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Background: Nicotinamide adenine dinucleotide (NAD+) has emerged as a critical
regulator of cell signaling and survival pathways, affecting tumor initiation and
progression. In this study it was investigated whether circulating NAD+ metabolism-
related genes (NMRGs) could be used to predict immunotherapy response in ovarian
cancer (OC) patients.

Method: In this study, NMRGs were comprehensively examined in OC patients, three
distinct NMRGs subtypes were identified through unsupervised clustering, and an NAD+-
related prognostic model was generated based on LASSO Cox regression analysis and
generated a risk score (RS). ROC curves and an independent validation cohort were used
to assess the model’s accuracy. A GSEA enrichment analysis was performed to
investigate possible functional pathways. Furthermore, the role of RS in the tumor
microenvironment, immunotherapy, and chemotherapy was also investigated.

Result: We found three different subgroups based on NMRGs expression patterns.
Twelve genes were selected by LASSO regression to create a prognostic risk signature.
High-RS was founded to be linked to a worse prognosis. In Ovarian Cancer Patients, RS is
an independent prognostic marker. Immune infiltrating cells were considerably
overexpressed in the low-RS group, as immune-related functional pathways were
significantly enriched. Furthermore, immunotherapy prediction reveal that patients with
low-RS are more sensitive to immunotherapy.

Conclusion: For a patient with OC, NMRGs are promising biomarkers. Our prognostic
signature has potential predictive value for OC prognosis and immunotherapy response.
The results of this study may help improve our understanding of NMRG in OCs.
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BACKGROUND

Ovarian cancer (OC) is the deadliest gynecological cancer with
few initial symptoms and a poor prognosis (Webb and Jordan,
2017; Kossaï et al., 2018; Matulonis, 2018). It is the fifth leading
cause of cancer-related death in women, and fewer than 50% of
women survive beyond 5 years after diagnosis due to the rapid
emergence of chemoresistance coupled with the lack of effective
early detection strategies. A number of cancers, including OC,
have recently been treated with immunotherapy, although OC
patients are highly heterogeneous and some are immune to
immunotherapy (Roett and Evans, 2009; Ottevanger, 2017).
Furthermore, OC has a high probability of recurrence and
medication resistance (Tew, 2016; Sipos et al., 2021).
Therefore, a great deal of research is required to advance
understanding of disease etiology, identify risk factors, and
develop early detection methods and effective molecular
biomarkers.

It is believed that metabolic reprogramming plays a role in the
genesis of tumors. NAD+ plays a key role in maintaining cellular
homeostasis, genome stability, cell growth, cell death, and

immune responses (Newman and Maddocks, 2017; Pramono
et al., 2020; Navas and Carnero, 2021). In cells, NAD exists in two
states: oxidized (NAD+) and reduced (NADH). NAD+ stimulates
cancer cell growth by enhancing anaerobic glycolysis via
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and
lactate dehydrogenase (LDH). Most of exhibit increased ratios
of NAD+/NADH and NADP+/NADPH, implying that NAD+

plays a significant role in cancer (Nacarelli et al., 2020; Ghanem
et al., 2021; Wang et al., 2022). In addition, NAD+ acts as a
substrate of sirtuins, PARPs, and cADPRSs in many different
signaling pathways, including DNA repair, inflammatory
responses, posttranslational modifications, senescence, and
apoptosis (Sultani et al., 2017; Rajman et al., 2018; Zapata-
Pérez et al., 2021). Due to the ineffectiveness of traditional
anticancer therapies, researchers are seeking new therapeutic
targets. In this context, NMRGs could be a potential new
target. By investigating the role of NMRGs in OC, new
treatments can be developed and a better understanding of the
disease can be gained.

Bioinformatics techniques have made it possible for
researchers to study OC in greater detail in recent years. The

FIGURE 1 | Flowchart of this study.
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primary objective of this study is to create NMRG signals that
could provide insights into clinical treatment and prognosis for
patients with OC. Based on the expression levels of NMRGs, we
divided OC patients into two subgroups using The Cancer
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)
databases. Furthermore, we constructed a prognostic model of
OC patients based on NMRGs and generated an RS. We also
examined the model’s stability and the significance of RS in
clinical therapy. In summary, we successfully developed a risk
model for NAD+ that could be used in clinical therapy and
diagnostics.

MATERIALS AND METHODS

Ovarian Cancer Data Source and
Preprocessing
We retrieved RNA expression and clinical data from ovarian
cancer patients (Supplementary Table S1) in The Cancer
Genome Atlas (TCGA) and The Genotype-Tissue Expression
(GTEx) databases. Normal tissue/paracancerous tissue of OC in
GTEx was used as control. Tissues from patients with GSE26193
(Supplementary Table S2) were used as the validation dataset.
The GSE26193 annotation file is available at Affymetrix Human
Genome U133 Plus 2.0 Array (HG-U133_Plus_2). We converted
Fragments per kilobase (FPKM) values to transcripts per million
(TPM) for the TCGA cohort. Patients with missing survival
information were excluded from the study. The SVA package
of the R software is used to correct for the effects of batch
processing on data. We used the KEGG database (Pathway:

hsa00760) and the Reactome database (R-HSA-196807)
(Supplementary Table S3) to obtain NMRGs (Li C. et al.,
2022). The Immune Checkpoint Immunophenoscore (IPS) is a
good predictor of patient response to CTLA-4 and PD-1
immunotherapy. The Cancer Immunome Atlas (TCIA)
provided immunophenotyping score files for immune
checkpoint inhibitor (ICI) patients.

Ovarian Cancer Analysis Based on Online
Database
Metascape (http://metascape.org/gp/) is a gene-annotation and
analysis tool commonly used in genetic research. (Zhou et al.,
2019; Han et al., 2021; Ye et al., 2021). The Metascape database
was used to perform Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses NMRGs.

The Cancer Genome Project (CGP, https://cancer.sanger.ac.
uk/cosmic) is one of the most comprehensive databases exploring
the impact of somatic mutations in human cancer. We analyzed
the tumor mutational status of Ovarian Cancer based on
COSMIC (Jubb et al., 2018; Sondka et al., 2018).

Construction and Verification of NAD+

Metabolism-Related Genes Signatures
We performed unsupervised consensus clustering to elucidate
the relationship between NAD+ metabolic subtypes and
prognosis. We used the R package “ConsensuClusterPlus”
and repeated 1,000 times to guarantee the stability of the

FIGURE 2 | Functional enrichment of NMRGs and visualization of interactome analysis results. (A)Metascape enrichment analysis for the NMRGs. (B)Metascape
enrichment network visualization showing the intra-cluster and inter-cluster similarities of enriched terms. (C)Metascape visualization of the interactome network formed
by NMRGs candidates, where the MCODE complexes are colored according to their identities.
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clustering (Wang et al., 2020; Wu et al., 2021a). Using the
consensus clustering approach, determine the optimal
numbers of clusters. Significant DEGs are present in several
subtypes, and they were subjected to univariate Cox regression
analysis to further screen DEGs linked with OC prognosis.
After that, these genes were subjected to LASSO regression
analysis to find more useful prognostic factors. Finally, 12
genes strongly connected to OS, and an RS was generated for
each OC patient based on the expression levels of these genes
and the Cox regression coefficient (Cao et al., 2020; Liang et al.,
2020; Zhao et al., 2021). According to the median risk score,
OC patients were divided into high-risk and low-risk
subgroups. The prognostic prediction performance can
evaluate using Kaplan-Meier survival analysis and time-
dependent ROC curves. The validation cohort for the model
was GSE26193. Cox regression analysis, both univariate and
multivariate, was used to see if RS may be an independent
prognostic factor in OC patients.

GSVA Enrichment Analysis
We used the “GSVA” R software tool to perform GSVA
enrichment analysis to learn more about the differences in
functional pathways and biological processes between distinct
subtypes and high- and low-RS groups. For functional
annotation, the R package “cluster profile” was used, and the
gene set file (c2. cp.kegg.v7.2. symbols.gmt) was obtained from
the MSigDB database (https://www.gsea-msigdb.org) (Sun et al.,
2020; Chen L. et al., 2021; Wu et al., 2021b).

Tumor Microenvironment Analysis
The “ESTIMATE” package was used to predict the composition
of the immune stroma in the tumor microenvironment (TME) of
Ovarian Cancer patients, as well as to calculate Immune Score,
Stromal Score and ESTIMATE Score (Fan et al., 2021; Li Y. et al.,
2022). The ssGSEA algorithm was used to quantify dissimilarities
in immune cell infiltration subsets and immune function
enrichment between high- and low-RS groups. ssGSEA is a

FIGURE 3 | Analysis of the relationship between TP53 and NMRGs. COSMIC database analysis of OC mutation distributions (A) and its types (B, C). (D) Lollipop
charts of the mutated TP53 gene, the figure caption shows the somatic mutation rate, and the subheadings shows the name of somatic mutation. (E) TP53 was
significantly overexpressed in the tumor group. (F) The relationship between TP53 and immune infiltrating cells. (G) Relationship between TP53 and NMRGs. (H–K)
Differences in the expression levels of NMRGs between the TP53 mutant group and the wild-type group. *p < 0.05, **p < 0.01, ***p < 0.001.
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popular enrichment algorithm extensively utilized in medical
studies (Liu et al., 2021; Liu et al., 2022a; Liu et al., 2022b; Liu
et al., 2022c).

Statistical Analysis
All statistical analyses are performed by the use of R version 4.1.2.
ifferentially expressed genes (DEGs) were identified using the R
package “limma,” and survival analysis was performed using the
“survival” and “survminer” packages (Ritchie et al., 2015). The
“ggplots” software was used to create the volcano and heatmaps.
The IC50 of chemotherapeutic medicines was predicted using the
“pRRophetic” software (Geeleher et al., 2014; Wang et al., 2021).
All statistical studies used two-sided, and p < 0.05 was considered
to be significant.

RESULTS

Identification and Functional Enrichment
Analysis of NAD+ Metabolism-Related
Genes
Figure 1 depicts the study’s analysis process. The prognostic
research revealed that most NMRGs were strongly linked
with OC prognosis, implying that NMRGs play a key role in
OC (Supplementary Figure S1). We performed a functional
enrichment analysis of NMRGs using the Metascape database
and found that they were significantly enriched in
metabolism-related available pathways, including columns
Nicotinate and nicotinamide metabolism, Nicotinate

FIGURE 4 | Identification of NMRGs-related subtypes in OC patients. (A) A risk network for NMRGs. (B) Consensus clustering cumulative distribution function
(CDF) for k = 2 to 9. (C)Relative change in area under the CDF curve for k = 2 to 9. (D)K = 3was a relatively stable distinction of the samples in the OC dataset. (E)Kaplan-
Meier survival curve showing the relationship between NMRGs-related subtypes and overall survival. (F) Principal component analysis (PCA) analysis of NMRGcluster.
The heatmap shows the clinical characteristics of different subtypes of TCGA (G) and GEO (H) patients.
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metabolism, NAD+ metabolism, NAD metabolic process,
regulation of small molecule metabolic process, regulation
of cellular ketone metabolic process, Pyrimidine metabolism,
and regulation of reactive oxygen species metabolic activities
(Figure 2A). Figure 2B illustrates the link between
enrichment pathways. In addition, we identified the
regulatory networks of crucial proteins in NMRGs using
protein interaction enrichment analysis, and we discovered
that they were mainly connected with nicotinate and
nicotinamide metabolism, nicotinate metabolism,
metabolism of water-soluble vitamins and cofactors,
nicotinate and nicotinamide metabolism, pyridine-
containing compound metabolic process, and nucleotide
biosynthetic process (Figure 2C). Another important
finding was that most NMRGs were dysregulated in OC.
NAXE, RNLS, PNP, NT5DC4, PARP9, NMNAT2, RDH14,
CD38 were significantly higher expressed in OC compared
to normal tissues, while NAXD, AOX1, PAPR6, SLC5A8,
NT5C, ENPP1, NADSYN1, SIRT2, PTGIS, NT5C2, NMRK1,
NMNAT3 were significantly lower expressed in OC
(Supplementary Figure S2).

Analysis of the Relationship Between TP53
and NAD+ Metabolism-Related Genes
Based on the COSMIC database, we looked at the mutation
status of OC (Figure 3A) and discovered that missense
substitution and G > A mutations were most common
(Figures 3B,C). We also provide a lollipop plot of the
distribution of mutations in the TP53 gene based on the
TCGA data, as TP53 is the gene with the highest mutation
frequency in OC (Figure 3D). TP53 was also strongly
expressed in OC tissues (Figure 3E) and had a significant
positive link with several immune-infiltrating cells such as
NK cells, TCM, and Eosinophils (Figure 3F). Furthermore,
we analyzed the relationship between TP53 and NMRGs, we
found that TP53 was positively correlated with NADK,
NAXD, NMRK2, NT5C2, NT5C1B, PARP16, PARP4,
PARP8, QPRT, RNLS, SIRT1, SIRT3, SIRT5, and with
NAXE, NNMT has a negative correlation (Figure 3G).
Further study found that the TP53 mutant group tended to
have higher NADK2 (Figure 3H), PARP14 (Figure 3J),
NT5DC4 (Figure 3K) expression, and lower ENPP3
(Figure 3I) expression.

FIGURE 5 | Identification of functional pathway enrichment and immune cell infiltration between different subtypes. (A–C) GSVA enrichment analysis shows the
activation states of biological pathways in different subtypes. The heat map was used to visualize these biological processes, and red represented activated pathways
and blue represented inhibited pathways. (D) Tumor microenvironment analysis of NMRGcluster subtypes. *p < 0.05, **p < 0.01, ***p < 0.001.
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Identification of NAD+ Metabolism-Related
Genes-Related Subtypes in Ovarian Cancer
Patients
NMRGs have long been thought to have a crucial function in OC.
For further analysis, we created NMRG’s risk network by
combining the OC patient data from the TCGA and GEO
databases into one cohort with the batch correction to remove
differences between the data. Findings revealed that most
NMRGs show positive correlation relationships and may be
risk factors for OC (Figure 4A). The “Consensus Cluster Plus”
R software was used to classify OC patients based on NMRG
expression level (Figures 4B–D). The best stable clustering result
came from this analysis when k = 3. We discovered three distinct
subgroups: NMRG cluster A, NMRG cluster B, and NMRG
cluster C, respectively. According to the predictive analysis
results, patients with NMRG cluster C had a considerably
worse outcome (p = 0.017; Figure 4E). PCA analysis revealed
that the NMRG clusters were divided into three discrete clusters
(Figure 4F). The heatmap also depicts the clinical characteristics

of several subgroups of TCGA (Figure 4G) and GEO (Figure 4H)
patients (Supplementary Table S4). Furthermore, we found that
patients with NMRG cluster C had higher TP53 mutation
frequencies and lower TP53 expression levels (Supplementary
Figure S3).

Identification of Functional Pathway
Enrichment and Immune Cell Infiltration
Between Different Subtypes
Results of GSVA enrichment analysis (Figure 5A) depicted that
NMRGcluster B was mainly enriched in apoptosis and signaling
related pathways, such as RIG I like receptor signaling pathway,
Cytosolic DNA sensing pathway, Apoptosis, Antigen processing
and presentation, T cell receptor signaling pathway, B cell
receptor signaling pathway, JAK STAT signaling pathway,
NOD like receptor signaling pathway, and Toll-like receptor
signaling pathway. According to Figures 5B,C, TGF beta
signaling route, Wnt signaling pathway, Melanoma, Glioma,
Cancer pathways, Focal adhesion, JAK STAT signaling

FIGURE 6 | Development and verification of risk signatures associated with NMRGs in OC. (A) Cross-validation for tuning parameter selection in the lasso
regression. (B) Validation was performed for tuning parameter selection through the least absolute shrinkage and selection operator (LASSO) regressionmodel for overall
survival (OS). (C) Training cohort, Kaplan-Meier survival analysis of high and low RS subgroups. (D) Validation cohort, Kaplan-Meier survival analysis of high and low RS
subgroups. (E) Training cohort, patient’s survival status. (F) Training cohort-RS distribution of patients. (G) Training cohort-PCA analysis. (H) Training cohort-plots
of the AUC for time-dependent ROC performance. (I) Validation cohort, patient’s survival status. (J) Validation cohort-RS distribution of patients. (K) Validation cohort-
PCA analysis. (L) Validation cohort-plots of the AUC for time-dependent ROC performance.
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pathway, T cell receptor signaling pathway, B cell receptor
signaling pathway, Mark signaling pathway were prominent in
NMRG Cluster C. Furthermore, the intricacy of immune cell
infiltration among the three species subtypes was revealed by
ssGSEA enrichment analysis. Immune cell infiltration was lowest
in NMRG cluster A. Most of the immune cells, such as activated
B cells, activated dendritic cell, CD56dim natural killer cell,
Eosinophilia, Gamma delta T cell, Immature B cell, and
Immature dendritic cell, were abundant in NMRG cluster C
(Figure 5D).

Development and Verification of Risk
Signatures Associated With NAD+

Metabolism-Related Genes in Ovarian
Cancer
We discovered 91 shared genes across the 3 categories to further
investigate the association between NMRGs-related subtypes and
prognosis (Supplementary Figure S4; Supplementary Table S5).
Univariate COX analysis was performed on TCGA data to screen
genes associated with prognosis. The LASSO regression method
was used to further develop the OC prognostic model and

establish a risk score (RS). Finally, risk signatures for 12 genes
were discovered (Figures 6A,B). The risk score is calculated as
follows: RS = (−0.083 * CXCL11 exp.) + (0.070 * VSIG4 exp.) +
(0.009 * MS4A7 exp.) + (0.002 * SULF1 exp.) + (0.052 * SIRPA
exp.) + (0.069 * RARRES1 exp.) + (−0.059 * IGHG1 exp.) +
(−0.047 * PIGR exp.) + (0.063 * ZFP36 exp.) + (0.029 * OGN exp.)
+ (0.001 * MXRA8 exp.) + (−0.070 * FBLN2 exp.).

According to the median value of RS, OC patients were
divided into low-risk group and high-risk group, and the cut-
off value was 1.102, that is, patients with RS greater than 1.102
were in the high-risk group, and those with RS less than 1.102
were in the low-risk group. The GSE26193 cohort was used as
the validation cohort and its RS was evaluated in the same way.
The training cohort (p < 0.001; Figure 6C) and the validation
cohort (p = 0.044; Figure 6D) showed that patients with high
RS had a significantly worse prognosis. The patient’s survival
status (Figures 6E,I) and risk distribution were also explored
(Figures 6F,J). The PCA analysis revealed that RS has a more
remarkable ability to separate patients into two classes
(Figures 6G,K). The AUCs of the training cohort at years
1, 3, and 5 were 0.715, 0.672, and 0.733, respectively
(Figure 6H), and the AUCs of the validation cohort at

FIGURE 7 | The relationship between RS and tumor microenvironment. (A) GSVA enrichment analysis shows the activation states of biological pathways in
different subtypes. The heat map was used to visualize these biological processes, and red represented activated pathways and blue represented inhibited pathways.
(B) Comparison of TME scores between low- and high-risk groups. (C) The relationship between RS and RNAss. (D) Comparison of the infiltration of 16 immune cells
between low- and high-risk group. (E) Comparison of the immune functions between low- and high-risk group. *p < 0.05, **p < 0.01, ***p < 0.001.
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years 1, 3, and 5 were 0.624, 0.683, and 0.653, respectively,
confirming the model’s stability (Figure 6L). The prognostic
Nomogram plot analysis results revealed that RS was a good
predictor of OC patient’s prognosis (Supplementary Figure
S5). The results of univariate and multivariate COX analysis of
TCGA and GEO data further indicated that RS was an
independent prognostic factor in patients with OC
(Supplementary Figure S6).

The Relationship Between Risk Score and
Tumor Microenvironment
We discovered enhanced functional pathways between high-
and low-RS groups to investigate further the applicability
usefulness of our created RS in Ovarian Cancer. The high-
RS group was found to be significantly associated with several
cancer-related pathways, including colorectal cancer,

endometrial cancer, non-small cell lung cancer, pathways in
cancer, prostate cancer, small cell lung cancer, chronic myeloid
leukemia, erbb signaling pathway, renal cell carcinoma,
glioma, wnt signaling pathway, notch signaling pathway
(Figure 7A). This result further revealed that patients in the
high-risk group had a poor prognosis, multiple cancer-
regulated pathways were enriched in the high-risk group,
and different cancers may have crosstalk between NMRGs.
The high-RS group had a higher stromal score and estimate
score (Figure 7B), and was adversely connected with tumor
stemness, according to study (Figure 7C). Furthermore, the
results of immune cell infiltration analysis revealed that the
high RS group had lower immune infiltrating cell enrichment
and immune function pathways, such as aDCs, B cells, CD8+

T cells, DCs, NK cells, APC co inhibition, Checkpoint,
Cytolytic activity, HLA, and Inflammation promoting gene
(Figures 7D,E).

FIGURE 8 | Application of RS in immunotherapy and chemotherapy of OC patients. Immunotherapy in patients with high- and low-RS groups (A) CTLA4− PD1−;
(B) CTLA4+ PD1+; (C) CTLA4+ PD1−; (D) CTLA4− PD1+. Analysis of drug sensitivity in high- and low-RS groups (E–P).
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Application of Risk Score in Immunotherapy
and Chemotherapy of Ovarian Cancer
Patients
The potential NMRGs-related RS to predict the prognosis of OC
patients has been demonstrated. We gathered immunotherapy
data of OC patients from the TCIA database to further enhance
the clinical application value of RS, and we discovered that
patients with low-RS tend to have higher IPS scores, are more
responsive to immune checkpoint blockade therapy (PD1/
CTLA4), and may have superior efficacy (Figures 8A–D). The
TIDE algorithm further validated our conclusion that patients in
the low-risk group were more sensitive to immunotherapy
(Supplementary Figure S7). In addition, we compared the
IC50 of common chemotherapeutic drugs in high and low-RS
patients, and found that, except for Metformin (Figure 8O), most
drugs had lower IC50 scores in high-RS patients, indicating high-
RS patients were more susceptible to these drugs (Figure 8E–N),
except for Metformin (Figure 8O), Gefitinib (Figure 8P).

DISCUSSION

OC is one of the most dangerous gynecological cancers, with a
significant mortality rate. Despite improvements in OS survival rates
over the past 30 years, the 10-year survival rate for most patients
remains low (Wu et al., 2020; Yang et al., 2020; Morand et al., 2021).
Early symptoms of OC are subtle, and there are no reliable
prognostic markers. As a coenzyme of redox reaction in the
cytoplasm and mitochondria, NAD+ is essential for most basic
biological functions in the cell (Li et al., 2019; Sharif et al., 2019;
Palavalli Parsons et al., 2021). Although there is growing evidence
that individuals with OC have altered NAD+ metabolism-related
molecules or chemicals, no research on the NAD+ metabolic
signature of OC prognosis have been reported (Fang et al., 2015;
Chen J. et al., 2021; Challa et al., 2021; Valabrega et al., 2021).

In this study, we used public databases to gather OC
expression profile data and comprehensively examined the
involvement of NMRGs in OC. The majority of the NMRGs
were show to be significantly linked with the prognosis of OC.
TP53 is a well-known tumor suppressor that plays a critical
function in cell cycle regulation (Schuijer and Berns, 2003;
Vitale et al., 2020). We discovered that TP53 has a high
mutation frequency in OC that TP53 expression levels were
connected with the expression levels of multiple NMRGs,
highlighting the necessity of investigating NMRGs even more.
We divided OC patients into three subtypes based on NMRG
expression levels, with the NMRGcluster C subtype having the
highest chance of survival. In addition, using the LASSO
regression analysis method, we built a predictive model
combining 12 genes based on the differential genes between
the three subtypes, which was confirmed in the GEO dataset.
RS was an independent predictor of OC patients in both
univariate and multivariate Cox regression analyses. The
tumor microenvironment study revealed that RS may be used
to characterize the tumor microenvironment of OC patients, with
patients with high-RS having poor prognosis and decreased

immune-infiltrating cells enrichment. We also discovered that
RS might be used to guide clinical treatment and patients with
low-RS are more likely to respond to immunotherapy. The results
of the medication sensitivity study between high- and low-RS
groups were also helpful in treating OC patients.

In this study, we developed a model that contains 12 NMRG
signatures, which could help in the prognosis and clinical treatment of
OC patients. We acknowledge, however, that our research has some
limitations. TheROC results of the validation cohort were low, and the
modelmay have certain errors in predicting the prognosis of someOC
patients. In addition, further in vitro and in vivo experiments are
required to validate our results, especially the model’s prediction of
response to immunotherapy and chemotherapy.

CONCLUSION

Overall, we identified a new prognostic NMRGs signature of OC
patients. This signature may help to develop new OC molecular
targets and explore more effective immunotherapy strategies.
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