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Stomach adenocarcinoma (STAD) is one of the most common malignant

tumors of the digestive tract, and its survival predictors are critical for

precision medicine but have not been fully investigated. The complement

system is a complex multistep cascade at the interface of innate and

adaptive immunity, which augments the function of antibodies and

phagocytes. This study aimed to construct and validate a CSRG signature

based on TCGA (The Cancer Genome Atlas) STAD dataset and revalidated it

in an external GEO (Gene Expression Omnibus) STAD cohort. Subsequently, we

assessed the association of risk levels with the stromal and immune cell

infiltration level in STAD using the ESTIMATE, single-sample Gene Set

Enrichment Analysis (ssGSEA), and Microenvironment Cell Populations-

counter (MCP-counter) algorithm. It was found that the CSRG signature,

based on three genes (SERPINE1, PROC, and CFHR3), was significantly and

independently associated with the OS in TCGA STAD patients (p < 0.001).

Subsequently, we found that the high-risk STAD harbors more immune cell

infiltration than the low-risk group, and the ESTIMATE results indicated that

there exists a more stromal component in the tumor microenvironment of the

high-risk groups. Compared to the low-risk group, the high-risk STAD patients

had higher expressions of marker genes for immune checkpoint inhibitors (ICIs)

and showed higher sensitivity to the chemotherapy agents (rapamycin, nilotinib,

5-fluorouracil, axitinib, DMOG, and JNK inhibitor VIII). The prognostic value of

the CSRGs was further validated by nomogram plots, which revealed that it was

superior to tumor TNM and pathologic stage. Finally, the three expression levels

were evaluated in GES-1, HGC27, and AGS cells by qRT-PCR.
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Introduction

Stomach adenocarcinoma (STAD) is a major malignant tumor

with an incidence rate of 5.6% and a mortality rate of 7.7% based on

global cancer statistics in 2020 (1). Despite the 5-year survival rate up

to 90–97% at an early stage, the 5-year survival rate is less than 30%

in patients with advanced-stage STAD (2).

STAD development is complicated, involving many factors and

steps, such as genetic factors, H. pylori infection, smoking, or

environmental factors (Liu et al., 2020; Han et al., 2021). The

malignant phenotypes of STAD are defined not only by the

intrinsic heterogeneity of tumor cells but also by the stromal and

immune cells within the tumor microenvironment (TME) (Zeng

et al., 2021). Several studies onmalignant solid tumors have indicated

the importance of non-neoplastic stromal cells, particularly cancer-

associated fibroblasts, interacting with the tumor cells that contribute

to tumor formation and spread (Guo et al., 2020). Tumor-associated

immune cells, primarily T cells, can produce cytokines that promote

tumor angiogenesis and migration (Ren et al., 2020).

A complement system is an important innate immune system

that protects the host against invading pathogens (Ueda et al., 2017;

Garred et al., 2021). It has traditionally been considered as a complex

network of proteins that respond rapidly to foreign pathogens and

triggering inflammatory reactions (Conigliaro et al., 2019). However,

activation of the complement system in the TME may promote

tumor progression (Afshar-Kharghan, 2017). Recent studies have

reported that complement C3 overexpression can activate the JAK2/

STAT3 pathway and correlate with stomach adenocarcinoma

progression (Yuan et al., 2020). Chen et al. (2018) indicated that

the complement C5a/C5aR pathway can promote stomach

adenocarcinoma progression by suppressing p21/

p-p21 expression via activation of PI3K/AKT signaling. However,

whether these complement system-related genes are correlated with

the prognosis of STAD patients remains to be explored.

Herein, we collected the RNA-seq data and the corresponding

clinical data from public databases in order to ascertain the

association of complement system-related gene (CSRG)

expression with STAD overall survival (OS) and treatment

sensitivity and explore the possible association of immune cell

infiltration with complement system gene expression.

Methods and materials

Cohorts and complement system-related
gene selection

The CSRGs were selected according to the pathway definition

in Human Biological Pathway Unification (https://pathcards.

genecards.org/), the HUGO Gene Nomenclature Committee

(https://www.genenames.org), and the Molecular Signatures

Database (http://software.broadinstitute.org/gsea/msigdb/index.

jsp) by the key word “complement”. After removing the

duplicated genes, 248 genes remained and are provided in

Supplementary Table S1. TCGA STAD cohort was

downloaded from the University of California Santa Cruz

Xena webserver in TCGA projects (https://xenabrowser.net/

datapages/?cohort=GDC%20TCGA%20Stomach%20Cancer%

20(STAD)&removeHub=https%3A%2F%2Fxena.treehouse.gi.

ucsc.edu%3A443). Samples without follow-up information or

with follow-up time less than 1 day were excluded. A total of

350 stomach adenocarcinoma patients in TCGA cohort were

subsequently used for further analysis. In addition, another

independent cohort, GSE84437, which contained 433 STAD

cases, was retrieved from the Gene Expression Omnibus

database for external validation (https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi).

Construction and validation of a prognostic
complement system-related gene signature

EdgeR is a package for the analysis of digital gene expression

data arising from RNA sequencing technologies, such as serial

analysis of gene expression (SAGE), cap analysis of gene

expression (CAGE) and deep sequencing, and Tag-seq or

RNA-seq, with emphasis on testing for differential expression.

Thus, we used the “edgeR” R package to identify the differentially

expressed genes (DEGs) between tumor tissues and adjacent

normal tissues. In this study, gene sets with false discovery rates

(FDRs) < 0.05 and with the threshold of |logFC|>1 were defined
as DEGs.

Univariate and multivariate Cox regression analyses were

conducted in TCGA cohort to screen complement system-

related genes (CSRGs) significantly associated with the OS of

TCGA STAD cohort. Only genes that showed significant p <
0.05 in the multivariate and univariate regression were

considered as potential survival-related CSRGs. Then, the

overlapping prognostic DEGs were selected. These genes

were used to construct the risk model. Stepwise

multivariate Cox regression with Akaike information

criterion (AIC) was performed to obtain the risk model,

and the lowest value of AIC provided the sensitivity and

specificity. Subsequently, three genes (SERPINE1, PROC,

and CFHR3) were selected. The risk score of each patient

was calculated by the following formula: risk score = Σn
i�1 Coefi

pXi. Coefi represents the coefficient, and Xi indicates the

expression of each significant gene. According to the risk

score, all patients in TCGA cohort and GSE84437 cohort

were stratified into high-risk and low-risk groups based on
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the optimal cut-off value of the risk score. The optimal cut-off

value of the risk score was determined by the “surv_cutpoint”

function of the “survminer” R package. Then, to verify the

predictive power of the risk model, the “survivalROC” R

package was used to conduct time-dependent ROC curve

analyses.

Functional analysis of the differentially
expressed genes

To further understand the potential function of DEGs, the

Gene Ontology (GO) analysis and the Kyoto Encyclopedia of

Genes and Genomes (KEGG) analysis were employed using

TCGA data to understand the potential function of DEGs

using DAVID online analyses.

Stromal and immune score determination for
the stomach adenocarcinoma
microenvironment

ESTIMATE is a tool for analyzing TCGA data and GEO data

to estimate infiltrating stromal cells, immune cells, and tumor

purity in tumor tissues based on gene expression profiles

(Yoshihara et al., 2013). Herein, the ESTIMATE algorithm

was applied to the normalized expression data for estimating

the immune score, stromal score, and tumor purity for each

STAD patient in TCGA cohort and GSE84437 cohort.

Immune cell enrichment analysis
The infiltrating immune cells in the tumor

microenvironment were estimated by the SSGSEA and MCP-

counter algorithms using TCGA data and GEO data. The

MCPcounter was performed within R, as previously described

(Becht et al., 2016). The SSGSEA method was performed by its

package “gsva” within R, as previously described (Newman et al.,

2015). Immune cell marker gene expression information of

28 subsets was obtained from the literature published by

Charoentong et al. (2017). The Wilcoxon test was used to

compare the differences in immune cell subtypes between the

high-risk and low-risk groups.

Significance of the complement system-related
gene-based signature in chemotherapy and
immunotherapy

In order to predict the response of STAD patients in the two

different risk groups to chemotherapy drugs, the “pRRophetic” R

package was used to assess the half-maximal inhibitory

concentration (IC50) for each STAD patient based on the

Genomics of Drug Sensitivity in Cancer (GDSC) database

(Geeleher et al., 2014). As several chemotherapy agents have

been proven to be ineffective for advanced STAD patients, they

are being replaced by immunotherapy agents, particularly the

most promising ICIs, so we compared the differences in the

expression levels of ICI marker genes and chemokines.

Enrichment analysis by gene set enrichment
analysis

In order to clarify the differences of enriched pathways

between the low-risk and high-risk groups, Gene Set

Enrichment Analysis (GSEA) software (version 4.2.3) was

utilized for TCGA data to carry out the Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway enrichment analysis.

The random combination was set for 1,000 times.

Nomogram construction and validation
After testing for collinearity, all relevant clinical

characteristics and risk score were included in the

construction of a prognostic nomogram to predict 1-, 3-,

and 5-year overall survival of stomach adenocarcinoma

patients in TCGA dataset. The concordance index (C-index)

was used to evaluate the discriminative capacity of the

nomogram, and a higher C-index suggested a superior

discriminative capacity for survival outcomes. The

nomogram was validated based on the internal (TCGA

cohort) and external (GEO cohort) calibration

measurements. The calibration curve approach to 45-degree

diagonal line shows perfect predictive capability.

Cell culture
We obtained gastric cancer cell lines AGS and HGC27 and

the normal human gastric epithelial cell line GES-1 from the Cell

Bank of Chinese Academy of Sciences (Shanghai, China). All the

cells were cultured in RPMI-1640 medium supplemented with

10% fetal bovine serum (Gibco, Waltham, MA) at 37°C with

5% CO2.

Quantitative real-time PCR
RNA was extracted using the TRIzol reagent (Invitrogen,

United States) in accordance with the manufacturer’s

protocol. Reverse transcription of RNA to cDNA was

carried out according to the manufacturer’s instructions

using the PrimeScript RT Reagent Kit (TaKaRa, China).

Then, quantitative real-time PCR was performed with TB

Green Ex Taq (Takara, China) using Applied Biosystems

Prism 7500 system with customized sequences of the

primers (Supplementary Table S2). The 2−ΔΔCt statistic was

used to calculate the expression levels of genes.

Results

Identification of prognostic complement
system-related differentially expressed
genes in The Cancer Genome Atlas cohort

To describe our study more clearly, a flow chart of the

analysis procedure was developed (Figure 1), and the basic
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characteristics of the STAD patients are shown in Table 1. In

the present study, 120 DEGs in TCGA dataset were identified.

Then, GO and KEGG analyses were performed to better

understand the key roles of DEGs using DAVID online

analyses. Of the DEGs, 12 were correlated with OS in the

univariate and multivariate Cox regression analyses (Figures

2A–D). Unreasonably, ERCC6L was upregulated in tumor

samples, but its expression predicted a better prognosis in

the univariate and multivariate Cox regression analyses, so it

was excluded from further study. A total of 11 prognostic

complement system-related DEGs were preserved (all FDR <
0.05 and p < 0.05).

Construction of the risk score system

Here, we adopted a stepwise multivariate Cox regression

analysis to find the best performance efficacy predictive model

FIGURE 1
Flow diagram of data collection and analysis in the present study.
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with the lowest AIC value. Finally, a three-gene-based model,

including SERPINE1, PROC, and CFHR3, was successfully

developed (Table 2). According to K–M analysis, high

SERPINE1, PROC, and CFHR3 expression was significantly

correlated with poor prognosis (Figures 2E–G). The

prognostic risk score model was established with the

following formula: risk score = expression level of PROC ×

0.092 + expression level of SERPINE1×0.202 + expression

level of CFHR3 × 0.127. The results obtained were used to

classify patients into low-risk (n = 180) and high-risk (n = 170)

groups based on the optimal cut-off of the risk score, which

was calculated by the surv_cutpoint function in the

“survminer” package. As shown in Figure 3A, patients in

the high-risk group had more occurrences of death and

shorter survival times. In addition, the K–M curve indicated

that patients in the high-risk group had a significantly worse

overall survival than their low-risk counterpart (Figure 3B).

Furthermore, the risk heatmap clearly shows that SERPINE1,

PROC, and CFHR3 were upregulated as the risk score increases

(Figure 3A). Time-dependent ROC curves showed that the

classifier had a strong predictive ability in TCGA

dataset (Figure 3C), the AUC was 0.702 in 1 year, 0.697 in

3 years, and 0.762 in 5 years. Moreover, the risk score

model was an independent factor in both

univariate and multivariate Cox regression analyses (p <
0.001, HR: 2.270, and 95% CI: 1.619–3.183; and p <
0.001, HR: 1.999, and 95% CI: 1.384–2.885, respectively)

(Table 3).

Verification of the prognostic risk score
model in the GSE84437 cohort

To test the robustness of the CSRG signature constructed

from TCGA cohort, the risk score of an external validation

cohort GSE84437 was calculated using the same formula.

Then, the patients from the GSE84437 cohort were also

categorized into high-risk (113) or low-risk (320) groups by

the optimal cutoff value of the risk score. Consistent with the

results obtained from TCGA cohort, patients in the high-risk

group had a shorter survival time than those in the low-risk

group (Figure 4A). In addition, the high-risk group was

significantly associated with poor prognosis (p < 0.001,

Figure 4B). In addition, the AUC of the signature was

0.740 at 1 year, 0.729 at 3 years, and 0.739 at 5 years

(Figure 4C). Also, the risk score model was an independent

factor in both the univariate and multivariate Cox

analyses (p = 0.008, HR: 2.211, and 95% CI: 1.222–3.999;

TABLE 1 Basic characteristics of stomach adenocarcinoma patients.

Characteristic Group TCGA
cohort (N = 350)

GSE84437 cohort (N = 433)

No (%) No (%)

Age ≤ 65 161 (46.0) 283 (65.4)

>65 189 (54.0) 150 (34.6)

Gender Female 124 (35.4) 137 (31.6)

Male 226 (64.6) 296 (68.4)

Pathologic stage I 46 (13.7) –

II 110 (32.7) –

III 145 (43.2) –

IV 35 (10.4) –

T T1 16 (4.6) 11 (2.5)

T2 74 (21.4) 38 (8.8)

T3 161 (46.5) 92 (21.2)

T4 95 (27.5) 292 (67.4)

N N0 105 (30.8) –

N1 93 (27.3) –

N2 72 (21.1) –

N3 71 (20.8) –

M M0 312 (93.1) –

M1 23 (6.9) –

Survival status Dead 146 (41.7) 209 (48.3)

Alive 204 (58.3) 224 (51.7)
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and p = 0.033, HR: 1.435, and 95% CI: 1.028–2.003,

respectively) (Table 3).

Landscape of the tumor
microenvironment in stomach
adenocarcinoma

To explore the relationship between risk score and TME, we

used the ESTIMATE algorithm to determine the four scores of each

sample by R software. According to the ESTIMATE algorithm,

immune score, stromal score, and ESTIMATE score were

significantly higher in high-risk groups, while tumor purity was

higher in low-risk groups, indicating that there exist more stromal

components in the TME of high-risk groups (Figures 5A–D, 6A–D).

Landscape of immune infiltration in
stomach adenocarcinoma

To analyze the immune status of each sample in TCGA and

GSE84437 cohorts, the relative infiltrations of 28 TIICs in the TME

FIGURE 2
Identification of the candidate complement system-related genes in TCGA cohort. (A) Volcano plots visualize the complement system-related
DEGs in TCGA STAD. (B) GO analysis of complement system-related DEGs. (C) KEGG analysis of complement system-related DEGs. (D) Venn
diagram to identify DEGs between tumor and adjacent normal tissue that were correlated with OS. (E–G) Prognostic values of (E) SERPINE1, (F)
CFHR3, and (G) PROC in TCGA STAD. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed
genes; OS, overall survival.

TABLE 2 Results of the stepwise multivariate Cox proportional hazards model.

Gene symbol Coef HR HR 95 L HR 95H p-value Regulation

SERPINE1 0.202 1.224 1.106 1.355 p < 0.001 Up

PROC 0.092 1.097 1.011 1.19 p = 0.026 Up

CFHR3 0.127 1.135 1.043 1.235 p = 0.003 Up
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were calculated using the SSGSEA algorithm in R. Detailed results are

presented in Figures 5,6E. The proportions of immune cells showed

differences between groups. Compared with the low-risk group, the

high-risk group contained a greater number of central memory

CD4 T cells, memory B cells, regulatory T cells, type 1 T helper

cells, immature dendritic cells, macrophages, mast cells, natural killer

cells, natural killer T cells, and plasmacytoid dendritic cells, implying

that their immunological functions associated with the complement

systemweremore active in the high-risk groups. Then, the infiltrating

immune cells within TCGA and GSE84437 cohorts were also

estimated by MCP-counter methods. For the MCP-counter

method, we found that NK cells, monocytes, macrophages,

neutrophils, and endothelial cells were elevated in the high-risk

groups compared to the low-risk groups (Figures 5,6F).

FIGURE 3
Prognosis analysis of complement system-related three-gene signature in TCGA cohort. (A) Detailed risk scores, survival status of TCGA STAD
patients, and heatmap of three complement system-related genes in TCGA cohort. (B) K–M curves for the overall survival of patients in high- and
low-risk groups. (C) ROC curves. K–M, Kaplan–Meier; ROC, receiver operating characteristic curve.

TABLE 3 Univariate analysis and multivariate analysis of the correlation of risk score with the outcomes among stomach adenocarcinoma patients in
two cohorts.

Variable Univariate Cox analysis Multivariate Cox analysis

Coef HR(95% CI) p-value Coef HR(95% CI) p-value

TCGA STAD (overall survival)

Age 0.524 1.689 (1.206–2.366) 0.002 0.532 1.704 (1.183–2.454) 0.004

Gender 0.281 1.324 (0.930–1.887) 0.12 0.313 1.368 (0.931–2.011) 0.110

T 0.261 1.299 (1.056–1.599) 0.013 0.067 1.070 (0.799–1.433) 0.648

N 0.281 1.325 (1.142–1.538) < 0.001 0.147 1.158 (0.925–1.449) 0.198

M 0.718 2.051 (1.157–3.636) 0.014 0.543 1.721 (0.811–3.653) 0.157

Pathologic stage 0.407 1.503 (1.2251.843) < 0.001 0.188 1.207 (0.809–1.801) 0.355

Risk score 0.819 2.270 (1.619–3.183) < 0.001 0.692 1.999 (1.384–2.885) <0.001
GSE84437 (overall survival)

Age 0.288 1.335 (1.012–1.761) 0.041 0.278 1.320 (0.997–1.748) 0.052

Gender 0.227 1.256 (0.927–1.700) 0.141 0.264 1.303 (0.961–1.766) 0.087

T 0.554 1.740 (1.378–2.198) < 0.001 0.557 1.747 (1.380–2.211) <0.001
Risk score 0.793 2.211 (1.222–3.999) 0.008 0.361 1.435 (1.028–2.003) 0.033
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Sensitivity of stomach adenocarcinoma
patients to chemotherapy agents and
checkpoint inhibitors

As for chemotherapy sensitivity, the six chemotherapy agents

mentioned previously were selected for comparisons of

IC50 values between the low- and high-risk groups. STAD

high-risk patients showed lower IC50 values for rapamycin,

nilotinib, 5-fluorouracil, axitinib, DMOG, and JNK inhibitor

VIII (all p < 0.05), and these six drugs may be more applicable

for patients with a high risk score based on the CSRGs (Figure 7A).

Given the significance of immune checkpoint inhibitor-based

immunotherapy, the expression levels of nine immune

checkpoint molecules (CD28, CTLA4, CD274, HAVCR2,

BTLA, TNFSF4, CD160, PDCD1, and TGFBR1) and nine

chemokines (CCL2, CCL17, CCL18, CCL22, CCR2, CCR5,

CCR6, CXCL12, and CXCR4) that were closely associated with

immune cell recruitment between the low- and high-risk groups

were compared to evaluate the responses of STAD patients to

immunotherapy. Compared with the low-risk group, seven

common immune checkpoint molecules had a higher

expression in the high-risk subset, but the overexpression of

CD274 and PDCD1 was nonsignificant (p = 0.274 and p =

0.370) (Figure 7B). Also, the expressions of chemokines were

all upregulated in the high-risk STAD patients compared with the

low-risk patients (all p < 0.05) (Figure 7C). These results suggest

that the risk model based on CSRGs shows immunotherapy and

chemotherapy benefits to STAD patients. In order to elucidate the

differences of enriched pathways between the low-risk and high-

risk groups, we performed pathway enrichment analysis by the

GSEA method. There was obvious immune pathway enrichment

in the high-risk group, such as T-cell receptor signaling, B-cell

receptor signaling, and cancer promotion pathway such as the

MAPK signaling pathway and the Wnt signaling pathway

(Figure 8A). Taken together, our observations provided the

clues for the association between CSRGs and abundant

microenvironment in tumors (Figure 8B).

Construction and validation of the
nomogram

To establish a clinically applicable method for predicting the

prognosis of stomach adenocarcinoma patients, the risk score

FIGURE 4
Validation of complement system-related three-gene signature in the GEO cohort. (A) Detailed risk scores, survival status of GEO STAD
patients, and heatmap of three complement system-related genes in the GEO cohort. (B) K–M curves for the overall survival of patients in high- and
low-risk groups. (C) ROC curves.
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and relevant clinical parameters (age, gender, pathologic stage, T,

N, and M) were included in the construction of a prognostic

nomogram (Figure 9A), and the calculated C-index was 0.700.

The nomogram calibration curve was then plotted to compare

the predicted overall survival with the observed overall survival.

The results showed excellent agreement between the nomogram

prediction and actual observation in terms of the 1-, 3-, and 5-

year survival rates in both TCGA cohort and the

GSE84437 cohort (Figures 9 B–G).

Exploration of the gene expression in silico
and in cell lines

In TCGA database, the three genes’ mRNA expression was

significantly higher in tumor tissues than that in adjacent normal

tissues, both in unpaired tumor-adjacent normal STAD samples

and in the paired tumor-normal STAD samples (Figures 10A–F).

Their expression levels were evaluated in AGS, HGC27, and

GES-1 by qRT-PCR. Consistently, compared with GES-1,

FIGURE 5
Immune characteristics of TCGA cohort. (A–D) Estimation of the proportion of immune-stromal component and tumor purity. Immune score,
stromal score, ESTIMATE score (the sum of them), and tumor purity between different risk groups in TCGA cohort. (E) Different infiltrating
abundances of 28 TIICs estimated by ssGSEA between subgroups. (F) Different infiltrating abundances of 11 TIICs estimated by MCP-counter
between subgroups. TIICs: tumor-infiltrating immune cells.
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SERPINE1, PROC, and CHFR3 were significantly upregulated in

AGS and HGC27 (Figures 10H–J, p < 0.05).

Discussion

Stomach adenocarcinoma is a common cancer and a major

cause of cancer-related deaths worldwide (Sung et al., 2021). The

extremely poor prognosis of patients with stomach

adenocarcinoma greatly promotes the development of an

effective treatment measure (Slomski, 2019). Finding solid

prognosis predictors will help the stratification of STAD

patients and guide precision medical intervention (Zheng

et al., 2020).

In this study, we constructed a three-gene CSRG signature

that predicted both the survival and immune

microenvironment for TCGA STAD patients. After

discovering the survival-related CSRGs using univariate and

FIGURE 6
Immune characteristics of the GEO validation cohort. (A–D) Estimation of the proportion of immune-stromal component and tumor purity.
Immune score, stromal score, ESTIMATE score (the sum of them), and tumor purity between different risk groups in the GEO validation cohort. (E)
Different infiltrating abundances of 28 TIICs estimated by ssGSEA between subgroups. (F) Different infiltrating abundances of 11 TIICs estimated by
MCP-counter between subgroups.

Frontiers in Genetics frontiersin.org10

Tong et al. 10.3389/fgene.2022.903421

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.903421


multivariate Cox regression analyses in TCGA cohort, the

stepwise multivariate Cox regression analysis was applied, and

a three-gene-based signature was generated, which was related

to the outcome of TCGA STAD patients. Then, the

constructed model was validated in the GEO STAD cohort.

ROC curve analyses indicated that the risk score derived from

the gene signature could be more efficient in predicting the

overall survival in the 1-, 3-, and 5-year survival. Furthermore,

using the ESTIMATE, SSGSEA, and MCP-counter methods,

we estimated the risk score from complement system-

associated genes that were positively associated with most

of immune cell infiltration and stroma components in the

TME of STAD. It is well known that the TME is typically

characterized into three categories (Sung et al., 2021):

immune-inflamed: immune activation and abundant

immune cell infiltration (Suzuki et al., 2016), immune-

excluded: abundant infiltration of immune cells but could

not penetrate the tumor parenchyma because of the retention

of stroma surrounding cancer nests (Han et al., 2021), and

immune desert: associated with immune tolerance and

ignorance, and lack of activated and priming T cells

(Lanitis et al., 2017). These three patterns had significantly

distinct TME cell infiltration characterization. In the present

study, the results showed that the high-risk group had a higher

abundance of immune cell infiltration and a larger ratio of

stroma component but poorer prognosis. According to these

results, it was reasonable to speculate that the TME of the

high-risk group was in accordance with the immune-excluded

subtype. Although a high infiltration of immune cells was

present in the TME, these immune cells were unable to

function for the recognition and elimination of cancer cells

because they were impeded by the abundant stromal element

(Zhang et al., 2020). We further assessed the expression levels

of these immunosuppressive gene markers and found that

CSRGS is related to immune checkpoint molecules (CD28,

CTLA4, HAVCR2, BTLA, TNFSF4, CD160, and TGFBR1)

FIGURE 7
Significance of the CSRG-based signature in chemotherapy and immunotherapy. (A) Sensitivity performance of six chemotherapy agents in the
high-risk and low-risk subsets (rapamycin, nilotinib, 5-fluorouracil, axitinib, DMOG, and JNK inhibitor VIII). (B) Differential expression levels of nine
immune checkpoint molecules (CD28, CTLA4, CD274, HAVCR2, BTLA, TNFSF4, CD160, PDCD1, and TGFBR1) between the high-risk and low-risk
patients. (C) Differential expression levels of nine immune checkpoint molecules (CD28, CTLA4, CD274, HAVCR2, BTLA,TNFSF4, CD160,
PDCD1, and TGFBR1) between the high-risk and low-risk patients. (C) Differential expression levels of nine chemokines (CCL2, CCL17, CCL18,
CCL22, CCR2, CCR5, CCR6, CXCL12, and CXCR4) between the high-risk and low-risk patients.
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and chemokines (CCL2, CCL17, CCL18, CCL22, CCR2,

CCR5, CCR6, CXCL12, and CXCR4). The resistance and

sensitivity of chemotherapy agents were analyzed to predict

the potential of CSRGs to determine the therapeutic effect.

These results indicate that the CSRG signature was a potential

model to determine which STAD patients are more inclined to

respond to ICIs and chemotherapy agents.

Among the three genes in the risk signature,

SERPINE1 protein is one important member of the serine

proteinase inhibitor E superfamily, and serine protease

inhibitors, termed as serpins, are key regulators of numerous

biological pathways that initiate inflammation, coagulation,

angiogenesis, apoptosis, extracellular matrix composition, and

complement activation responses (Richardson et al., 2006; Chen

FIGURE 8
Pathway enrichment analysis. (A) Representative pathway enrichment involved in immunity and cancer development. (B) Our association
analysis of survival, ICI gene expression, chemotherapy agents IC50, and tumor microenvironment in the low- and high-risk groups.

Frontiers in Genetics frontiersin.org12

Tong et al. 10.3389/fgene.2022.903421

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.903421


et al., 2021). It has been reported as the key player for poor

prognosis and carcinogenesis (Vachher et al., 2020; Wang et al.,

2021). Yang et al. (2019) discovered that SERPINE1 was elevated

in the gastric cancer tissues, and its upregulation contributes to

the proliferation, invasion, and migration of gastric cancer cells,

insinuating that SERPINE1 may be considered as a novel

biomarker for gastric cancer treatment. Several studies

indicated that SERPINE1 promoted tumor angiogenesis and

interacted with inflammatory factors, suggesting that

SERPINE1 may be related to the TME (Tan et al., 2021; Teng

et al., 2021). Complement factor H-related 3 (CFHR3), belonging

to the human factor H protein family, is a major regulator of the

complement system, which is associated with various immune

system diseases, such as age-related macular degeneration

(Schafer et al., 2021), macular degeneration (SanGiovanni

et al., 2017), IgA nephropathy (Jullien et al., 2018), atypical

hemolytic-uremic syndrome (Pouw et al., 2018), and systemic

lupus erythematosus (Zhao et al., 2011). Yang et al. (2021)

reported that the expression of CFHR3 was higher in

gallbladder carcinoma tissues than that in control tissues, and

higher CFHR3 was significantly correlated with poor prognosis,

but its role in stomach adenocarcinoma was hardly presented.

FIGURE 9
Construction and validation of a nomogram for the overall survival prediction in stomach adenocarcinoma. (A) Nomogram of TCGA cohort.
(B–D)Calibration curves of the nomogram for the estimation of overall survival rates at 1-, 3-, and 5- years in TCGA cohort. (E–G) Calibration curves
of the nomogram for the estimation of overall survival rates at 1-, 3-, and 5- years in the GEO validation cohort.
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Protein C (PROC), a vitamin K-dependent glycoprotein, is one of

the natural anticoagulants, which plays an important role in the

inhibition of blood coagulation (Winther-Larsen et al., 2020).

Hartmut Weiler reported that vascular endothelial cells are one

key anatomical locale on which the protein C pathway operates

to control complement, fibrinolysis, and vascular permeability,

and the protein C pathway regulates complement activation by

several mechanisms (Weiler, 2010). Protein C deficiency is a

heritable thrombophilia caused by numerous different genetic

alterations in the PROC gene, and protein C deficiency is

diagnosed based on the protein C plasma activity and antigen

level (Winther-Larsen et al., 2020). However, to the best of our

knowledge, no systematic study of PROC in cancer has been

reported.

Unlike the previous gene signature in STAD, our study was

the first complement system-associated gene signature, which

was thought to be highly associated with the immune status in

STAD. It can predict which STAD patients are more inclined to

respond to ICIs and chemotherapy agents. Our study would

present new insights into the association of the complement

system with immune status in STAD research.

However, this preliminary study has several limitations. First,

our prognostic model was both constructed and validated with

the retrospective data from public databases, and it needs to be

FIGURE 10
Differences of three-gene expression levels. (A) SERPINE1, (B) CFHR3, and (C) PROCmRNA expression levels were significantly different in the
unpaired tumor-adjacent normal TCGA STAD samples. (D) SERPINE1, (E)CFHR3, and (F) PROCmRNA expression levels were significantly different in
the paired tumor verse normal TCGA STAD samples. Relative expression levels of (H)SERPINE1, (I) CFHR3, and (J) PROC between AGS, HGC27, and
GES-1.
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verified on a large-scale and multicenter clinical cohort. Second,

our findings have to be validated by more in vitro and in vivo

experimental studies. Lastly, although we have tested the

predictive effectiveness of our model several times, the

intrinsic weakness is still inevitable.

Conclusion

In summary, a robust complement system-based

prognostic risk score named CSRGs was constructed and

validated in independent cohorts, and in the following

analysis, we concluded that CSRGs and the derived model

were significantly associated with immune cell infiltration in

STAD, providing new insights on the complement system

roles in anticancer immunity.
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