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Background: Gliomas are the most common and fatal malignant type of tumor of the
central nervous system. RNA post-transcriptional modifications, as a frontier and hotspot
in the field of epigenetics, have attracted increased attention in recent years. Among such
modifications, methylation is most abundant, and encompasses N6-methyladenosine
(m6A), 5-methylcytosine (m5C), N1 methyladenosine (m1A), and 7-methylguanosine
(m7G) methylation.

Methods: RNA-sequencing data from healthy tissue and low-grade glioma samples were
downloaded from of The Cancer Genome Atlas database along with clinical information
and mutation data from glioblastoma tumor samples. Forty-nine m6A/m5C/m1A/m7G-
related genes were identified and an m6A/m5C/m1A/m7G-lncRNA signature of co-
expressed long non-coding RNAs selected. Least absolute shrinkage and selection
operator Cox regression analysis was used to identify 12 m6A/m5C/m1A/m7G-related
lncRNAs associated with the prognostic characteristics of glioma and their correlation with
immune function and drug sensitivity analyzed. Furthermore, the Chinese Glioma Genome
Atlas dataset was used for model validation.

Results: A total of 12 m6A/m5C/m1A/m7G-related genes (AL080276.2, AC092111.1,
SOX21-AS1, DNAJC9-AS1, AC025171.1, AL356019.2, AC017104.1, AC099850.3,
UNC5B-AS1, AC006064.2, AC010319.4, and AC016822.1) were used to construct a
survival and prognosis model, which had good independent prediction ability for patients
with glioma. Patients were divided into low and high m6A/m5C/m1A/m7G-LS groups, the
latter of which had poor prognosis. In addition, the m6A/m5C/m1A/m7G-LS enabled
improved interpretation of the results of enrichment analysis, as well as informing
immunotherapy response and drug sensitivity of patients with glioma in different
subgroups.

Conclusion: In this study we constructed an m6A/m5C/m1A/m7G-LS and established a
nomogram model, which can accurately predict the prognosis of patients with glioma and
provides direction toward promising immunotherapy strategies for the future.
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1 INTRODUCTION

Gliomas, including both low-grade gliomas (LGGs) and
glioblastomas (GBMs), are the most common and fatal type of
malignant tumor of the central nervous system (Wang et al.,
2020c). According to the standards formulated by the World
Health Organization, LGGs are defined as lower-stage gliomas
(I–III) and are associated with good prognosis. In contrast, GBMs
are classified as the highest grade of glioma (IV) and patients have
worse prognosis (Aldape et al., 2015; Gittleman et al., 2020). At
present, the main treatment for gliomas is surgery combined with
postoperative radiotherapy and chemotherapy. However,
although scientists have achieved some progress and
improvements in both clinical and basic research, as well as
comprehensive treatment, of gliomas in recent years, the overall
curative effect for gliomas, particularly GBMs, remains poor, and
the prognosis of affected patients is very poor. Approximately
88% of patients with GBM have a 5-years survival rate of <5%,
and the overall median survival time is only around 14 months
(Tykocki and Eltayeb 2018). The main treatment strategy also has
a number of disadvantages (Martínez Bedoya et al., 2021; Liu Z.
et al., 2022). For example, due to the complexity of, and dynamic
changes in, the tumor microenvironment, patients frequently
exhibit resistance to chemotherapeutic drugs. Further, the low
selectivity of radiotherapy and chemotherapy causes injury to
normal brain tissues, and the use of chemotherapeutic drugs can
lead to systemic immunosuppression (Cui et al., 2018; Jackson
et al., 2019; Dumas et al., 2020; Minniti et al., 2021). Therefore,
identification of more effective treatment methods is needed to
improve the outcomes for patients with GBM.

Epigenetic changes, including DNA methylation, histone
covalent modification, chromatin remodeling, non-coding
RNA (ncRNA) activity, and RNA chemical modification,
are commonly associated with various types of
tumorigenesis, malignancy, and therapeutic resistance
(Wang E. et al., 2021; Wu et al., 2022). Further, there is
increasing evidence that dynamic RNA modification
pathways are mis-regulated in human cancers, including
gynecological cancers, bladder cancer, and GBM, among
others, and may be an ideal target for cancer therapy (Chai
et al., 2019; Liu 2021; Huang et al., 2022). RNA post-
transcriptional modifications, as a frontier and hotspot in
the field of epigenetics, have become a considerable research
focus in recent years. Among the known RNA modifications,
methylation is most abundant, including N6-methyladenosine
(m6A), 5-methylcytosine (m5C), N1 methyladenosine (m1A),
and 7-methylguanosine m7G (Zhou et al., 2021) methylation.
Of these, m6A is the most abundant form of methylation
modification in eukaryotic RNA and the most thoroughly
studied type of RNA modification. Sequences flanking m6A
modification sites in messenger RNA (mRNA) are highly
conserved, and this modification mainly occurs in RRACH
(where R = purine, A = m6A, and H = non-guanine) motifs on
the adenine. The function of m6A modification is determined
by methyltransferases (writers: e.g., methyltransferase-like 14,
WT1-related protein, and methyltransferase-like 3) and
demethylases (erasers: e.g., fat mass and obesity-related

protein and ALKB5 homologs [ALKBH5, etc.]; and readers:
e.g., Yth-domain–containing family, insulin-like growth factor
2 mRNA–binding protein family, and heterogeneous nuclear
ribonucleoprotein A2/B1) (Visvanathan et al., 2018; Zhang Y.
et al., 2020). m5C modification of RNA is widespread in cells
and has important roles in regulating gene expression and
RNA stability. In addition, m5C methylation is closely related
to proto-oncogene activation, and the m5C-modified
methyltransferase, NSUN2, is differentially expressed in
tumor and para-cancer tissues (Dong and Cui, 2020). m1A
modification affects the first nitrogen atom of the adenine base
and carries a positive charge under physiological conditions.
Moreover, m1A modification affects the tertiary structures of
ribosomes and gene translation, with important functions in
regulating gene expression and controlling cell fate, and thus
affects disease occurrence and development (Alriquet et al.,
2021; Zheng et al., 2021). Research suggests that m7G is
present in eukaryotic mRNA 5′ caps and at defined internal
positions within transfer RNA (tRNA) molecules and
ribosomal RNAs across all domains of life. Typical enzymes
involved in regulating internal m7G methylation include
methyltransferase-like 1 (the YEAST enzyme homolog of
TRMT8) and its co-factor, WDR4, which catalyzes m7G
modification at G46 of specific tRNAs, such as tRNAPhe
(Pandolfini et al., 2019).

Long ncRNAs (lncRNAs) are a class of RNAs of >200
nucleotides that do not encode proteins. In cancer, lncRNAs
are important epigenetic regulatory molecules, and their
abnormal expression can constitute an effective biomarker for
use in early diagnosis and monitoring the effects of treatment
(Bhan et al., 2017; Peng et al., 2017). However, there is currently
no evidence to explain the association between gliomas and the
lncRNAs associated with four major RNA-methylation
modification. In this study, we extracted expression data for
49 m6A/m5C/m1A/m7G genes from The Cancer Genome
Atlas (TCGA) database, then used bioinformatics and
statistical analysis methods to explore the relationships
between lncRNAs associated with m6A/m5C/m1A/m7G and
glioma diagnosis and prognosis. Furthermore, the Chinese
Glioma Genome Atlas (CGGA) dataset was used for model
validation.Subsequently, we analyzed the functions of the
lncRNAs and their relationships with the immune

TABLE 1 | m6A/m5C/m1A/m7G RNA methylation–related genes.

Gene Coef

AL080276.2 -2.09085061330427
AC092111.1 -0.310248518121221
SOX21-AS1 -0.28683274752078
DNAJC9-AS1 -0.928895736570429
AC025171.1 0.940560063064456
AL356019.2 -1.39389951438732
AC017104.1 0.57019326721837
AC099850.3 0.288163704315659
UNC5B-AS1 1.74511337797007
AC006064.2 0.899857252034493
AC010319.4 0.442850890823364
AC016822.1 -1.04558931248538
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microenvironment. Notably, we identified potential drugs that
can target these lncRNAs, providing a potential novel direction
for the treatment of gliomas.

2 METHODS

2.1 Glioma Patient Database
First TCGA data portal was accessed to download and collate
GBM and LGG gene expression profiles (https://portal.gdc.
cancer.gov/) (Blum et al., 2018), along with relevant glioma
patient clinical information, including age, sex, time of
survival, survival, and availability of tissue or organ samples,
which includes five normal and 698 tumor samples, Patients with
primary tumor expression and survival information were
included in this study. A list of 49 m6A/m5C/m1A/m7G
genes was generated (Table 1), based on existing research
(Cao et al., 2021; Wiener and Schwartz 2021). Gene
expression profiles were then fully annotated using the
Gencode project and mRNA and lncRNA profiles separated
(Frankish et al., 2019). Pearson’s correlation analysis was used
to screen m6A/m5C/m1A/m7G-related lncRNAs, and 621 m6A/
m5C/m1A/m7G-related lncRNAs were identified using the
threshold criteria, correlation coefficient |R | > 0.4 and p < 0.
001. the data of prognostic prediction performance was download
from the Chinese Glioma Genome Atlas (CGGA,http://www.
cgga.org.cn) databases, including CGGA-325, and CGGA-693
(1018 glioma patients). The downloaded data includes clinical
data and mRNA data. All the datasets from two datasets are
normalized to fragment per kilobase million (FPKM) values.
Patients without follow-up data or overall survival <30 days
were excluded.

2.2 Construction of a Predictive Signature
The complete TCGA dataset was randomly divided into a
discovery cohort and a testing cohort. In the discovery cohort,
prognostic m6A/m5C/m1A/m7G-related lncRNAs were first
identified by univariate analysis (p < 0.05), followed by
application of the least absolute shrinkage and selection
operator (LASSO) method (McEligot et al., 2020), which
showed that 12 lncRNAs associated with m6A/m5C/m1A/
m7G were also associated with various glioma characteristics.
LASSO is a linear regression methodology based on L1-
regularization, where L1-regularization reduces model
complexity and risk of overfitting. The foremost advantage of
LASSO lies in the application of penalty multivariate analysis of
all variable coefficients, as well as designation of comparatively
unimportant experimental variable coefficients as zero, excluding
them from the model (Wang et al., 2022; Yan et al., 2022). The
selected 12 m6A/m5C/m1A/m7G-related lncRNAs were
analyzed by multi-factor Cox regression to develop an m6A/
m5C/m1A/m7G-lncRNA signature (LS), which was calculated as
follows (Yue et al., 2021):

m6A/m5C/m1A/m7G − LS risk factor

� ∑ exp(m6A/m5C/m1A/m7G

− LncRNAs) × the coefficient of eachm6A/m5C/m1A/m
7G lncRNA fromCox analysis

Low- and high-risk subgroups were then generated based
on the median risk score. Whole-genome expression profiles,
49 m6A/m5C/m1A/m7G genes, 12 m6A/m5C/m1A/m7G
lncRNAs, and the m6A/m5C/m1A/m7G-LS were analyzed
by principal component analysis (PCA) to achieve model
recognition (Xu et al., 2019), using the R package,
“scatterplot3d”.

To explore potential differences between high and low-score
groups (Ni et al., 2021), the Kaplan–Meier survival method was
used to determine differences in clinical outcomes between the
two groups (Shen et al., 2020). The LS and other factors (age, sex,
risk score, and stage) were used to establish a predictive
nomogram. Moreover, the Hosmer–Lemeshow test was
applied to detect the goodness-of-fit of the nomogram (Lee
and Jung 2019). The results of decision curve analysis (DCA)
were plotted to quantify and assess the clinical value of the
nomogram by the R package “ggDCA” (Sheng et al., 2022);
DCA can be performed to obtain the clinical net benefit of the
nomogram, compared with all or none of the strategies (Zhang
et al., 2021).

Survival analysis, AUC values and multivariate analyses were
performed on CGGA data to validate the prognostic prediction
performance of the prognostic model in Chinese glioma patients
(Ren et al., 2022).

2.3 Clustering of Samples Based on m6A/
m5C/m1A-Related lncRNAs
The R software package “ConsensusClusterPlus” was used to
divide tumor samples into different groups based on expression
levels of the 12 prognostic lncRNAs in tumor samples and analyze
their associations with prognosis through cluster analysis of
samples in the database (Wilkerson and Hayes 2010). The R
software package “limma” was used to filter differences in
immune cell infiltration among different types of samples and
m6A/m5C/m1A/m7G-LS group (Diehl et al., 2020). In addition,
differences in the expression levels of programmed death-ligand 1
(PDL1) in various tumor subtypes were analyzed.

2.4 Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes
(KEGG) Enrichment Analysis
GO and KEGG pathways were used for enrichment analyses
(Ding and Zhang 2017) in the R package “clusterProfiler” (Yu
et al., 2012); p < 0.05 was the threshold for significant enrichment
of functional pathways.
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2.5 Comparison of Tumor-Infiltrating
Immune Cell Subpopulations Between Risk
Groups
The CIBERSORT(Kang et al., 2022) algorithm was employed for
immune infiltration estimation, to assess differences in immune
cell subpopulations between high- and low-risk patients.
Differences in immune cell landscape between the two risk
groups were assessed using the Wilcoxon signed rank-sum test.

2.6 Immunotherapy Response Prediction
The R package “maftools” was used to analyze mutation data.
Tumor-specific gene mutations were used to calculate the tumor
mutation burden (TMB) (Xu et al., 2021). Using these data,
combined with patient survival information, all samples were
divided into high- and low-TMB groups, and the survival of
patients in each group analyzed. Then survival rates were
analyzed in four subgroups (low TMB + low risk score, low
TMB + high risk, high TMB + low risk, and high TMB + high
risk), to assess the relationship between risk score and patient
survival rates (Lv et al., 2020). The tumor immune dysfunction
and exclusion (TIDE) algorithm was used to estimate the
probability of response to immunotherapy (Wang Q. et al., 2020).

2.7 Drug Sensitivity
To evaluate the relationship between drug sensitivity and the m6A/
m5C/m1A/m7G-LS, half-maximal inhibitory concentration (IC50)
values were assessed, as a reflection of the chemotherapeutic drug
response. Using the R package “pRRophetic” (Wang et al., 2021d),
the IC50 of different drugs was predicted for glioma samples,
according to the Genomics of Drug Sensitivity in Cancer online tool.

3 RESULTS

3.1 m6A/m5C/m1A/m7G-Related LncRNAs
A schematic illustration of the construction of the m6A/m5C/m1A/
m7G-related LncRNAs prognostic signature and subsequent
analyses is presented in Figure 1A. A total of 48 m6A/m5C/
m1A/m7G genes and 13,155 lncRNAs were extracted from the
GBM and LGG datasets. We defined m6A/m5C/m1A/m7G-related
lncRNAs as lncRNAs that were significantly associated with 1 of the
48 m6A/m5C/m1A/m7G genes (r > 0.4 and p < 0.001). The m6A/
m5C/m1A/m7G lncRNA co-expression network generated is shown
in Figures 1B,C. Figure 1D describes the associations between the
48m6A/m5C/m1A/m7G genes and 12 prognostic m6A/m5C/m1A/
m7G-related lncRNAs, according to TCGA datasets.

FIGURE 1 | Selection of m6A/m5C/m1A/m7G-related lncRNAs in patients with glioma. (A) Flow chart of the study design. (B) Sankey diagram for the network of
m6A/m5C/m1A/m7G genes and related lncRNAs. (C) Heatmap for relationships between m6A/m5C/m1A/m7G-related genes and lncRNAs. *p < 0.05, **p < 0.01, and
***p < 0.001. (D) lncRNAs co-expressed with m6A/m5C/m1A/m7G-related genes. Green, lncRNAs; red, m6A/m5C/m1A/m7G-related genes.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 9031174

Shao et al. Glioma RNA Modification-Related LncRNA

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


3.2 Determination of the m6A/m5C/m1A/
m7G-LS
Using univariate Cox regression analysis, we selected m6A/m5C/
m1A/m7G-related prognostic lncRNAs from among lncRNAs in
the discovery cohort. In TCGA dataset, 488 lncRNAs related to
m6A/m5C/m1A/m7G were associated with overall survival (OS).
LASSO-penalized Cox is a typical method of multiple regression
analysis that not only improves the prediction accuracy of a
statistical model but also allows variable selection and
regularization. We used LASSO analysis to reduce the
overfitting of m6A/m5C/m1A/m7G-LS, resulting in 26 m6A/
m5C/m1A/m7G lncRNAs remaining (Figures 2A,B). Finally, 12
lncRNAs associated with m6A/m5C/m1A/m7G (AL080276.2,
AC092111.1, SOX21-AS1, DNAJC9-AS1, AC025171.1,
AL356019.2, AC017104.1, AC099850.3, UNC5B-AS1,
AC006064.2, AC010319.4, and AC016822.1) were considered
to be prognosis-related lncRNAs (Table 2).

Next, glioma samples were stratified into low- and high-risk
groups, according to the median value of the prognostic risk level.

Kaplan-Meier analysis showed that there was a significant
difference between the two groups (p < 0.001; Figure 2C). The
distributions of risk level, case survival status, and model lncRNA
expression levels are shown in Figures 2D–F.

We used standard methods to confirm the reliability of the
m6A/m5C/m1A/m7G-LS and verified a similar trend in the
validation data (Figure 3). Subsequently, differences in clinical
variables between the two stratified groups in the glioma dataset
were analyzed. The prognosis of patients in the low m6A/m5C/
m1A/m7G-LS group was superior to that in the high m6A/m5C/
m1A/m7G-LS group, regardless of sex, age, or subgroup (Figures
4A–C). Further, PCA was used to examine the differences
between the two risk groups. The distribution of the two
groups was quite scattered (Figures 4D–G), indicating that
m6A/m5C/m1A/m7G-LS may differ between them.

Both univariate and multivariate methods revealed the
robust independence of our proposed m6A/m5C/m1A/
m7G-LS (p < 0.001; Figures 5A,B). Area under the receiver
operating characteristic (ROC) curve values for 1-, 3-, and 5-

FIGURE 2 | Description of the m6A/m5C/m1A/m7G-LS and evaluation of its prognostic value in TCGA training dataset. (A) LASSO analysis of gliomas. (B)
Determination of the optimal LASSO settings. (C) Kaplan–Meier curves of patient OS comparing the high and low m6A/m5C/m1A/m7G-LS groups. (D) Distribution of
risk scores and patients. (E) Dot plot of survival status. (F) Heatmap of the expression levels of 12 m6A/m5C/m1A/m7G-related lncRNAs compared between the two
groups.

TABLE 2 | Multivariate Cox analysis of 12 selected m6A/m5C/m1A/m7G-related lncRNAs.

Readers Erasers

YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3, IGF2BP1, IGF2BP2,IGF2BP3, HNRNPA2B1, HNRNPC, HNRNPG,
RBMX, FMR1,LRPPRC

FTO,ALKBH5

ALYREF TET2,YBX1
NOP2, NSUN1, NSUN2, NSUN3, NSUN4, NSUN5,NSUN7, DNMT1, TRDMT1, DNMT3A, DNMT3B ALKBH1,ALKBH3
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years OS rates were all >0.70 (Figure 5C), indicating that the
model has a high value for prediction of OS. The area under the
ROC curve for risk level was also greater than that for other

clinical parameters, indicating that the m6A/m5C/m1A/m7G-
LS is relatively reliable for patients with gliomas (Figure 5D).
The concordance index of the risk score was higher than that of

FIGURE 3 | Verification of the m6A/m5C/m1A/m7G-LS in TCGA test and total data sets. (A,E) Kaplan–Meier curves of patient OS comparing high and low m6A/
m5C/m1A/m7G-LS groups. (B,F) Distribution of risk scores and patients. (C,G) Dot plot of survival status. (D,H) Heatmap comparing the expression levels of 12 m6A/
m5C/m1A/m7G-related lncRNAs between the two risk groups.

FIGURE 4 | Kaplan–Meier curves of patient OS grouped by (A) age, (B) sex, and (C) tumor grade and compared between the two groups in TCGA total data. PCA
comparison between the two groups based on (D) entire gene profiles, (E) m6A/m5C/m1A/m7G coding genes, (F) m6A/m5C/m1A/m7G-related lncRNAs, and (G)
m6A/m5C/m1A/m7G-LS in TCGA total dataset.
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other clinical indicators, indicating good performance of the
m6A/m5C/m1A/m7G-LS (Figure 5E).

Next, we developed a nomogram including risk level and
clinical risk characteristics to predict 1-, 3-, and 5-years OS.
Using the nomogram, m6A/m5C/m1A/m7G-LS showed
greater predictive power than other clinical parameters
(Figure 5F). The observed 1-, 3-, and 5-years prediction OS
rates showed perfect consistency in correlation analysis
(Figure 5G). In DCA, the y-axis denotes the net benefits
and the x-axis indicates the threshold probability. The gray
diagonal lines in Figures 5H–J denote the hypotheses that all
patients survive for 1, 3, and 5 years, with higher net benefit
indicating a superior nomogram.

To investigate the extrapolative accuracy of our signature, we
further verified it in CGGA cohorts.The determination of the
related-LS was produced via the same formula established in
TCGA cohort. Survival analysis, AUC values and multivariate
analyses were validated in the CGGA cohort (Figure 6).

3.3 Cluster Analysis of m6A/m5C/m1A/
m7G-Related LncRNAs in Two Groups of
Patients With Glioma
Tumor samples from TCGA database were divided into two
categories by cluster analysis, where the consensus matrix for

optimal k = 2 (Figure 7A). Kaplan–Meier survival curve analysis
showed that the prognosis of patients in cluster 2 was significantly
better than that of patients in cluster 1 (p < 0.001; Figure 7B).
Analysis of the immune microenvironment of the two subtypes
showed that there was significantly less infiltration of resting
memory CD4 T cells, activated memory CD4 T cells, activated
natural killer (NK) cells, monocytes, activated mast cells, and
eosinophils in cluster 1 than cluster 2 (p = 0.030, p = 0.049, p <
0.001, p < 0.001, p = 0.002, and p < 0.001, respectively), while he
infiltration of T follicular helper cells, regulatory T cells gamma-
delta T cells, M0 macrophages, M1 macrophages, M2
macrophages, and neutrophils was significantly higher in
cluster 2 than cluster 1 (p = 0.007, p = 0.013, p < 0.001, p <
0.001, p < 0.001, p = 0.002, and p < 0.001, respectively)
(Figure 7C). In addition, the expression level of the tumor-
suppressor gene, PDL1, was significantly lower in cluster 2
than that in cluster 1 (p < 0.001, Figures 7D,E).

3.4 Differences in the Immune
Microenvironment Between the Low- and
High-Risk Groups
Analysis of the immunemicroenvironment of the high- and low-risk
subtypes showed that, in the first group, the infiltration of CD8
T cells, activated memory CD4 T cells, T follicular helper cells,

FIGURE 5 | Evaluation of m6A/m5C/m1A/m7G-LS prognostic value and construction of a nomogram model using TCGA total data. (A,B) Univariate and
multivariate analyses of OS of patients with glioma. (C) ROC curves of 1-, 3-, and 5-years OS rates. (D) ROC curves of clinical features and risk scores. (E) Concordance
indices of clinical features and risk scores. (F) A nomogram forecasting the 1-, 3-, and 5-years OS rates of patients with glioma. (G) Calibration plot of the nomogram
model. (H–J) DCA of 1-, 3-, and 5-years survival for patients with glioma in TCGA.
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regulatory T cells, gamma-delta T cells, M0 macrophages, M1
macrophages, M2 macrophages, and neutrophils in the low-risk
group was significantly less than that in the high-risk group (p <
0.001, p = 0.004, p = 0.008, p = 0.012, p < 0.001, p < 0.001, p < 0.001,

and p = 0.015, respectively), while resting memory CD4 T cells,
activated NK cells, monocytes, activated dendritic cells, activated
mast cells, and eosinophils showed significantly greater infiltration in
the low-risk group than the high-risk group (p = 0.009, p< 0.001, p <

FIGURE 6 | Validation of the signature in the CGGA database. (A) Kaplan–Meier curves of patient OS comparing the high and low m6A/m5C/m1A/m7G-LS
groups. (B) Distribution of risk scores and patients. (C) Dot plot of survival status. (D) ROC curves of 1-, 3-, and 5-years OS rates. (E) ROC curves of clinical features and
risk scores. (F) Multivariate analyses of OS of patients with glioma.

FIGURE 7 |Clinical characteristics and OS of different subgroups of patients with glioma. *p < 0.05, **p < 0.01, and ***p < 0.0001. (A)Consensusmatrix for optimal
k = 2. (B) Kaplan–Meier curve of OS time in clusters 1 and 2. (C) Violet plot: differential expression of immune cells between clusters 1 and 2 (cluster 1, blue; cluster 2,
red). Boxplot (D) and correlation coefficient analysis (E) of the expression level of PDL1 between clusters 1 and 2.
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0.001, p = 0.037, p < 0.001, and p < 0.001, respectively; Figure 8A).
Analysis of correlations between risk score and immune cell
infiltration also showed that eosinophils, activated mast cells,
activated dendritic cells, monocytes, activated NK cells, and
resting memory CD4 T cells were negatively correlated with
lncRNA grouping. Meanwhile, T follicular helper cells,
neutrophils, activated memory CD4 T cells, CD8 T cells,
regulatory T cells, M0 macrophages, M1 macrophages, and M2
macrophages were positively correlated with risk score (p < 0.05;
Figure 8B).

3.5 Evaluation of Immunotherapy
Based on the function of the m6A/m5C/m1A/m7G-LS, we also
studied immune status, enriched pathways, and immune activity
in glioma samples. The expression of immunomarkers differed
significantly between the low and high m6A/m5C/m1A/m7G-LS
groups (Figure 9A). We used GO analysis to study possible
molecular processes associated with m6A/m5C/m1A/m7G-LS,
and the results suggested involvement in several immune-related
biological processes (Figure 9B,C). KEGG analysis was
performed to investigate possible pathways enriched for m6A/
m5C/m1A/m7G-LS, and suggested the involvement of several
immune-related pathway processes (Figure 9D,E).

Next, we examined the relationship between m6A/m5C/m1A/
m7G-LS and immunotherapy biomarkers. Predictably, the highm6A/
m5C/m1A/m7G-LS group was more likely to respond to
immunotherapy than the low m6A/m5C/m1A/m7G-LS group,

suggesting that the m6A/m5C/m1A/m7G-LS-based classifier score
may be useful for predicting the results of TIDE analysis (Figure 9F).

Tumor mutation data were evaluated and summarized using
the R package “Maftools”. Variation effect predictors were used to
stratify mutations. The top 20 genes with the greatest numbers of
mutations in the two groups are presented in Figures 8G,H. TMB
scores were then generated using TGCA somatic mutation data,
and m6A/m5C/m1A/m7G-LS was found to be strongly
associated with TMB (Figure 9I) . Further, high TMB was
associated with poor OS (p < 0.001;Figure 9J). Next, we
investigated whether the combination of m6A/m5C/m1A/m7G
and TMB could be a more powerful prognostic biomarker. All
samples were divided into four groups based on risk factors and
TMB, as follows: high TMB + highm6A/m5C/m1A/m7G-LS, low
TMB + low m6A/m5C/m1A/m7G-LS, low TMB + high m6A/
m5C/m1A/m7G-LS, and high TMB + low m5Cm6A/m5C/m1A/
m7G-LS. As shown in Figure 8K, there were significant
differences between these groups (p < 0.001), with the highest
OS recorded in the low TMB + low m6A/m5C/m1A/m7G-LS
group. These results clearly demonstrate that m6A/m5C/m1A/
m7G-LS is associated with tumor invasiveness.

3.6 Identification of a New Compound
Targeting m5C-sLS
We used the pRRophetic algorithm to assess which drugs may be
effective for glioma patients by collating IC50 values for each

FIGURE 8 | Differences in the immune microenvironment between the high- and low-risk subgroups. (A) Violet plot of the infiltration of different immune cells
between the high- and low-risk subgroups. (B) Analysis of correlations between risk score and immune cell infiltration.
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sample from the Genomics of Drug Sensitivity in Cancer
database. Thirteen compounds were screened based on
significant differences in predicted IC50 values between the
two groups, and the high LS group was more sensitive to most
compounds. As illustrated in Figure 10, the 13 drugs that warrant
further study in glioma include an Akt modulator (a-443654), an
Src family selective Lck inhibitor (a-770041), a poly (adenosine
diphosphate–ribose) polymerase 1 inhibitor (ABT-888),
veliparib, rucaparib (AG.014699), 5-aminoimidazole-4-
carboxamide ribonucleoside (AICAR), Akt inhibitor VIII, an
oral multikinase inhibitor (AMG-706), a third-generation
kinase inhibitor (AP.24534), a c-Jun NH2-terminal kinase
inhibitor (AS601245), the vitamin A metabolite, all-trans
retinoic acid (ATRA), a heat shock protein 90 inhibitor
(AUY922), AXITINIBJ, and a BRAF kinase inhibitor (AZ628).
Analysis of drug sensitivity showed that patients in the low-risk
group were predicted to be more sensitive a-770041, amg-706,
ABT-888, ap-24534, as601245, auy922, and az628 than those in
the high-risk group, while patients in the high-risk group were
predicted to be more sensitive to axitinib, a-443654, ag-014699,

AICAR, Akt inhibitor VIII, and ATRA than those in the low-
risk group.

4 DISCUSSION

Dynamic RNA methylation and modification events, such as
m6A, m5C, m1A, and m7G, are involved in tumor progression,
migration, invasion, and epithelial–mesenchymal transition of
cancer cells, both in vitro and in vivo (Michalak et al., 2019).
Modification events can also serve as prognostic markers and play
indispensable roles in various tumors (Han et al., 2019; Müller
et al., 2019; Zhang C. et al., 2020; Liu T. et al., 2020; Guo et al.,
2020). There is evidence for an interaction between lncRNA and
RNA methylation in tumors. For example, loss of the lncRNA,
THOR, inhibits the proliferation, migration, and invasion of
cancer cells in vitro and in vivo, while the m6A readers,
YTHDF1 and YTHDF2, can regulate THOR, thereby
inhibiting the occurrence and development of tumors in vivo
and in vitro (Liu H. et al., 2020). In addition, Linc00022 can be

FIGURE 9 | Immune status, enriched pathways, and immune activity in glioma samples. (A)Comparison of the immune status landscapes of the two groups. (B,C)
GO enrichment analysis. (D,E) KEGG enrichment analysis. (F) Differences in TIDE results between the two groups. (G,H)Waterfall plot of mutation values in the high (G)
and low (H) m6a/m5C/m1A/m7G-LS groups. (I) Comparison of TMB between the two groups. (J) Kaplan-Meier analysis based on TMB. (K) Kaplan-Meier analysis
combining TMB and the risk signature. *p < 0.05, **p < 0.01, and ***p < 0.001.
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inhibited by the m6A reader, YTHDF2, to influence the invasion
and proliferation of esophageal squamous cell carcinoma (Cui
et al., 2021). Moreover, m5C can modify the lncRNA, H19, to
recruit oncoproteins and promote tumor proliferation and
invasion (Sun et al., 2020). LINC00857 expression is also
mediated by m6A, and can promote the development of
pancreatic cancer (Meng et al., 2021). Conversely, lncRNA can
also affect the function of genes related to RNA methylation
modification. For example, knockdown of Nutm2a-as1 can
regulate Mettl3 to inhibit lung cancer progression (Wang
J. et al., 2021). Song et al. used a systems approach to
integrate gene expression and patient survival data with
protein interaction networks in discrete windows of tumor
proliferative biology and demonstrated that, in combination,
these networks may form the basis of highly accurate
prognostic classification models, with potential clinical utility
for guiding therapeutic options for patients (Song et al., 2015). Su
et al. also used a multi-omics approach to characterize brain
metastasis, providing an opportunity to identify clinically
impactful biomarkers and associated prognostic subtypes,
thereby generating an integrative understanding of disease (Su
et al., 2020). Overall, the evidence presented above suggests that
RNA methylation and lncRNA act together to influence the
tumorigenesis of various cancers; however, whether RNA
methylation is involved in glioma development by its influence
on lncRNA has yet to be fully elucidated.

At present, the signatures used to predict prognosis of patients
with glioma are sub-optimal. Chen et al. (2022) constructed
prognostic signatures of N6-methyladenosine-related lncRNAs
in gliomas, demonstrating the feasibility of applying prognostic

signatures for patients with glioma. Maimaiti et al. (2022)
analyzed the relationships between clinical outcomes and
methylation-related lncRNAs in LGG and the tumor
microenvironment, and found that gliomas are characterized
by the tumor microenvironment. Liu X et al. (2022) also used
m5C-related lncRNAs for prognostic prediction and immune
response signature analysis, while Wang et al. demonstrated the
prognostic value and immune landscape of lncRNAs associated
with m6A/m5C/m1A in squamous cell carcinoma of the head
and neck. We wished to improve on these prognostic models in
gliomas; therefore, we integrated data from m6A/m5C/m1A/
m7G-related genes, constructed a prognostic signature
comprising relevant lncRNAs, determined its prognostic value
and relationship with the immune landscape, and conducted
immune infiltration and drug sensitivity analyses. Such
prognostic features can be applied as independent factors for
superior prediction of the prognosis of patients with glioma,
opening new possibilities for immunotherapy approaches
targeting glioma in the future. Therefore, in this study, we
sought to investigate whether relevant lncRNAs are associated
with immunotherapy and involved in the occurrence and
development of gliomas.

Data from five normal and 698 tumor samples were
downloaded from TCGA database to search for m6A/m5C/
m1A/m7G-related genes. We first selected 488 m6A/m5C/
m1A/m7G-related lncRNAs from TCGA dataset and
constructed lncRNA pairs using a 0-or-1 matrix. Finally, A
12-factor m6A/m5C/m1A/m7G-LS (AL080276.2, AC092111.1,
SOX21-AS1, DNAJC9-AS1, AC025171.1, AL356019.2,
AC017104.1, AC099850.3, UNC5B-AS1, AC006064.2,

FIGURE 10 | Boxplot of the results of drug sensitivity analysis in the high- and low-risk subgroups.
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AC010319.4, and AC016822.1) was developed based on these
prognostic lncRNA pairs using a 1000-iteration LASSO
regression model, as proposed by Sveen et al. (2012).
Prognostic gene pairs were selected based on their frequency,
rather than on intersections, in the 1000 random stimulation
iterations, for a more accurate prediction. The m6A/m5C/m1A/
m7G-LS was shown to have predictive significance and was then
used to identify prognostic characteristics. The lncRNA,
AC099850.3, promotes hepatocellular carcinoma proliferation
and invasion through the PRR11/PI3K/AKT axis and is
associated with patient prognosis (Zhong et al., 2022),
indicating that it is an important prognostic indicator. The
lncRNA, SOX21-AS1, is hypomethylated in cervical cancer,
can serve as a new biomarker for the diagnosis of cervical
squamous cell carcinoma, and is a potential therapeutic target.
Moreover, SOX21-AS1 is correlated with clinical stage of
nephroblastoma and regulates cell proliferation, which is a
likely prognostic marker of nephroblastoma (Zhang et al.,
2019; Du et al., 2021). UNC5B-AS1 is highly expressed in
various tumors and promotes tumor proliferation, migration,
and invasion (Wang et al., 2019; Wang H. et al., 2020; Tan et al.,
2020). Notably, the significance of the remaining lncRNAs has
not been clearly elucidated to date, offering a future research
direction. We plan to conduct subsequent studies on these genes
to determine their relationships with RNA methylation and
further assess their associations with glioma invasion,
migration, and proliferation. Subsequently, glioma patients
were divided into high and low m6A/m5C/m1A/m7G-LS
groups, according to median score, and the high-risk group
was found to have inferior clinical prognosis. Similar results
were found on analyses of subgroups disaggregated by sex,
age, and tumor stage. Further, PCA confirmed the grouping
ability of the m6A/m5C/m1A/m7G-LS. Multivariate Cox
analysis showed that this model may be an independent risk
factor for OS in patients with glioma. We also created a bar chart
illustrating the perfect agreement between observed and
predicted 1-, 3-, and 5-years OS rates. Therefore, the m6A/
m5C/m1A/m7G-LS model established here may assist in
discovery of new biomarkers for future application.We further
verified the extrapolative accuracy of our signature in CGGA
cohorts. Survival analysis, AUC values and multivariate analyses
were validated in the CGGA cohort. it could be suggested that the
13-gene risk score can independently evaluate the survival of
patients with gliomas.

Tumor samples were subsequently divided into clusters 1 and
2, according to their expression levels of the 12 selected lncRNAs.
The survival rate of patients with cluster 2 tumors was
significantly better than that of those with cluster 1 cancers.
We further studied the tumor microenvironment of the samples
based on these two clusters and risk score classifications and
found that there were significant differences in the infiltrations of
different immune cells between clusters 1 and 2 and between the
high- and low-risk subgroups, revealing the characteristics of the
tumor immune microenvironment among these different
subgroups. At present, few patients with glioma benefit from
immunotherapy. Therefore, it is necessary to identify new
biomarkers to optimize treatment strategies. Checkpoint

inhibitors, such as PDL1 inhibitors, are used for treatment of
numerous cancers (Gato-Cañas et al., 2017), and there are many
ongoing trials focusing on the identification of novel biomarkers
in gliomas (Saadatpour et al., 2016). In addition, PDL1 may be
associated with various lncRNAs, and the lncRNA, PSMB8-AS1,
promotes pancreatic cancer progression by regulating the miR-
382-3p/STAT1/PDL1 axis (Zhang H. et al., 2020). PDL1 and
JAK2 transcripts are negatively regulated by binding to the
nuclear ribonucleic protein, HNRNPH1. Primary INCR1
transcripts bind HNRNPH1 to block its inhibition of PDL1
and JAK2, enabling their expression (Mineo et al., 2020). We
explored the expression of PDL1 in the two tumor sample clusters
and the relationship between PDL1 and the 12 selected lncRNAs,
demonstrating that PDL1 expression may be associated with
these lncRNAs. These findings suggest the possibility of
selecting differential immune checkpoint genes as therapeutic
targets for patients with gliomas.

In addition, we analyzed combined TMB and risk score
models and showed that patients with low mutation loads had
better prognosis than those with high mutation loads, while
patients with low mutation loads in the low-risk subgroup had
the best prognosis and those with high mutation loads in the
high-risk subgroup had the worst prognosis, clearly
demonstrating the importance of TMB in predicting
prognosis. The TIDE algorithm, which simulates tumor
immune-evasion pathways, was used to predict cancer therapy
outcomes in response to blocking of immune checkpoints (Jiang
et al., 2018). Our results showed that patients with glioma with
high risk scores were predicted to respond better to
immunotherapy. TMB refers to somatic coding mutations
related to the formation of anti-tumor neo-antigens (Gubin
et al., 2015), where higher TMB values are associated with
stronger killing effects of T cells stimulated by PD1, and
superior clinical effects (Allgäuer et al., 2018). TMB was
greater in the high m6A/m5C/m1A/m7G-LS group than that
in the low m6A/m5C/m1A/m7G-LS group, suggesting that
immunotherapy would be more effective in the high m6A/
m5C/m1A/m7G-LS group. In addition, the combination of
TMB with lncRNAs associated with m6A/m5C/m1A/m7G
yielded good predictive results. Therefore, this study
contributes to our understanding of the molecular biological
role of m6A/m5C/m1A/m7G-related lncRNAs in gliomas.
Considering the therapeutic potential of these 12 lncRNAs, we
analyzed their sensitivity to different small-molecule drugs.
Sensitivity to A.770041, AMG.706, ABT.888, AP.24534,
AS601245, AUY922, and AZ628 was higher in the low-risk
group than the high-risk group, while sensitivity to axitinib,
A.443654, AG.014699, AICAR, Akt inhibitor VIII, and ATRA
was higher in the high-risk group than the low-risk group. These
drugs are commonly used in the clinical treatment of gliomas,
and our results support their therapeutic value in this context
(Djuzenova et al., 2012; Yuan et al., 2018; Wang et al., 2021c;
Milton et al., 2021). In addition, these findings suggest the
prospect of targeting lncRNAs in therapy for patients with
gliomas.

This study has some limitations. First, the data used in the
study came from TCGA database, and validation in a separate
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patient cohort was lacking. Further, the predictive value of m6A/
m5C/m1A/m7G-LS for clinical application requires additional
evaluation.

5 CONCLUSION

The poor prognosis of patients with gliomas affects the health of
tens of millions of people each year, and many researchers are
focused on trying to improve the prospects for these individuals.
RNA methylation is established as involved in cancer
progression. Several studies have used lncRNAs to ascertain
prognostic markers, to identify new targets for cancer
diagnosis and treatment. Our findings illustrate how lncRNAs
associated with m6A/m5C/m1A/m7G are associated with glioma
prognosis, the immune microenvironment, TMB, and drug
sensitivity. Such prognostic features can be better applied as
independent factors for predicting the prognosis of patients
with glioma, opening new possibilities for immunotherapy
approaches targeting glioma in the future.
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