mutations/all bases (in units of mutations/Mb). The 30 genes

with the highest mutation frequency were selected for display,

and the mutation landscape was mapped for each sample with

the “maftools” R package.

Tumor immune dysfunction and exclusion
immunotherapy score analysis

Tumor immune dysfunction and exclusion (TIDE) is a

computational method for predicting immune checkpoint

blockade response. It can predict tumor response to

immunotherapy by computer prediction of scores that

induce T cell dysfunction in tumors with high infiltration

of cytotoxic T lymphocytes (CTL) and block T cell infiltration

in tumors with low CTL levels. Based on the expression profile

prior to tumor treatment, the TIDE module predicts patient

response by estimating multiple published transcriptomic

biomarkers. The analysis related to tumor immune

dysfunction and exclusion in this study was mainly

done through the TIDE website (http://tide.dfci.harvard.

edu/).

Immune cell infiltration analysis

CIBERSORT is a tool for analyzing cell composition from

gene expression profiles and is the most frequently cited tool.

RNA-seq data from different subgroups of STAD patients were

analyzed with the CIBERSORT algorithm. We used

CIBERSORT to extrapolate the relevant proportions of the

22 immune-infiltrating cells by downloading the source code

of the CIBERSORT R language calculation and the

LM22 signature gene matrix sequence. The relative

infiltration ratios of the 22 different immune cell types in

the samples were assessed using the “preprocessCore” and

“e1071” R packages. Finally, Spearman correlation analysis

was performed in R to assess the association between

immune cell infiltration and gene expression. p < 0.05 was

considered significantly different.

Drug sensitivity analysis

Based on the largest pharmacogenomics database, the

GDSC Cancer Drug Susceptibility Genomics Database

(https://www.cancerrxgene.org/), we utilized the

“pRRophetic” R package to forecast the drug sensitivity of

tumor samples from both high- and low-risk groups.

pRRophetic is a powerful and widely used algorithm, which

was broadly adopted in medical research (Liu et al., 2021; Liu

et al. 2022b; Liu et al. 2022c). Regressions were applied to obtain

IC50 estimates for specific chemotherapeutic drug treatments,

and 10 cross-validations were used to measure the accuracy of

the regressions and predictions with the GDSC training set.

Default values were selected for all parameters, including

“battle” to remove batch effects and repeat gene expression

averages.
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Gene set variation analysis between the
high- and low-risk groups

Gene set variation analysis (GSVA) is a nonparametric

unsupervised method to assess the enrichment in transcriptomic

gene sets (Huang et al., 2017). GSVA converts gene-level changes

into pathway-level changes by synthetically scoring the genome of

interest to identify the biofunctions of the samples. In the present

study, we downloaded gene sets from the Molecular Signatures

Database (v7.0), and we used the “GSVA” R language package and

the GSVA algorithm to comprehensively score each gene set to

assess the potential biological function changes of different samples.

Statistical analysis

The survival curves in the present study were plotted by the

Kaplan–Meier method and tested by log-rank analysis.

Multivariate analysis was used for the Cox proportional risk

model. ROC curve was generated by “survivalROC” package in R.

C-index were used to measure the predictive accuracy of the

nomograms and compared by Hosmer-Lemeshow test. The

differences between the clinical characteristics and the

apoptosis risk score were measured by Student’s t-tests or

Kruskal-Wallis tests. Dysfunction socre, exclusion score and

tumor mutations were measured by Wilcoxon tests. Spearman

correlation analysis was performed in R to assess the association

between immune cell infiltration and gene expression. All

statistical analyses were performed using R language (version

4.0). All statistical tests were two-sided, and p < 0.05 was

considered statistically significant.

Results

Investigation of the expression of DRGs
related to apoptosis in the STAD cohort

We extracted the raw mRNA expression data (FPKM) of

processed STAD from TCGA database and obtained a total gene

set of 3,767 apoptotic genes through the GeneCards database

(https://www.genecards.org/). Differential analysis was

performed with the “limma” package, which obtained

839 DEGs (Supplementary Table S1 and Figure 2A) for

subsequent analysis with 406 upregulated genes

(Supplementary Table S2) and 433 downregulated genes

(Supplementary Table S3). The heatmap in Figure 2B shows

the top 20 up and downregulated genes.

Functional enrichment of differential
genes and construction of protein
interaction networks

We further performed pathway analysis of DEGs related to

apoptosis, and the GO results showed that these DEGs to be

FIGURE 2
Identification of differentially expressed apoptotic genes. (A) Volcano map of differentially expressed apoptotic genes (Upregulated genes in
red, downregulated genes in green). (B) TCGA-STAD of 20 up and downregulated differentially expressed apoptotic genes between tumor and
normal tissues.
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mainly enriched in the regulation of mitotic cell

cycle phase transition, regulation of cell cycle phase

transition and response to mechanical stimulus

(Figure 3A). Based on KEGG analysis showed that the

DEGs were mainly enriched in cytokine–cytokine

receptor interactions, the PI3K-Akt signaling

pathway, microRNAs in cancer and other pathways

(Figure 3B). We utilized Cytoscape software to conduct

PPT network analysis using the DEGs (upregulated genes

are shown in red, and downregulated genes in green in

Figure 3C).

Identification of prognosis-related genes
and construction of predictive models

First, univariate Cox regression models were applied

based on apoptotic DEGs in the training set from TCGA,

and a total of 77 apoptosis-related genes were found to be

significantly associated with overall survival (OS)

(Supplementary Table S4). LASSO regression analysis was

then performed on these 77 apoptotic genes to calculate the

correlation coefficients. We used the LASSO algorithm for the

training cohort from TCGA to further identify the 23 best

FIGURE 3
Functional enrichment analysis and PPI networks for differentially expressed genes. (A) GO enrichment analysis of differentially expressed
apoptotic genes. (B) KEGG enrichment analysis of differentially expressed genes. (C) PPI network. (Upregulated genes in red, downregulated genes in
green).
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candidate genes to generate apoptosis risk scores (Figures

4A–C). The coefficients for these 23 genes are shown in

Supplementary Table S5. In the training cohort, patients

were categorized into low-risk and high-risk groups

according to the apoptosis risk score. Notably,

Kaplan–Meier curves indicated that patients in the low-risk

group had longer OS than patients in the high-risk group

(Figure 4D). The accuracy of the apoptosis risk scores was

reflected by the AUC values for 2-, 3- and 5-years OS, which

were 0.76, 0.74, and 0.92, respectively (Figure 4E). The

training set AUC values all suggested that the model had

good validation efficacy.

FIGURE 4
Construction of apoptosis risk scores in the cohort TCGA-STAD. (A) LASSO coefficient curves for 77 prognostic apoptotic genes in the training
set TCGA-STAD. (B) The coefficient profile plot was generated with log (λ). (C) The regression coefficients and log2 (HR) for 23 genes associated with
apoptosis. (D) Kaplan–Meier curves for high- and low-risk groups. (E) Validation of ROC curves for the apoptosis risk score in the training dataset
from TCGA.
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Development of the nomogram and
correlation analysis of multiple clinical
indicators

In the present study, a nomogram model was constructed

to predict patient prognosis. The results showed that the

distribution of the values of different clinical indicators and

risk score values of GC in all our samples had different degrees

of contribution throughout the scoring process (Figure 5A). In

addition, predictive analysis was also performed for OS at

both 3 and 5 years, which indicated that the nomogram had

good predictive power (Figure 5B). The risk score was found

to be an independent prognostic factor for TCGA-STAD

patients by univariate (Figure 5C) and multifactorial

analyses (Figure 5D). Finally, we divided the samples

corresponding to the risk score values into different groups,

and the results of each clinical indicator are presented in the

form of box line plots in Figures 6A–G. We found that the

distribution of risk score values differed significantly between

the groups with regard to the clinical indicators of survival

status, sex, grade, stage, and T stage (p < 0.05).

Verification of the apoptosis-linked gene
biosignature

We further evaluated the prognostic value of the apoptosis

risk assessment using two validation sets (TCGA internal

validation set and GSE15459 dataset). The apoptosis risk

score was calculated for each patient, and patients in the two

validation sets were divided into high- and low-risk groups

based on the median risk score. Based on the survival analysis of

the two validation sets, the survival rate was lower in the high-

risk group and higher in the low-risk group (Figures 7A,B). The

FIGURE 5
A nomogram was constructed combining apoptosis risk scores and clinicopathological characteristics in the cohort from TCGA-STAD. (A) A
nomogram predicting 3- and 5-years overall survival was constructed. (B) Calibration curves of the nomogram. (C) Results of univariate Cox analysis
of the cohort from TCGA-STAD. (D) Results of multivariate Cox analysis for the cohort from TCGA-STAD.
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AUC values of the ROC curves for the 2-, 3- and 5-years

survival rates were 0.7, 0.71, and 0.71 for the internal

validation set from TCGA and 0.77, 0.74, and 0.75 for the

GSE15459 dataset, respectively (Figures 7C,D). Based on the

apoptosis risk score, the prognostic model had high accuracy

and stability in disease prognosis assessment. These data

suggested that our prognostic risk model accurately estimates

the prognosis of GC individuals with GC.

Multiomics study to investigate the clinical
predictive value of the model

The mutation profiles of patients in the high- and low-risk

groups showed that the proportion of mutations in genes, such as

TTN, was significantly lower in the high-risk group than in the

low-risk group (Figure 8A). In the STAD-TCGA cohort,

compared with GC patients with high-risk score, low-risk

socre with GC patients got a lower T cell exclusion score

and T cell dysfunction score (Figures 8B,C). We also

found a significantly lower TMB in the high-risk group

(Figure 8D).

The tumor microenvironment (TME) is mainly composed of

tumor-associated fibroblasts, immune cells, the extracellular

matrix, multiple growth factors and inflammatory factors. The

TME significantly influences the survival outcome and clinical

treatment response of tumor patients. We further explored the

potential molecular mechanisms by which the apoptosis risk

score affects GC by analyzing the relationship between the

apoptosis risk score and tumor immune infiltration. This

analysis revealed a significantly higher proportion of

eosinophils, resting mast cells and monocytes as well as a

lower proportion of M0 macrophages and follicular helper

T cells in the high-risk patient group than in the low-risk

patient group (Figure 8E).

We predicted the chemotherapy sensitivity of each tumor

sample in TCGA-STAD using the drug sensitivity data from the

GDSC database with the “pRRophetic” R package, and the

relationship between the apoptosis risk score and sensitivity to

chemotherapeutic drugs was further explored. According to the

results demonstrated that the apoptosis risk score significantly

influenced the sensitivity of patients to MS.275, paclitaxel,

PF.4708671, roscovitine, S-trityl-L-cysteine, and salubrinal.

Patients with GC in the high-risk group had a worse response

due to a higher IC50 (Figure 9).

Prognosticmodelingwith GSVA to explore
specific signaling mechanisms

We next investigated the specific signaling pathways involved

in the models associated with the high- and low-risk groups to

explore the potential molecular mechanisms by which risk scores

affect tumor progression. The GSVA results showed that the

differential pathways in the two groups were mainly enriched

in the UV_RESPONSE_DN, EPITHELIAL_MESENCHYMAL_

TRANSITION, MYC_TARGETS_V2 and GLYCOLYSIS

signaling pathways (Figure 10). These results indicate that these

signaling pathways may affect the prognosis of high- and low-risk

GC patients.

FIGURE 6
Association between apoptosis risk scores and clinical characteristics, including (A) survival status, (B) gender, (C) grade, (D) stage, (E) T-stage,
(F) N-stage, and (G) M-stage.

Frontiers in Genetics frontiersin.org09

Xu et al. 10.3389/fgene.2022.901200

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.901200


Discussion

GC has a high degree of malignancy (Bray et al., 2018).

Despite years of research focused on its basic and clinical aspects

and numerous clinical trials to evaluate new treatments, the

prognosis for patients with GC remains unsatisfactory. Patients

diagnosed with GC undergo various treatments, such as surgery,

biologically targeted therapy and chemotherapy, with

unsatisfactory survival rates (Duan et al., 2019). Therefore, it

is important to classify the various patients to facilitate access to

effective treatment. Apoptosis is a programmed form of cell

death that does not provoke an inflammatory response. Such

silent cell death can be triggered by DNA damage, cytochrome C

release or the tumor necrosis factor (TNF) receptor superfamily

activation (Beroske et al., 2021). Disorders of apoptosis can result

in a number of diseases, such as immune diseases or cancers. An

important feature of cancer is that cells lose their apoptotic

characteristics and proliferate indefinitely (Hanahan and

Weinberg 2011). Overall, there is increasing interest in using

multiomics analysis to assess tumor prognosis in cancer,

including breast, lung, gastric and colorectal cancers (Li et al.,

2016; Xiao et al., 2019; Zhang et al., 2020b; Yuan et al., 2021).

However, no study to data has reported the multiomics analysis

of apoptosis-related genes in gastric cancer. Therefore, we

combined apoptosis-related genes to construct a model for the

prognostic assessment of GC. First, we identified 839 apoptosis-

related DEGs in GC, 77 of which were correlated with prognosis.

Second, we developed and validated a novel apoptosis risk score

by integrating TCGA-STAD and GSE15459 cohorts. In addition,

we found that the apoptosis risk score predicts the clinical

characteristics, TMB, TME and chemotherapeutic drug

sensitivity in GC.

The present study demonstrated a generally higher TMB in

the low-risk group and lower in the high-risk group. Related

studies have shown that tumors with a higher TMB have

increased DNA mutations, which results in a greater

production of candidate peptides, leading to a stronger

likelihood of successful recognition of neoantigens by the

FIGURE 7
External validation of the apoptosis related genes signature in the TCGA testing dataset and the GEO dataset (GSE15459). (A) Kaplan–Meier
curves for theOS of patients in different risk groups of the TCGA testing dataset. (B) Kaplan–Meier curves for theOS of patients in different risk groups
of the GEO dataset (GSE15459). (C) Validation of ROC curves for apoptosis risk score in the TCGA testing dataset. (D) Validation of ROC curves for
apoptosis risk score in the GEO dataset (GSE15459).
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FIGURE 8
Association of apoptosis risk score with immunotherapy response and tumor mutation load. (A) Top 30 mutated tumor genes. (B) Boxplot
representation of T cell dysfunction scores in the high-risk group versus low-risk group. (C) Boxplot representation of T cell exclusion scores in the
high-risk group versus low-risk group. (D) Relationship between low-risk score and high-risk score tumormutations. (E)Comparison of immune cell
components of low-risk score and high-risk score patients by CIBERSORT. *p < 0.05, **p < 0.01, and ***p < 0.001.

Frontiers in Genetics frontiersin.org11

Xu et al. 10.3389/fgene.2022.901200

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.901200


immune system and a better prognosis for tumor patients

(Ritterhouse 2019). Recently, Yang et al. (2020) showed that

TTN mutations in GC patients are associated with a higher TMB

and better prognosis of patients. Similarly, Chen et al. (2021b)

repotorted that EP300-mutated cancers have an increased TMB,

antitumor immunoreactivity and PD-L1 expression. In addition,

Schrock et al. (2019) found that TMB is an important

independent biomarker in MSI-H mCRC. In mCRC, TMB

can be used to stratify patients to determine the probability of

response to immunotherapy. Thus, TMB has emerged as a

potential predictive biological marker for the treatment of

various tumors. T cells play an important role in tumor

immunity. Related studies have revealed the mechanism of

T cell immune evasion in tumors: In some tumors, cytotoxic

T cells have a high degree of infiltration, but they are in a

dysfunctional stat; immunosuppressive factors can remove

T cells infiltrating in tumor tissue in other tumors (Spranger

and Gajewski 2016). Apoptosis-related genes have an important

effect on T cell tumor immunity. For example, p53 promotes

T cell homeostasis by inducing pro-apoptotic SAP (Madapura

et al., 2012). TIDE scores can show Dysfunction and Exclusion of

T cells. Our study shows that low-risk patients have lower T cell

Dysfunction and Exclusion compared to high-scoring patients.

The TME in solid tumors is heterogeneous and is

characterized by immune cells, as a key component stromal

cells, blood vessels and the extracellular matrix (ECM) as its

hallmark features (Vaillant et al., 2021). A key component of the

TME is immune cells. Tumor infiltration by different adaptive

and innate immune cells leads to different effects, including

promotion or inhibition of tumor growth (Anderson and Simon

2020). Apoptosis also plays an important role in TME. For

example, BCL-2 (B cell lymphoma-2), one of the most valued

genes in apoptosis research, has a significant inhibitory effect on

apoptosis. BCL-2 in T cells induces immunosuppression by

enhancing Treg abundance and CTL depletion (Liu et al.,

2022a). Tumor cell apoptosis has been the focus of tumor

research, but the potential regulatory role between apoptosis

and immunity is still not fully elucidated. As based on our

apoptosis-related risk score, the present study revealed that

apoptosis may be highly correlated with tumor immunity. GC

patients with higher risk scores had a higher proportion of

monocytes and resting mast cells. Increased infarction of

FIGURE 9
Relationship between apoptosis risk score and chemotherapy resistance. The figure illustrates the correlation between the apoptosis risk score
and the IC50 of various drugs in patients with GC.
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monocyte and mast cell counts is an important predictor of

poor clinical outcome in a variety of tumors, such as GC,

colorectal cancer and pancreatic cancer (Fleischmann et al.,

2009; Feng et al., 2018; Yamamoto et al., 2020). Monocytes are

involved in various tumor stages, such as in the initial stages of

tumor growth and in distant metastases (Olingy et al., 2019).

Ribatti et al. (2010) revealed that mast cell density is

significantly associated with angiogenesis and progression

in patients with GC. CCL2 is a major chemokine recruited

by monocytes in a mouse model of colitis-associated

colorectal cancer, and CCL2 expression increases with

tumor progression (Chun et al., 2015). Mast cells are an

important component of solid tumors and play different

roles in the TME. In vitro experiments have demonstrated

that tumor-derived adrenomedullin (ADM) induces

hypertrophic release of interleukin 17A through the PI3K-

AKT signaling pathway, promoting proliferation and

inhibiting apoptosis of GC cells (Lv et al., 2018).

Interestingly, a high mast cell density inhibits the growth of

prostate cancer, and mast cell density is associated with a good

prognosis (Fleischmann et al., 2009).

Chemotherapy is one of the most significant treatments

for progressive GC. Apoptosis is a vital molecule mechanism

targeted by antineoplastic therapy (Yu and Silva 2018). Such

as, celastrol triggers apoptosis by means of targeting of

peroxidase-2 (Chen et al., 2020). Apatinib induces

apoptosis by targeting the PI3K/Akt signaling pathway (Jia

et al., 2019). However, different patients have various

responses to antineoplastic drugs. Recently, precision

medicine has sparked an interest in cancer drug sensitivity

prediction models (Tsimberidou et al., 2020), and the use of

computational methods for drug sensitivity prediction has

received increasing attention (Sun and Hu 2018; Ahmadi

Moughari and Eslahchi 2021; Pouryahya et al., 2022).

Furthermore, the advent of pharmacogenomic datasets has

further promoted the development of prediction models.

Nonetheless, accurate prediction of drug sensitivity in

individuals is a challenging task for precision medicine.

FIGURE 10
Differences in GSVA enrichment among apoptosis risk score groups.
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Precision therapy excludes the concept of one-size-fits-all and

instead emphasizes the customization of an appropriate drug

for each individual. The main concept of precision therapy is

to recommend drugs according to the genomic profile of a

patient. The present study found that the apoptosis risk score

significantly impacted the sensitivity of GC patients to

MS.275, paclitaxel, PF.4708671, roscovitine, S-trityl-L-

cysteine, and salubrinal. Although MS.275, PF.4708671,

roscovitine, S-Trityl-L-cysteine and salubrinal are not

utilized as chemotherapy of GC, elaboration of the

association between apoptosis risk scores and drug

sensitivity may reveal a potential therapeutic role for these

agents. Our molecular stratification of GC patients based on

apoptosis scores to predict drug sensitivity may optimize

oncologic chemotherapy for precision treatment.

In the previous 2 years, there have been numerous studies

on signatures associated with the prognosis of GC, such as

hypoxia-immune-based gene signatures (Liu et al., 2020), long

non-coding RNA signatures (Ghafouri-Fard and Taheri

2020), ferroptosis-related lncRNAs signatures (Chen et al.,

2021a) and immune-related signatures (Zhao et al., 2021).

Although escaping programmed cell death (apoptosis) is a

hallmark of tumors (Hanahan and Weinberg 2000), there are

no relevant studies on the prognosis of apoptosis-related

signatures in GC. Therefore, we established an apoptosis

risk model with validation in internal and external

validation sets. In addition, we combined a multiomics

approach to explore the risk score, including drug

sensitivity, TMB, TME, and TIDE score. The present study

had several limitations. First, although we validated the

apoptosis risk model with internal and external data, the

reliability of our model needs to be confirmed in more

clinical studies before it can be generalized. Second,

although the prognosis of GC is unpredictable with high

heterogeneity, and we only used apoptosis-related genes to

construct the prognostic model, and other important key

genes may be excluded. Regardless, our apoptosis risk

assessment model has the potential to serve as a prognostic

biomarker, providing new insights for further research and

treatment of GC.

Conclusion

We constructed and validated a novel apoptosis risk

assessment model for GC consisting of 23 apoptotic genes.

The model categorized GC patients into two subgroups

according to the apoptosis risk score (high- and low-risk

groups). Moreover, we evaluated the relationship of the

apoptosis risk score with clinical features, tumor immunity,

TMB, drug sensitivity and TIDE scores in GC, and

demonstrated that the apoptosis risk score is a good

predictor of these indicators. Thus, the apoptosis score may

function as a potential molecular biological indicator for the

prognosis of GC and provide new insights into the clinical

prognosis and treatment of GC.
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