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Epithelial ovarian cancer (EOC) is the leading killer among women with

gynecologic malignancies. Homologous recombination deficiency (HRD) has

attracted increasing attention due to its significant implication in the prediction

of prognosis and response to treatments. In addition to the germline and

somatic mutations of homologous recombination (HR) repair genes, to

widely and deeply understand the molecular characteristics of HRD, we

sought to screen the long non-coding RNAs (lncRNAs) with regard to HR

repair genes and to establish a prognostic risk model for EOC. Herein, we

retrieved the transcriptome data from the Genotype-Tissue Expression Project

(GTEx) and The Cancer Genome Atlas (TCGA) databases. HR-related lncRNAs

(HRRlncRNAs) associated with prognosis were identified by co-expression and

univariate Cox regression analyses. The least absolute shrinkage and selection

operator (LASSO) and multivariate stepwise Cox regression were performed to

construct an HRRlncRNA risk model containing AC138904.1, AP001001.1,

AL603832.1, AC138932.1, and AC040169.1. Next, Kaplan−Meier analysis,

time-dependent receiver operating characteristics (ROC), nomogram,

calibration, and DCA curves were made to verify and evaluate the model.

Gene set enrichment analysis (GSEA), immune analysis, and prediction of the

half-maximal inhibitory concentration (IC50) in the risk groups were also

analyzed. The calibration plots showed a good concordance with the

prognosis prediction. ROCs of 1-, 3-, and 5-year survival confirmed the

well-predictive efficacy of this model in EOC. The risk score was used to

divide the patients into high-risk and low-risk subgroups. The low-risk group

patients tended to exhibit a lower immune infiltration status and a higher HRD

score. Furthermore, consensus clustering analysis was employed to divide

patients with EOC into three clusters based on the expression of the five
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HRRlncRNAs, which exhibited a significant difference in checkpoints’

expression levels and the tumor microenvironment (TME) status. Taken

together, the results of this project supported that the five HRRlncRNA

models might function as a biomarker and prognostic indicator with respect

to predicting the PARP inhibitor and immune treatment in EOC.

KEYWORDS

homologous recombination-related lncRNAs in ovarian cancer, homologous
recombination deficiency, lncRNA, prognosis model, cluster, epithelial ovarian cancer

Introduction

Epithelial ovarian cancer (EOC) is the third most common

gynecological carcinoma among females in the world

(Momenimovahed et al., 2019). In 2015, it was estimated that

there were 52,100 new cases and 22,500 cancer-related deaths in

China (Chen et al., 2016). Unfortunately, the non-specific

symptoms are hard to recognize and may be confused with

other gastrointestinal tract diseases, which usually results in

delays in diagnosis and treatment for most patients with EOC.

In advanced stages, primary cytoreductive surgery, followed by

platinum-based chemotherapy, remains the standard treatment

for EOC (Kim et al., 2012). Although complete remission is

generally reached during the initial stage of treatment,

approximately 70% of the patients will recur within

24 months, and what follows is the rapid emergence of

resistance to chemotherapy (Elke et al., 2017). The 5-year

overall survival (OS) of patients is around 30%–40%, with no

major breakthroughs for several decades (Allemani et al., 2015).

There is increasing evidence that heterogeneity in morphology

and the molecular level is the key characteristic of EOC (Blagden,

2015). More understanding of the molecular characterization of

EOC may serve the purpose of earlier detection, prediction of

clinical prognosis, and individual therapy selection in patients

with refractory or recurrent disease. Previous molecular studies

have revealed that a wide range of genomic variability was

associated with different histological subtypes in EOC

(Kurman and Shih, 2011). For instance, the analysis from The

Cancer Genome Atlas (TCGA) research network stratified EOC

into four promoter methylation subtypes, a transcriptional

signature associated with survival duration based on the

profile of RNA and microRNA expression (Cancer Genome

Atlas Research Network, 2011). However, there is still a need

to developmoremolecular stratificationmethods for the accurate

prediction of chemotherapy resistance and response to target

drugs in EOC.

Homologous recombination (HR) repair is an important

pathway that contributes to the double-stranded DNA break

repair. Germline mutations of BRCA1 and BRCA2 are the main

mechanisms involved in homologous recombination deficiency

(HRD). Moreover, other mechanisms, such as germline and/or

somatic mutations in the other HR repair genes and epigenetic

modifications, generate a characteristic mutational signature

(Guo et al., 2018; Alexandrov et al., 2020; Guo et al., 2021)

and also play a certain role in HRD. It is well-known that patients

with HRD exhibit specific clinical features and excellent

responses to platinum-based chemotherapy and poly (ADP-

ribose) polymerase (PARP) inhibitors. Hence, the HRD status

in EOC tumor cells acts as a potential predictor of the response to

PARP inhibitors in clinical practice based on several blockbuster

clinical trials (Garrido et al., 2021). Even if the tumor is sporadic,

the identification of an HRD phenotype is still conducive to

choosing personalized therapy (Rojas et al., 2016). An increasing

body of evidence indicated that long non-coding RNAs

(lncRNAs) have an effect on the regulation of chromosomal

remodeling, DNA methylation, histone modification, and

genomic imprinting, as well as RNA metabolism (Wang and

Chang, 2011). The aberrant expression of lncRNA is

demonstrated in various types of cancer, involving important

biological processes such as tumorigenesis, apoptosis, invasion

and metastasis, and metabolism (Jiang et al., 2016; Li et al.,

2020a). Numerous lncRNAs have been shown to participate in

DNA repair pathways. For example, in prostate cancer, PCAT-1

was proved to have a prominent inhibitory effect on the HR

activity by a direct interaction with the 3′UTR of BRCA2, thus

affecting subsequent post-transcriptional suppression of BRCA2

(Prensner et al., 2014). TODRA, another famous HRR pathway-

regulating lncRNA, indicates the promotion of HR efficiency in a

RAD51-dependent manner through dual regulation of

RAD51 expression and activity (Gazy et al., 2015). However,

there is still a lack of systematic analysis for identifying the

distribution of HR-associated lncRNAs and their correlation

with clinical characteristics in EOC. Thus, it is necessary to

conduct a risk model based on the HR-related lncRNA

(HRRlncRNA) and to establish subtypes for personalized

treatments and prognosis prediction.

In this study, we first identified an HRRlncRNA risk

model in EOC by analyzing the public data downloaded

from TCGA and GTEx databases. Second, the biological

role of the risk model was investigated with regard to the

correlation with clinical features, patients’ prognosis, and

immune infiltration level, as well as drug sensitivity.

Furthermore, consensus clustering analysis was conducted

to identify EOC subtypes based on the HRRlncRNAs and to

determine the relationships between the clusters with clinical

characteristics.
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Materials and methods

Epithelial ovarian cancer study data input

The public RNA-seq level 3 sequencing data and

corresponding clinical information on 379 EOC cases were

obtained from the UCSC Xena database https://xenabrowser.

net/(Goldman et al., 2020); in addition, 88 normal human

ovarian cases of RNA-seq level 3 sequencing data were

downloaded from the UCSC Xena database related to

Genotype-Tissue Expression Project (GTEx) (https://

xenabrowser.net) as well. BRCA1 and BRCA2 mutations were

downloaded from the GDC portal (https://portal.gdc.cancer.

gov/).

Development of the prognostic predictive
signature

The 15 HR-related genes (HRRGs) were selected based on

clinical evidence of sensitivity to PARP inhibitors and

immunotherapy (Wang et al., 2021; Zhao et al., 2021). All

human lncRNAs were selected by biotypes related to lncRNAs

with the file gtf of GRCh38 obtained from the NCBI. To screen

out HRRlncRNAs, according to the expression of HRRGs and

lncRNAs, the Pearson correlation was utilized to assess the

correlation, and we obtained 402 HRRlncRNAs (correlation

coefficient >0.3 and p-value < 0.001). Then, the Wilcoxon test

between TCGA and GTEx database cases was employed to get

206 differentially expressed lncRNAs [|log2FC| > 1 and false

discovery rate (FDR) < 0.05]. To build a robust model, we

separated the entire dataset into training and testing datasets

at a ratio of 1:1; a univariate Cox regression analysis was

conducted to obtain 29 HRRlncRNAs related to survival (R

package: “survival”). Then, the least absolute shrinkage and

selection operator (LASSO) Cox regression and multivariate

stepwise Cox regression (R packages: “glmnet” and “survival”)

were conducted, and we acquired a five-HRRlncRNA risk model

in the final step. The EOC cases were split into low- and high-risk

groups by the median value. We used a time-dependent receiver

operating characteristic (ROC) curve to assess the predictive

value of the prognostic gene signature for overall survival (R

package: “timeROC”).

Development of nomogram, calibration,
and decision curve analysis

Multivariate Cox regression analysis of clinical features (age,

stage, grade, and tumor residual) and the risk score were included

to build the nomogram (R package: “rms”), and the 1-, 3-, and 5-

year calibration curves were generated to confirm the accuracy of

the nomogram. In addition, a decision curve analysis (DCA)

curve was assessed to choose the prime model that has the best

clinical net benefit (R package: “ggDCA”).

Functional enrichment analysis of gene set
enrichment analysis

GSEA software (v4.2.3) from MSigDB (http://www.gsea-

msigdb.org/gsea/downloads.jsp) (Mootha et al., 2003;

Subramanian et al., 2005) was applied to screen the significantly

enriched GO and KEGG pathways between the high-risk and low-

risk groups with the metrics of p < 0.05 and FDR <0.25.

Immune infiltration analysis

The ESTIMATE algorithm (R package: “ESTIMATE”) was

conducted to derive scores from the StromalScore, ImmuneScore,

and ESTIMATEScore. A single-sample gene set enrichment analysis

(ssGSEA) was employed to quantify immune cells and immune

function (R packages: “GSVA” and “GSEABase”). With a

comprehensive assessment of the immune infiltration state website

TIMER2.0 (Li et al., 2020b) (http://timer.cistrome.org/), we

downloaded a calculated file (TIMER, CIBERSORT, CIBERSORT-

ABS, quanTIseq, MCPcounter, xCell, and EPIC methods included).

We also assessed the relevancy between the risk score and immune

infiltration score using Spearman’s correlation analysis.

Homologous recombination deficiency
score source and drug sensitivity
assessment

We obtained HRD scores from the previous study

(Knijnenburg et al., 2018). The half-maximal inhibitory

concentration (IC50) of chemotherapy drugs from the

Genomics of Drug Sensitivity in Cancer (GDSC) database

(https://www.cancerrxgene.org/) (Geeleher et al., 2014) was

retrieved to analyze that of chemotherapy drugs in TCGA

dataset (R package: “pRRophetic”).

Determination of molecular subtypes
based on the risk score by consensus
clustering

ConsensusClusterPlus extends the consensus clustering

algorithm (including item tracking, item-consensus, and cluster-

consensus plots); we used a consensus matrix and CDF plot to

determine the best cluster number of subtypes (Wilkerson and

Hayes, 2010) and obtained three clusters. T-distributed stochastic

neighbor embedding (t-SNE) and principal component analysis

(PCA) were completed by the Rtsne R package.
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Statistical analysis

We used R software (version 4.1.1) to conduct all statistical

analyses. A p-value of not more than 0.05 was considered

statistically significant unless noted otherwise; the p-value

was notated as follows: * if p-value < 0.05, ** if p-value <
0.01, and *** if p-value < 0.001. The log-rank test was used to

test the null hypothesis that there is no difference between the

populations in the probability of an event (here a death) at any

time point; the Kruskal–Wallis test by rank is a non-parametric

alternative to the one-way ANOVA test, which extends the two-

sampleWilcoxon test in the situation where there are more than

two groups.

Results

In the present study, we gathered data from 379 EOC tumor

and 88 normal cases from TCGA and GTEx databases. The

workflow chart of the study is displayed in Figure 1.

HRRlncRNAs in epithelial ovarian cancer

On account of correlation coefficients (correlation

coefficients >0.3 and p < 0.001) of 15 HRRGs and

differentially expressed lncRNAs (|Log2FC| > 1 and p < 0.05)

between TCGA and GTEx patient samples, we finally obtained

206 HRRlncRNAs, of which 132 HRRlncRNAs were upregulated

and the rest 74 were downregulated (Figure 2A). The network

relationship between HRRGs and lncRNAs is plotted in

Figure 2B, and the detailed data are given in Supplementary

Table S1. The top 50 differentially expressed HRRlncRNAs of

TCGA and GTEx patient samples are shown in Figure 2C, and all

differentially expressed HRRlncRNAs are supplied in

Supplementary Table S2, where clear expression trends could

be seen.

HRRlncRNA risk model construction and
validation in epithelial ovarian cancer

Among the 206 differentially expressed HRRlncRNAs,

29 HRRlncRNAs were found to be significantly correlated

with overall survival (OS) of EOC patients based on

univariate Cox regression analysis (p < 0.05, Figure 3A,

Supplementary Table S3), and the heatmap of

29 HRRlncRNA differential expression is shown in Figure 3B,

which illustrates clear expression trends. To prevent overfitting

the prognostic signature, we adopted the Lasso Cox regression on

the 29 HRRlncRNAs, according to the optimum lambda value;

furthermore, a multivariant stepwise Cox regression was

conducted. A total of five HRRlncRNAs were finally exacted

to be related to homologous recombination in EOC construction

FIGURE 1
Workflow chart of this study.

Frontiers in Genetics frontiersin.org04

Hua et al. 10.3389/fgene.2022.901424

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.901424


(Figures 3C,D). Additionally, the Sankey diagram was adopted to

display the relationships of genes and lncRNAs with their risk

types (Figure 3E). Subsequently, the risk score was calculated

with the following formula:

Risk score = AC138904.1 * (-0.5307) + AP001001.1 *

(-1.6239) + AL603832.1 * (-1.3534) + AC138932.1 * (0.8097)

+ AC040169.1 * (-0.8363).

The risk score median value was used as a cutoff to divide

379 EOC cases into the high- and low-risk groups. Risk score

distribution was illustrated in the training, testing, and entire

datasets, respectively. The risk score distribution is presented in

Figure 4A; the Kaplan−Meier curve revealed that EOC patients

with low-risk scores had a better OS probability than those with

high-risk scores; the progression-free survival (PFS) was also

significant in training and entire sets but not in the testing set

(Figure 4B). Additionally, when we involved the conventional

clinicopathological features, such as age, grade, stage, and tumor

residual size factors, the result also agreed with the

aforementioned conclusion (Figure 4C).

Independent prognostic value of the risk
model

In consideration of the contributions of other characteristics

to patient prognosis, a nomogram was made to forecast the

survival risk in EOC patients. At first, the univariate and

multivariate Cox regression analyses were employed to decide

the independent prognostic factors of the risk score from the five

HRRlncRNAs, namely, age, disease stage, histological grade,

tumor residual size, BRCA1/2 mutations, and MKI67 in EOC;

the results demonstrated that the risk score of the model was the

independent prognostic factor for EOC patients (p < 0.001, HR =

1.295, and 95% CI = 1.149–1.459; Figure 5A; and p < 0.001, HR =

1.326, and 95% CI = 1.150–1.529; Figure 5B). As revealed by

univariate analysis, age (p = 0.001), stage (p = 0.034), and tumor

residual size (p = 0.039) in predicted dismal OS and another two

independent prognostic factors, age (p = 0.018, HR = 1.021, 95%

CI = 1.003–1.038, Figure 5B) and stage (p = 0.018, HR = 1.611,

95%CI = 1.086–2.390, Figure 5B), were derived by the future

multivariate Cox regression. Moreover, a nomogram was made

to predict 1-, 3-, and 5-year OS incidences of EOC patients

(Figure 5C), and the 1-, 3-, and 5-year calibration plots were used

to verify that the nomogram had a good concordance with the

prediction of 1-, 3-, and 5-year OS (Figure 5D). We conducted

DCA analysis to assess the clinical practicalities of the nomogram

by quantifying the net benefits against a range of threshold

probabilities, and the results demonstrated the prognosis

prediction based on the HRRlncRNA risk model could add

more net benefit than treating either none or all patients

(Figure 5E). In order to evaluate the sensitivity and specificity

of the risk model on the prognosis, ROC was performed. We also

illustrated the outcomes of ROC with the area under the ROC

curve (AUC). The HRRlncRNA risk models all displayed fine

AUC values (at 1, 3, and 5 years) in ROC analysis in the training

set, testing set, and all sets individually (Figure 5F), revealing

effective prediction of survival by the HRRlncRNA risk signature.

In terms of area under the ROC curve (AUC), the 1-, 3-, and 5-

year AUCs of the training dataset were 0.719, 0.726, and 0.741,

those of the testing dataset were 0.653, 0.501, and 0.614, and

FIGURE 2
Determination of homologous recombination (HR)-related
lncRNAs (HRRlncRNAs) in patients with epithelial ovarian cancer
(EOC). (A) Volcano plot of the differentially expressed HR-related
genes (HRRGs). (B) Network between HRRGs and lncRNAs
(correlation coefficients >0.3 and p < 0.001). (C) Top
50 differentially expressed HRRlncRNAs were sorted by Log2 fold
change between tumor and normal tissues.
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those of the entire dataset were 0.689, 0.613, and 0.685,

respectively (Figure 5F). Of the 3-year ROC of the risk model,

the risk score (0.689) displayed its predominant predictive ability

(Figure 5G).

Functional analysis based on the risk score
signature

For the exploration of differences in biological effects between

high- and low-risk groups on the basis of the risk score, we

calculated the gene expression fold change between high- and

low-risk groups on the basis of the risk score, and then, GSEA

analysis was performed to search GO and KEGG pathways in the

entire set. The highly related GO terms in the high-risk group were

as follows: GOBP_CANONICAL_WNT_SIGNALING_PATHWAY

and GOBP_NEGATIVE_REGULATION_OF_MAPK_CASCADE.

The highly related KEGG pathways in the high-risk group were as

follows: KEGG_JAK_STAT_SIGNALING_PATHWAY, KEGG_

PATHWAYS_IN_CANCER, and KEGG_WNT_SIGNALING_

PATHWAY. The highly related hallmark pathways in the high-

risk group were HALLMARK_APOPTOSIS, HALLMARK_KRAS_

SIGNALING_UP, and HALLMARK_P53_PATHWAY (p < 0.05

and FDR <0.25). Different color curves stand for different

pathways (Figures 6A–C).

Exploration of immunity-related factors
and drug treatments

The ssGSEA results showed there were a lot of significantly

different abundances of the immune cell and immune cell functions

in EOC, such as B cells, TIL, neutrophils, and type-II IFN response

(Figure 7A). Multiple immune cells exhibited different expressions

in high- and low-risk groups by the different platforms, such as

MCPcounter, EPIC, and xCell (p < 0.05, Figure 7B, Supplementary

FIGURE 3
Establishment of the homologous recombination (HR)-related lncRNA (HRRlncRNA) prognostic model in epithelial ovarian cancer (EOC). (A)
Prognosis-associated lncRNAs were extracted by univariate Cox regression analysis. (B) Expression profiles of 29 prognostic HRRlncRNAs. (C) Ten-
fold cross-validation for variable selection in LASSO regression analysis. (D) LASSO coefficient profile of five HRRlncRNAs. (E) Sankey diagram of
HRRGs and HRRlncRNAs.
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FIGURE 4
Prognosis value of the five homologous recombination (HR)-related lncRNA (HRRlncRNA) models in the training, testing, and all sets. (A)
Presenting the HRRlncRNA model based on the risk score of the training, testing, and all sets, respectively. (B) Survival time and survival status
between high- and low-risk subgroups in the training, testing, and all sets, respectively. Overall survival, OS; progression-free survival, PFS. (C)
Kaplan−Meier survival curves of the overall survival (OS) prognostic value stratified by the age, grade, stage, and tumor residual size between
high- and low-risk subgroups in the entire set.
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Table S4). Moreover, we also discovered that the higher risk score

had more association with immune cells such as B cells and T cells

(Figure 7C). All of the findings demonstrated the high-risk group

employed a higher immune infiltration status. Furthermore, the

high-risk group owned higher ESTIMATE scores, immune scores,

and stromal scores, implying different TME statuses, than the low-

risk group (p = 0.00041, p = 0.033, and p = 3.5e-5; Figure 7D). The

results of a comparative analysis of immune checkpoints of different

risk scores are displayed (Figure 7E). We also found many immune

checkpoints exhibited higher expression in the high-risk group, such

as CD28 and CD276. Meanwhile, the large-scale transition (LST)

score, loss of heterozygosity (LOH) score, HRD score, and 7-gene

DNA-repair deficiency signature (PARPi7) were found to be lower

in the high-risk group than those in the low-risk group (p = 0.0036,

p = 0.03, p = 0.0071, and p = 0.0059; Figures 7F,G). Such significant

results may provide an additional strategy for selecting patients to

treat with a PARP inhibitor. We also found that PARP inhibitor

drugs (olaparib and rucaparib) showed lower IC50 concentrations in

the high-risk group (Supplementary Figures S1A,B). Furthermore,

we could also find that the drug docetaxel, which has been applied to

EOC therapy, showed a lower IC50 concentration in the high-risk

group (Figure 7H).

FIGURE 5
Nomogram and assessment of the risk model based on five homologous recombination (HR)-related lncRNAs (HRRlncRNAs). (A,B) Univariate
Cox and multivariate regression analyses of the risk score and clinical factors with overall survival (OS). (C)Nomogram that integrated the risk score,
age, grade, stage, and tumor residual size predicted the probability of the 1-, 3-, and 5-year OS. (D) Calibration curves for 1-, 3-, and 5-year OS. (E)
Decision curve analysis (DCA) of the nomogram in TCGA cohort for evaluating the clinical usefulness in 1-year OS. (F) 1-, 3-, and 5-year time-
dependent receiver operating characteristic (ROC) curves of the training, testing, and entire sets, respectively. (G) ROC curves of the risk score,
nomogram total score, and clinical characteristics.
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Three distinct expression clusters
characterized by consensus clustering
analysis

Different gene expression clusters usually displayed different

immune microenvironments, leading to different

immunotherapeutic strategies and responses, so we conducted

consensus clustering based on the five HRRlncRNA expressions

which formed the risk model. The three distinct clusters displayed

(Figure 8A) t-SNE and PCA analysis of five HRRlncRNA expressions,

which showed three clusters, and the pre-defined high- and low-risk

groups could also be clearly divided into two clusters (Figures 8B,C); the

Sankey diagram was adopted to display relationships of clusters with

their risk types and survival status (Figure 8D). Survival analysis

displayed a significant difference between the three clusters

(Figure 8E), and the heatmap of different algorithms of immune

infiltration levels in the three clusters is shown in Figure 8F.

Furthermore, we analyzed the checkpoints’ expression levels and

TME status in these clusters. We could clearly see multiple

checkpoints, such as LAG3 and CD28, owned significant differences

(Figure 8G). ESTIMATE scores, immune scores, and stromal scores

exhibited significant level differences in clusters 1 and 2 but not in

cluster 3 (Figure 8H). Chemotherapy drug analysis demonstrated that

drugs, such as docetaxel, also showed significant differences inhigh- and

low-risk groups, as shown in Figure 7H. Doxorubicin displayed

significant differences in pairwise comparisons, but the other three

drugs showed differences mainly in clusters 1 and 2 (Figure 8I).

Discussion

PARP inhibitors, antiangiogenic agents, and

immunotherapy are the most promising targeted therapies

for EOC in recent years. In the time of precision medicine,

it is important to select the appropriate patients to benefit from

the targeted therapy. Further understanding of the molecular

characteristics associated with HRD could lead to an

introduction of broader patients benefiting from PARP

inhibitors. To the best of our knowledge, our study is the

first systematic and comprehensive analysis of HR-associated

lncRNAs in EOC. A risk model was identified based on the five

HRRlncRNAs, namely, AC138904.1, AP001001.1, AL603832.1,

AC138932.1, and AC040169.1. Furthermore, we divided the

entire set into three clusters based on the five HRRlncRNAs,

which may provide more data support for the stratification of

patients, such as clinical outcomes, chemotherapy sensitivity,

response to PARP inhibitors, and immunotherapy.

In this study, we first integrated the gene profiles of TCGA

and GTEx, combined with HRRGs from previous research

studies, and obtained 206 differentially expressed

HRRlncRNAs through co-expression and differential

expression analysis. Univariate Cox regression, LASSO

regression, and multivariate Cox regression analyses were

further performed. Finally, a five-HRRlncRNA model was

determined, which could divide EOC patients into high-risk

and low-risk groups and with an obvious difference in

survival time between the two groups. We validated the risk

model in the training set, testing set, and entire set via some

analyses such as Kaplan−Meier analysis, ROC analysis, DCA, and

IC50 prediction, and the results showed that the five-

HRRlncRNA model had a good predictive ability. More

FIGURE 6
GSEA analysis of the prognostic model. (A) Highly related GO
terms in the high-risk group. (B) Highly related KEGG pathways in
the high-risk group. (C) Hallmark pathways in the high-risk group
(all p < 0.05; FDR <0.25; |NES| > 1.5).
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FIGURE 7
Investigation of immunity-related factors and drug treatment in the high- and low-risk subgroups. (A) Abundance of the immune cell in
epithelial ovarian cancer (EOC). (B) Immune cell bubble of risk groups. (C) Correlation between the risk score and immune cells. (D) Comparison of
immune-related scores between the low- and high-risk groups. (E)Difference in the checkpoint expression between the risk groups. (F)Comparison
of homologous recombination deficiency (HRD) between the high- and low-risk groups. Large scale transitions, LST; loss of heterozygosity,
LOH. (G) Comparison of 7-gene DNA-repair deficiency signature (PARPi7) between the high- and low-risk groups. (H) Chemotherapy sensitivity
prediction in risk groups. * p-value < 0.05, ** p-value < 0.01, and *** p-value < 0.001.
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FIGURE 8
Three distinct expression clusters characterized by consensus clustering analysis. (A) Patients are divided into three clusters by
ConsensusClusterPlus. (B) t-SNE of three clusters. (C) Principal component analysis (PCA) of risk groups and clusters. (D) Sankey diagram of clusters
with their risk types and survival status. (E) Kaplan−Meier survival curves of overall survival (OS) in three clusters. (F)Heatmap of different algorithms of
immune infiltration levels in the three clusters. (G) Different checkpoints’ expression levels among the clusters. (H) Comparison of immune-
related scores in clusters. (I) Chemotherapy drug sensitivity analysis in the three clusters.
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importantly, the low-risk group employed higher HRD_LST,

HRD_LOH, and HRD scores. Cancers with the HRD phenotype

usually exhibit a high response to chemotherapy, especially

platinum compounds in different treatment lines (Pennington

et al., 2014). As for PARP inhibitors, they might be more suitable

for patients with HRD caused by different etiologies. The degree

of HRD strongly correlates with LOH, telomeric allelic imbalance

(TAI), and the number of LSTs in the chromosomes (Timms

et al., 2014). Each of these tests has its own advantages and

disadvantages and could be used in a complementary manner.

Currently, the best strategy to define the HRD status still needs to

be determined. The risk model conducted in this study may act as

a supplement role to evaluate HRD better.

Furthermore, many immune checkpoints also exhibited

higher expression in the high-risk group, such as CD28 and

CD276. The high-risk group also owned a higher

ESTIMATEScore, ImmuneScore, and StromalScore, implying

different TME statuses, than the low-risk group. It is well-

known that different gene expression clusters usually displayed

different immune microenvironments, leading to different

immunotherapeutic strategies and responses (Deberardinis,

2020). Thus, to deeply discuss the interior relation between the

five HRRlncRNAs and TME, we divided patients into three

clusters in EOC based on the expression of the five

HRRlncRNAs. The multiple checkpoints, such as LAG3 and

CD28, presented a significant difference among the three

clusters. LAG3 is the third cancer immunotherapy to be

targeted in the clinic, consequently garnering considerable

interest (Andrews et al., 2017). The CD28 costimulatory

pathway is a vital pathway that can signal the activation of

naïve T cells (Esensten et al., 2016). In addition, there was a

higher immune score and higher activity of the immune

checkpoint genes and chemotherapy sensitivity in cluster

2 compared with cluster 1. The results may help identify

patients who would benefit from the immune checkpoint

inhibitors in EOC.

As for the five HRRlncRNAs in the risk model, the research

with regard to their role in tumors is just beginning. A recent

report has pointed out that AC138904.1, combined with the

other seven ferroptosis and iron metabolism-related lncRNAs,

could independently predict survival and therapeutic effects in

ovarian cancer patients (Feng et al., 2022). AP001001.1 was a

novel m6A-related lncRNA pair signature for predicting the

prognosis of gastric cancer patients (Wang et al., 2022).

AL603832.1, as an m6A RNA methylation-related lncRNA,

might serve as crucial mediators of the tumor

microenvironment of head and neck squamous cell carcinoma

(Feng et al., 2021). However, the roles of AC138932.1 and

AC040169.1 have not been studied in tumors up to date. Our

study may provide more enriched evidence of the role of

lncRNAs in tumors, especially in EOC. It still needs further study.

However, there are still some limitations to this study. First,

our risk model was only validated internally and not further

validated with other external data. Second, it is necessary to

further study the possible functions andmechanisms of these five

HRRlncRNAs in combination with laboratory experiments. In

addition, a larger sample size is needed to verify the accuracy of

the risk model and molecular subtypes in the future.

Conclusion

All the aforementioned results suggested that our risk model

based on five HRRlncRNAs may be a potential index for evaluating

the clinical outcomes, response to PARP inhibitors, and

immunotherapy in patients with EOC. Moreover, we also

divided EOC patients into three clusters according to the

expression of the five HRRlncRNAs. Different clusters presented

the significant difference in the TME status, whichmay aid to screen

patient candidates for immunotherapy in the future.
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