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The molecular heterogeneity of cancer is one of the major causes of drug resistance that
leads to treatment failure. Thus, better understanding the heterogeneity of cancer will
contribute to more precise diagnosis and improved patient outcomes. Although single-cell
sequencing has become an important tool for investigating tumor heterogeneity recently, it
lacks the spatial information of analyzed cells. In this regard, spatial transcriptomics holds
great promise in deciphering the complex heterogeneity of cancer by providing
localization-indexed gene expression information. This study reviews the applications of
spatial transcriptomics in the study of tumor heterogeneity, discovery of novel spatial-
dependent mechanisms, tumor immunemicroenvironment, andmatrix microenvironment,
as well as the pathological classification and prognosis of cancer. Finally, future challenges
and opportunities for spatial transcriptomics technology’s applications in cancer are also
discussed.
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INTRODUCTION

According to the global cancer data released by the International Agency for Research on Cancer
(IARC), 19.29 million new cancer cases occurred worldwide in 2020, with a gender ratio of
approximately 1.09:1 (Sung et al., 2021). At the same time, 9.96 million cancer deaths occurred
worldwide, among which breast cancer ranks first in terms of incidence rate, while lung cancer ranks
first in terms of mortality rate. Due to its high morbidity and mortality rates, the prevention and
treatment of cancer have always been a major public concern worldwide.

Malignant tumor is characterized by considerable heterogeneity, which includes intertumor
heterogeneity and intratumor heterogeneity (Wu et al., 2021). Intertumor heterogeneity mainly
refers to the differences found between different malignant tumors and that of the same tumor
among different patients. However, intratumor heterogeneity refers to the diversity of gene mutation
spectrum and biological characteristics between tumor cells in different parts of the patient and in
homogeneous tumors (Kalasekar et al., 2021). Tumor heterogeneity results from internal and
external factors. Internal factors mainly include genomic instability and epigenetic variation (Bao
et al., 2021). Among them, genetic instability (including mutation, chromosome instability, etc.) is
the main internal cause of tumor heterogeneity. Additionally, epigenetic variation is another
important internal factor of heterogeneity, which refers to the modifications of genes without
changing the DNA sequence. This regulatory mechanism mainly includes DNA modification,
chromatin accessibility, or gene expression regulation at the post-transcriptional level, which can
affect gene expression and may lead to different phenotypes of tumor cells (Carter and Zhao, 2021;
Haffner et al., 2021). The evolution of heterogeneous tumors conforms to the branch evolution
model, that is, tumor cells obtain different mutations in the process of tumor development. In the
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theory of branching evolution, genomic instability leads to
different genetic changes and different growth potentials of
tumor cells. Epigenetic regulates the expression of tumor genes
and forms different phenotypes. Both promote the tumor
heterogeneity. However, external factors are mainly related to
the tumor microenvironment (TME) (Bao et al., 2021). TME is
mainly composed of tumor cells, immune cells, and stromal cells.
Immune cells in innate and adaptive immune systems infiltrate
into the TME, play the function of immune surveillance, and
regulate the progress of tumor. Innate immune cells in solid
tumors mainly include neutrophils, macrophages, dendritic cells
(DC), mast cells, natural killer cells (NK cells), and myeloid
inhibitory cells (MDSC), while adaptive immune cells mainly
include T and B cells. Moreover, some nontumor-stromal cells
(endothelial cells, fibroblasts, pericytes, and mesenchymal cells)
are associated with these immune cells (Figure 1). All these cells
and their secreted factors and molecules constitute the TME,
which influences the drug resistance, immune escape, and
metastasis of tumors (Chen et al., 2021).

In clinical practice, the treatment of cancer mainly includes
surgery, radiotherapy, chemotherapy, targeted therapy, and
immunotherapy. Unfortunately, treatment failure often occurs
because drug resistance exists in all cancer therapeutic modes.
The biological determinants of drug resistance include tumor

growth kinetics, tumor heterogeneity, physical barriers, immune
system, TME, and undruggable genome (Khatoon et al., 2020).
Among these determinants, tumor heterogeneity is the main
cause (Dagogo-Jack and Shaw, 2018). Tumor heterogeneity is
normally reflected in its development, proliferation, invasion
ability, and drug sensitivity (Wu et al., 2021; Bao et al., 2021;
Kalasekar et al., 2021), thereby resulting in low therapeutic
efficacy and high tumor recurrence rates. Studies have
confirmed that the generation of acquired drug resistance is a
direct consequence of primary tumor heterogeneity. Tumor
heterogeneity either directly affects therapeutic targets or
shapes the TME by defining transcriptomic and phenotypic
profiles to influence drug resistance (Lawson et al., 2018;
Marusyk et al., 2020; Hou et al., 2017) to modulate
progression and therapeutic responses of tumor (McGranahan
and Swanton, 2017).

Cancer immunotherapy is the treatment of cancer patients by
stimulating the immune system to fight the disease (Van den Bulk
et al., 2018). In addition to injecting cytokines and antibodies,
directly inputting activated immune cells is also an important
means of immunotherapy, known as immune cell therapy
(Mizukoshi and Kaneko, 2019). There are at least five types of
immune cell therapies so far, including LAK (lymphokine
activated killer cells), TIL (tumor-infiltrating lymphocytes),

FIGURE 1 | Illustration of the heterogeneity of a tumor. Cancer cells, immune cells, and stromal cells are the major components of a tumor. The interaction between
microenvironment and different tumor cells makes cancer cells possess different growth potential and proliferation abilities. Cancer stem cells are the source of tumor
occurrence. In the process of treatment, although most cancer cells can be eliminated through chemotherapy, drug treatment, or surgery, they can still relapse or
metastasize through blood vessels and produce drug resistance. Additionally, the temporal and spatial heterogeneity of tumors will also lead to the differences in
tumor treatment schemes and treatment efficacies at different times.
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CIK (cytokine-induced killer cells), DC-CIK (dendritic cell-
cytokine induced killers), CAR-T (chimeric antigen receptor
T cell) (Weber et al., 2020). However, immune cell therapy
faces many challenges in solid tumors, including addressing
tumor antigen heterogeneity, stromal disorders, and tumor
accessibility, thereby managing toxicity and side effects (Cable
et al., 2021). Moreover, the interdependent cellular composition,
proportion, location, and motility in the TME demonstrate
important effects on cancer immunotherapy efficacy (Pinato
et al., 2020). Therefore, visualization of anti-tumor cells in the
TME and exploring their interactions may help us identify
patients who can benefit from treatments via better assessment
of tumor heterogeneity, which is related to drug resistance and
immune escape.

METHODS FOR TUMOR HETEROGENEITY
DISSECTION

Traditional methods for studying tumor heterogeneity mainly
include immunofluorescence staining and flow cytometry (FCM)
(Aldag et al., 2021). However, several major limitations of these
methods exist, such as laborious and time-consuming processes,
as well as low throughput in terms of genes that can be analyzed
simultaneously, thereby holding back their wide applications in
tumor heterogeneity study. Additionally, before the development
of single-cell sequencing, a mathematical modeling method is
often used for reconstructing tumor heterogeneity based on bulk
sequencing, which is called tumor deconvolution (Schwartz
Schäffer, 2017). Single-cell RNA sequencing (scRNA-seq)
technology is an ideal tool for deciphering the heterogeneity in
cell population. Compared to the conventional bulk sequencing
approaches, single-cell sequencing possesses advantages for
cancer heterogeneity studies in several aspects. First, scRNA-
seq can help analyze the heterogeneity previously hidden in cell
populations (Lei et al., 2021). Its application in tumor
heterogeneity includes identifying rare or undefined cell types
in tumors (Wagner et al., 2019; Wu et al., 2021) and classifying
cell clusters according to their gene expression profiles (Ma et al.,
2019). Second, scRNA-seq can also be applied to study the
development trajectory of the classified clusters and determine
the source of tumor cells (Zheng et al., 2017; Hu et al., 2021).
Additionally, the mechanism of tumor heterogeneity and drug
resistance can also be analyzed through the analysis of single-cell
data (Sathe et al., 2020; Wang et al., 2021). Although scRNA-seq
helps researchers better identify tumor cell subpopulations, this
technology requires tissue digestion to release cells from their
natural niches, thereby missing the original location
coordinates of those cells. Nevertheless, the state of cancer
cells is highly dependent on the precise spatial location and
their interactions with adjacent cells. The lack of original
location information of cells makes it difficult for scRNA-
seq to study the functional interactions among different tissue
regions. Thus, methods that can preserve the localization
information of expressed genes have been developed and
are recognized as spatial transcriptomic technologies (Asp
et al., 2020).

SPATIAL TRANSCRIPTOMIC
TECHNOLOGIES

Visualizing gene expression in situ at the transcriptomic level can
be achieved by RNA in situ hybridization (ISH) (Chu et al., 2019).
However, conventional methods based on riboprobes often lack
specificity and sensitivity. Also, the number of targets that can be
analyzed simultaneously using conventional RNA ISH is limited
by spectrally distinct labels. The RNAscope technology exhibits a
unique probe design strategy, which allows signal amplification
and background inhibition at the same time. It can realize single-
molecule visualization and retain tissue morphology (Wang et al.,
2012). The laser micro-dissection (LCM) technique is an early
technology that can achieve high-throughput gene expression
profiling in situ. LCMdirectly captures cell populations of interest
from a complex heterogeneous tissue under a microscope (Espina
et al., 2006). Thus, the captured cells can be subjected to various
analytical procedures, e.g., RNA sequencing (RNA-seq) that
exhibits high coverage and is capable of detecting almost all
expressed genes in the region-of-interest of a sample. However,
the cumbersome experimental processes and low-throughput
hinder LCM to become a widely used spatial transcriptomic
technology. Currently, mainstream spatial transcriptomic
technologies are generally divided into two categories: the
next-generation sequencing (NGS)–based approaches that uses
barcoded primers to encode the positional information into
individual transcripts before next-generation sequencing and
the imaging-based approaches consist of the in situ
sequencing-based methods wherein transcripts are amplified
and sequenced in the tissue and the in situ hybridization-
based methods wherein imaging probes are sequentially
hybridized in the tissue (Rao et al., 2021) (Lewis et al., 2021).

In the first approach, RNA molecules in their original
positions are released and captured by reverse transcription
primers immobilized on the solid phase to generate cDNAs
that integrated positional barcodes from the primers
(Veselinyová et al., 2021). The tissue was fixed, stained,
imaged, and permeabilized. During the penetration process,
mRNA molecules spread vertically onto the chip surface and
poly(A) tail of mRNA hybridized with the ploy d(T) reverse
transcription (RT) primers, followed by reverse transcription in
situ. Then, the resultant position barcoded cDNA is sequenced so
that the expressed genes can be mapped back to their original
tissue context by decoding. This is the first technology that is
named spatial transcriptomics (ST). In the original ST, the
capture area consists of 1,040 spots with a diameter of
100 μm. However, after 10x Genomics acquired this
technology, it has been upgraded to 4,992 spots, with a
smaller diameter of 55 μm, thereby providing higher
resolution. With its commercial name Visium, since then, this
new ST technology has been widely used, especially in the field of
tumor research (Nerurkar et al., 2020; Maniatis et al., 2021). To
provide an even higher spatial resolution, Chen et al. developed
Slide-seq technology, which exploited unique DNA barcode
encoded microbeads so that 10 μm resolution can be achieved
in this way (Rodriques et al., 2019). However, these beads are
deposited on the slide surface in a randommanner such that their
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barcodes are required to be decoded by sequencing first to link
their spatial location information with the captured RNAs. The
decoding procedure may hinder its production efficiency and
increase the costs.

The imaging-based spatial transcriptomic approaches can be
divided into in situ sequencing-based methods and in situ
hybridization-based methods. The first in situ sequencing (ISS)
method was developed by Ke et al. in 2013, based on the original
single-molecule RNA detectionmethod using padlock probes and
rolling circle amplification (RCA) (Ke et al., 2013; Larsson et al.,
2010). In the original ISS, barcoded padlock probes were used to
be ligated onto cDNAs generated from their target RNAs. After
RCA for signal enhancement, barcodes are decoded using the
sequencing-by-ligation chemistry. By linking the coordinate
information from taken images and the decoded gene-specific
barcodes, expressed RNAs are detected in their native tissue
context. Several in situ sequencing methods have also been
developed, such as fluorescent in situ sequencing (FISSEQ)
(Lee et al., 2014), spatially-resolved transcript amplicon

readout mapping (STARmap) (Wang et al., 2018), barcoded
oligonucleotides ligated on RNA amplified for multiplexed and
parallel in situ analyses (BOLORAMIS) (Liu et al., 2021), and
expansion sequencing (ExSeq) (Alon et al., 2021). For in situ
hybridization-based spatial transcriptomic methods, single-
molecule fluorescence in situ hybridization (smFISH) can be
regarded as their basis. Lubeck, et al. first showed that it is
possible to perform sequential rounds of smFISH on the same
RNA molecules, and different RNA species can be distinguished
using the orders of dye labeling (Lubeck et al., 2014).
Multiplexed error-robust fluorescence in situ hybridization
(MERFISH) is another hybridization-based spatial
transcriptomic method that is based on smFISH (Hospital
et al., 2015). By sequential imaging using combinatorial probe
sets as well as exploiting hamming code error correction in the
barcoding strategy, MERFISH is able to detect thousands of
genes at the same time. However, seqFISH+ achieved
detection of 10,000 genes simultaneously using a similar
probe design as in MERFISH (Chee-Huat et al., 2019),

FIGURE 2 | Illustration of image-based spatial transcriptomic technologies.
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thereby achieving transcriptome-level gene expression
profiling.

Diagrams to explain the principle of spatial transcriptome
technologies based on imaging and capture are shown in Figure 2

and Figure 3. Their advantages and drawbacks are summarized
and compared in Table 1. By acquiring gene expression profiles,
these ST technologies can be used to analyze the cell composition
and their distribution in the TME, based on which their spatial

FIGURE 3 | Illustration of spatial transcriptomic technologies based on in situ capture and next-generation sequencing.

TABLE 1 | Advantages and disadvantages of spatial transcriptomic technologies.

Classification Method Advantage Resolution Limitations References

Methods based on
imaging

Sm FISH High efficiency Single cell/
subcellular

RNA detected is limited Lubeck et al. (2014)
Fresh-frozen and FFPE Signals are required to be non-

overlapping
FISSEQ Each genomic site will have multiple

probes
Single cell/
subcellular

Probes need to be designed in
advance

Lee et al. (2014)

Strong signal
Seq FISH Overcome optical congestion Single cell/

subcellular
High multiple need high cost Chee-Huat et al.

(2019)
MERFISH High efficiency Single cell/

subcellular
RNA detected is limited Hospital et al. (2015)

ISS Fresh-frozen & FFPE Single cell/
subcellular

Probes need to be designed in
advance

Ke et al. (2013)
Detecting small RNA fragments

STAR map High efficiency Single cell/
subcellular

Low throughput (Wang et al., 2018)

Baristaseq Low autofluorescence background Close to single cell Displayed only on cultured cells (Chenxy et al., 2018)
Methods based on
capture

LCM Target selection Single cell Incomplete tissue and cell Espina et al. (2006)
Visium/ST High throughput 1–10 cells Single cell resolution cannot be

achieved
Nerurkar et al. (2020)

Higher sensitivity Expensive Maniatis et al. (2021)
Shorter experimental cycle

Slide-seq High throughput Close to single cell Low magnetic bead capture efficiency Rodriques et al.
(2019)
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trajectories and interactions can also be constructed. Thus, they
help us better understand the pathogenesis, prognosis prediction,
treatment, and prevention of cancer.

IN SITU CELL TYPING BY SPATIAL
TRANSCRIPTOMICS

With ST, it is possible to visualize different types of cells within
tissue sections based on the spatial gene expression profiles. To
reveal heterogeneity, researchers from Australia’s Institute of
Natural Genetics developed a bioinformatic method called
SCSubtype. First, they studied the biological pathways driving
intratumor transcriptional heterogeneity (ITTH) and focused on
574 ITTH-related genes. These genes were divided into seven
gene modules (GMs) with different functional characteristics.
Through SCSubtype, they could classify, group, and analyze the
functional enrichment of cells in breast recurrent tissues and
score cells based on GMs (Wu et al., 2021). Next, to identify the
cellular composition and malignant epithelial cells of primary
breast cancer, they used canonical and cluster markers. Among
them, genes associated with tumor metastasis and tumor cell
proliferation, such as SPP1, GSTA1, MAL2, and MGST1, were
highly expressed in LUSC, and significant enrichment of
pathways associated with epithelial–stromal transformation
was observed in the LUSC of spatial TME, thereby suggesting
that LUSC exhibited a stronger invasive ability to transfer directly
to the surrounding lymph nodes (Wu et al., 2021). The cellular
composition and structure of human squamous skin cancer and
normal skin were identified by single-cell sequencing combined
with spatial transcriptome and multiplexed ion beam imaging by
Ji et al. Cells were clustered into seven groups, including
epidermal cells, fibroblasts, melanocytes, endothelial cells, NK/
T cells, B cells, plasma cells, and myeloid cells. A specific
subpopulation is found (MMP10+ and PTHLH+) in normal
skin and epithelial cells, called the tumor-specific keratinocytes
(TSK)-specific subgroup. Spatial transcriptomic results indicate
that TSKs, basal tumor cells, and the fibrovascular niche adjacent
to TSK constitute the heterogeneity at the leading edge of human
skin squamous cell carcinoma (Ji et al., 2020).

IN SITUGENE EXPRESSION PROFILING BY
SPATIAL TRANSCRIPTOMICS

Identifying spatially distinct gene expression patterns can reveal
the biological processes in those regions. For example, Ståhl et al.
identified six independent areas of pancreatic ductal carcinoma
and invasive ductal carcinoma of breast cancer by ST (Ståhl et al.,
2016). The results showed that the gene expression in the regions
of ductal carcinoma demonstrated a surprisingly high
heterogeneity. For example, the expression of KRT17 and
GAS6 in epithelial mesenchymal transformation is particularly
higher in regions 1 and 5. Hypoxia-related ENO1, LDHA, TPI1,
ALDOA, MIF, and PGK1 were detected to be highly expressed in
subgroup 6 of the hypoxia group. This study first describes the
spatial gene expression changes of ductal adenocarcinoma of the

breast induced by a hypoxic microenvironment, and it identifies
its potential therapeutic targets, which can provide the
foundation for further studies of prognosis and treatment of
hypoxic tumors. Spatial heterogeneity of hypoxic tumors and
control tissue in breast cancer was studied by Sun et al. (2021). ST
results showed that tumor cell subgroups decreased to seven
subsets compared to the nine subgroups of the normal control.
Different subsets exhibit positional features and different gene
features. Next, subgroups located at the forefront of invasion
exhibited active functions under hypoxic conditions, including
cell proliferation, invasion, and stress response, as well as the
uneven distribution of hypoxia-related genes across subsets (Sun
et al., 2021). These studies suggest that ST is able to dissect the
heterogeneity in biopsy that cannot be detected by conventional
transcriptome analysis, which may provide more detailed
prognostic information. Results obtained by researchers from
Australia’s Institute of Natural Genetics indicated that ST cluster
analysis of recurrent breast cancer tissue samples yielded 10
clusters, of which LUAD and LUCS varied substantially in the
spot types. Clusters were mapped back to spatially identified
locations on their space and found to be consistent with anatomy.
The genes associated with malignant tumors (SLPI, SCGB3A1,
SCGB3A2, MS4A15, and NR4A1) were found to be highly
expressed in LUAD1 tumor tissue. However, genes associated
with tumor metastasis and tumor cell proliferation (SPP1,
GSTA1, MAL2, and MGST1) were found to be highly
expressed in LUSC1, LUSC2, LUSC4 samples. DEG function
revealed the high activity of peptidase in the metabolic pathway in
LUSC, thereby suggesting that the adhesion capacity between cell
and substrate in the TME were different (Wu et al., 2021).

MAPPING SPATIAL TRAJECTORY BY
SPATIAL TRANSCRIPTOMICS

Spatial transcriptomic technology can be used to map the spatial
trajectory of tumors, such as metastasis and invasion. EMT refers
to when epithelial cells are losing cell polarity and connectivity,
adhesion, increase infiltration, migration, and become
mesenchymal cells (Pastushenko and Blanpain, 2019). Zhang
et al. collected lung tumor tissue from 12 individuals who
received surgical resection (including four LUAD samples and
eight LUSC samples) and performed spatial transcriptomic
studies using Visium. The spatial trajectory analysis found that
along the invasion trajectory of the tumor, the proportion of
tumor spots gradually decreased, while interstitial spots
increased. Tumor matrix contains immune macrophages,
T cells, B cells, or other immune cell responses that affects the
TME, thereby regulating tumorigenesis and development of
tumor metastasis. Genes associated with tumor proliferation
such as DSG2 and SPRR3 and genes related to energy
metabolism process decreased along the invasion trajectory of
the tumor, while the function of tumor progression-related gene
BGN and metastasis growth-related gene POSTN gradually
increased. Because tumor energy mainly comes from glycolysis
and aerobic metabolism, and aerobic metabolism provides energy
for tumor proliferation. The results showed that different lung
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cancer subclone cells were independent in their spatial
distribution, with significantly different EMT between the
subclones (Zhang et al., 2021).

DISCOVERY OF NOVEL SPATIALLY
DEPENDENT MECHANISMS BY SPATIAL
TRANSCRIPTOMICS
Spatial transcriptomic technologies are expected to elucidate new
mechanisms of spatial dependence in tumor pathogenesis.
Sharma et al. analyzed 212,000 cells in human fetal,
hepatocellular carcinoma (HCC), and mouse liver using
scRNA-seq (Sharma et al., 2020). Combining with ST, they
further revealed a common tumor–fetal ecosystem between
fetal liver and HCC. Fetal-associated endothelial cells (PLVAP/
VEGFR2) and fetal-like (FOLR2) tumor-associated macrophages
were detected in stem cell carcinomas (Sharma et al., 2020).
Furthermore, gene regulation analysis, ST, and functional
analyses suggest important roles of VEGF and NOTCH
signaling in maintaining the tumor–fetal ecosystem, thereby
revealing a previously unexplored tumor–fetal reprogramming
in the tumor ecosystem and providing new targets for therapeutic
intervention in HCC (Sharma et al., 2020). New breakthroughs in
the field of liver cancer have also been made using spatial
transcriptomic technology. The human liver is the major site
of tumor and metastasis. However, the molecular properties and
cell–cell interactions of different cell types in liver pathologies are
left to be explored. The mouse liver composition was studied
using scRNA-seq and single-molecule RNA fluorescence in situ
hybridization (smRNA-FISH). This study identified progenitor
cells during the development and regeneration of liver, thereby
describing the phenotypes of nonparenchymal cells in chronic
liver disease and cirrhosis and revealing the heterogeneity of
TME in HCC and a novel mechanism of the interaction
between tumor epithelial cells and TME (Saviano et al.,
2020). Next, single-cell RNA sequencing and spatial
analysis of malignant and adjacent nonmalignant liver
tissue from five patients with cholangiocarcinoma or liver
metastases were performed by Massalha et al. (2020). This
study found that stromal cells exhibited a recurrent and
patient-independent expression programs. They
reconstructed the ligand–receptor atlas, elucidated
recurrent tumor–stromal interactions, provided resources
for understanding human liver malignancies, and exposed
potential intervention points (Massalha et al., 2020).

Moreover, the combined application of multi-omics also
provides a reliable approach to discovering new mechanisms,
which can also help in new target discovery as well as drug
research and development. Ben-Moshe et al. used
transcriptomics, miRNA array, and mass spectrometry
proteome to reconstruct spatial maps of multiple regional
features. They used banded surface markers to classify
hepatocytes from high-resolution lobular regions of spatial
resolution. The researchers found that some protein bands
largely overlapped with the mRNA bands. These targets
included the central peripheral Wnt receptors Fzd7 and

Fzd8. Based on this result, they screened the periportal Wnt
inhibitors targeting these receptors and found Ctnnbip1 to be a
candidate (Ben-Moshe et al., 2019).

ACCESSING TUMOR IMMUNE
MICROENVIRONMENT BY SPATIAL
TRANSCRIPTOMICS
The composition, proportion, location, and motility of the
microenvironment, especially that of the immune cells, have
important impacts on the progression and treatment response
of cancer cells, and they are also one of the main determinants of
patients’ prognoses (Lei et al., 2020). Therefore, to improve the
efficacy of immunotherapy, spatial transcriptomic techniques can
be used to identify sources of tumor heterogeneity and provide
potential therapeutic targets for treatments. Ji et al. used RNA
sequencing and ST to observe multiple features of potential
immunosuppression in skin squamous cell carcinoma (cSCC),
including the co-localization of T regulatory cells (Treg) with
CD8 T cells in the separated tumor matrix. Also, the study
defined the spatial niches of cSCC tumors and other cellular
subsets and their communication gene network involved in
cancer (Ji et al., 2020). Spatial transcriptomics was used to
study the spatial gene expression in HER2-positive breast
tumors. By integrating single-cell data, they spatially mapped
tumor-associated cell types and found a tertiary lymphoid
structure (TLS). TLS provides subtle microenvironments for
anti-tumor and humoral immune system responses. This study
confirmed the association of TLS prevalence with clinical
outcome. Transcriptional analysis of TL-like structures is
expected to reveal drug therapeutic effects and facilitate the
study of immunity anticancer drugs (Andersson et al., 2021).
Additionally, macrophages could be divided into LAM1 and
LAM2 according to their status. In most cases, LAM1 and
LAM2 cells show a negative correlation with each other,
thereby suggesting that LAM cells could be polarized into
LAM1 or LAM2 under different microenvironments. The
Visium results produced by Swarbrick et al. indicated that
LAM1 and LAM2 cells were present in the invasive cancer
area and LAM2 cells were positively associated with CD4+ and
CD8+ T cells. Next, genes co-expressed by both cells suggest that
these cells demonstrate a functional immune regulation in some
aspects (Wu et al., 2021). Moreover, 10x Visium was used to
analyze tumor-associated macrophages (TAM) in patient
biopsies by Nerurkar et al., and TAM was found to be
associated with a poor prognosis. By constructing a glioma
spatial transcription map, they found that microglia played a
dominant role in the tumor infiltration, whereas the vessel-
derived TAM was enriched near the vessels. Thus, blood-
derived TAM was negatively associated with low-grade glioma.
This finding supports the view that macrophage ontogeny is
essential for cell morphogenesis (Nerurkar et al., 2020). Spatial
transcriptomics combined with single-cell sequencing was used
to analyze the expression of immune-related cells and
chemokines and receptors in the TME in human squamous
cell carcinoma, such as the CXCR3 (Treg, CD8+TEM), CXCR6
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(Treg, CD4+RGCC+, and CD8+ depleted cells), and CXCR4
(CD4+RGCC+, CD8+ TEMRA, and NK cells). CCR8 is
specifically expressed in Treg, thereby suggesting that it is a
potential therapeutic target to inhibit Treg recruitment. Also,
the results showed that CD8+ T cells, Treg, and macrophages
were highly correlated with CD4+ T cells. Besides, fibroblasts,
macrophages, and Treg were most abundant at the
tumor–stromal margin, while most CD8+ T cells and
neutrophils were excluded from the tumor, thereby suggesting
that Treg prevents effector lymphocytes from entering the tumor
(Ji et al., 2020). These results further reveal multiple
immunosuppressive cell types and their involvement in the
human squamous skin cancer microenvironment.

DISSECTING TUMOR MATRIX
MICROENVIRONMENT BY SPATIAL
TRANSCRIPTOMICS
TME is closely related to tumor drug resistance. Tumor-related
macrophages (TAM), tumor-related fibroblasts (CAF), and
tumor-related MSC (TA-MSC) in TME can enhance tumor
resistance by recruitment and secretion of a variety of
protective cytokines (Xu et al., 2021). Noncellular components,
such as extracellular matrix, hypoxia, and acidification, can
mediate drug resistance by constructing physical barriers and
affecting the growth and metabolism of tumor cells (Bai et al.,
2018). ECM (Extracellular Matrix), as a physical barrier of
tumors, can dissolve or delay the delivery of drugs and ECM
remodeling that cause tumor cells to escape apoptosis, cancer
stem cell heterogeneity, and tissue polarity. Also, ECM can
promote tumor resistance by activating survival-related
pathways. The growth of malignant cells is driven by
interactions between tumor cells and the stromal cells that
constitute the TME (Marozzi et al., 2021). Although the role
of mesenchymal cells in anti-tumor immunity has been
demonstrated, the interaction between immune and stromal
cells has not been clearly elucidated (Li et al., 2021).

To further understand the heterogeneity of CAFs in the TME,
breast cancer matrix-enriched samples of 4T1mice were analyzed
using scRNA-seq and ST by Grauel et al. They analyzed the
composition of tumor-associated fibroblasts (CAFs) and found
the presence of four subpopulations in CAFs. Each subgroup
demonstrates a distinct phenotype and function. Subset 1
(inflammatory CAFs, iCAFs) was significantly enriched in
inflammatory and immune-related pathways, and subset 2
(typical myofibroblasts, myCAFs) was significantly associated
with ECM deposition. This indicates that these cells play an
important role in the matrix composition of the tumor
framework. Subset 3 (VEGF+ CAFs), characterized by
glycolysis and carbon metabolism, were found to be enriched
in pathways associated with metabolic regulation. Next, subset 4
(proliferative type CAFs, prCAFs) is dominated by cell
cycle–related features and expresses many genes associated
with cell cycle progression (Grauel et al., 2020). Also, the
subclass of CAF was demonstrated using the deconvolution
algorithm by Swarbrick et al. They found that CAF like

myofibroblast was enriched in the invasive cancer area, while
ICAF are distributed in the aggregation area of invasive cancer,
stroma, and lymph nodes. Meanwhile, in localization analysis of
different cells, ICAFs were also found to be associated with
CD4+/CD8+T cells, thereby indicating that they were related
to invasive breast cancer with high TIL infiltration or
immunological inflammatory phenotype (Wu et al., 2021).

ST combined with scRNA-seq can also be used to draw a new
heterogeneous cell communication map to analyze the
mechanism of stromal and immune cells in TME. The
interaction of the ICAF ligand receptor and CD4+/CD8+

T cells was studied by Swarbrick et al. They found that
immunomodulatory ICAF ligand and homologous T cell
receptor, including chemokine (CXCL12/CXCL14-CXCR4 and
CXCL10-CXCR3), supplementary pathway, transforming growth
factor-β (TGFB1/TGFB3-TGFBR2), and lymphocyte inhibitory/
activating molecules (LTB-LTBR, TNFSF14-LTBR and LTB-
CD40, and VTCN1/B7H4-BTLA) were distributed in adjacent
areas, thereby further revealing the regulatory effect of CAFs on
immune cells (Wu et al., 2021). In the field of pancreatic ductal
carcinoma, the multimodal intersection analysis (MIA) method
was developed by Moncada et al. to integrate scRNA-seq and ST
data. A small cohort of six patient samples (10 slices) was
analyzed by MIA to map the status of cancer cells in different
spatial tissue regions and to describe the interaction between
cancer cell subsets and other cell subsets. The results indicated
that spots with high expression of the stress module gene were
significantly correlated with inflammatory fibroblasts (Moncada
et al., 2020). Next, two new cell subsets of pancreatic ductal
carcinoma (hypoxic ductal cells and antigen-presenting ductal
cells) were also found in the study (Moncada et al., 2020).

Additionally, other stromal cells, such as TSK populations, are
also involved in cellular communications in the TME. A
combined analysis of ST and single-cell sequencing can reveal
the communication network among cells. By using this approach,
TSK was found to be located in the fibrovascular niche. Further,
integrating single-cell and spatial data and mapping
ligand–receptor networks to specific cell types can reveal that
TSK cells are the hub of intercellular communication (Ji et al.,
2020).

NOVEL PATHOLOGICAL CLASSIFICATION
BY SPATIAL TRANSCRIPTOMICS

Distinguishing ductal carcinoma in situ (DCIS) from invasive
ductal carcinoma (IDC) region biopsies is a clinical diagnostic
challenge. ST can quantify and visualize the transcriptomes in
tissue sections, and they can identify different pathological
classifications of breast cancer (nonmalignant, DCIS, and IDC)
after machine learning. Four published ST datasets for breast
cancer were used to build machine learning models to determine
the expression characteristics of different pathological regions
(nonmalignant, DCIS, and IDC). According to the automatic
recognition and expression feature classification of all ST spots
that covered tissue sections, the prediction accuracy of DCIS and
IDCwas 95 and 91%, respectively (Yoosuf et al., 2020). This study

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 9061588

Li et al. Spatial Transcriptomics for Tumor Profiling

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


suggests that ST technology is expected to provide clinical
decision support for pathologists in the future. Classification
based on spatial transcriptomic gene features in lung cancer
(Zhang et al., 2021) and breast cancer (Wu et al., 2021) is also
consistent with the traditional pathological classification.

Additionally, pathological classification based on ST can
obtain histological classification information that is not
available using traditional pathology. ST was used to explore
the transcriptomes of nearly 6,750 tissue spots and determine the
expression profiles of different tissue components (e.g., matrix,
normal and needle glands, immune cells, and cancer) by Berglund
et al. This study found that this gene-based classification method
provides a more accurate description of the range of cancer foci
than the pathologist’s annotation (Berglund et al., 2018).
Additionally, the ISS method was used to spatially resolve the
expression of ER (ESR1), PR (PGR)HER2 (ERBB2), KRT5/6/8,
KI67 (MKI67), and EGFR within breast cancer tissue sections
covering luminal A/B-like, HER2-positive, and triple negative
tumors by Nilsson et al. These genes were used to approximate
the breast cancer molecular subgroups according to the following
criteria: luminal A-like (ER+ and/or PR+, HER2-, KI67 low, and
KRT8+), luminal B-like (ER+ and/or PR+, HER2-, KI67 high,
and KRT8+), HER2-positive (ER−/+, PR−/+, and HER2+), and
triple negative breast cancer (TNBC) (ER-, PR-, HER2-, EGFR+,
and/or KRT5/6+). Of note, gene expression based on total ISS
read counts correlated with the microarray data for all subtyping
genes except for PR (Svedlund et al., 2019). However, when
comparing the microarray data with the spatially-resolved ISS
data and the immunohistochemical results, three tumors that
were negative for PR with microarray data were positive with ISS
and in protein staining. Discrepancies were observed for two
tumors positive for PR with ISS (in 81% and 31% of tumors,
respectively) but negative with microarray and histological
protein staining. PR expression was in agreement with the ISS
data and indicated that tumor tissues were highly heterogeneous
in their distribution of PR-positive cells, which could explain the
discrepancies in the microarray and protein data. In the study of
cutaneous malignant melanomas, similar findings have been
found (Berglund et al., 2018). ST yield many pathologically
unavailable information, which is expected to be linked to
clinical features. A deep learning model was established by
Jurgenson et al., which is able to spatially resolve the large
number of mRNA and miRNA expression levels on
pathological whole slide images (WSIs). They applied this
method to breast and lung cancer slides and produced tumor
WSI heterogeneity maps and calculated the heterogeneity index
(HTI). This strategy promises to open up a new and viable avenue
for studying tumor heterogeneity and other spatial molecular
properties as well as their association with clinical features,
including therapeutic sensitivity and survival (Thrane et al.,
2018). Additionally, obtaining metastasis information of cancer
is critical for clinical treatment. Accurate determination of
migration patterns from somatic mutation data is complicated
by intratumor heterogeneity and discordance between clonal
lineage and cellular migration. A new algorithm called
“Metastatic and Clonal History Integrative Analysis” was
developed by Dr. Ben Raphael’s Lab of Princeton University.

This algorithm can track the spread of cancer cells from one part
of the body to another by combining the DNA sequence data with
the information on cells in the body. Understanding the drivers of
metastasis may be helpful for new treatments to prevent the
spread of cancer in the body. Raphael and his team applied this
method to breast cancer data and analyzed metastasis patterns in
patients with melanoma, ovarian cancer, and prostate cancer.
Raphael also plans to make this algorithm more effective by
combining the data of tumor DNA and tumor cells circulating in
the blood, as well as the epigenetic changes of DNA-reversible
chemical modification (El-Kebir et al., 2018).

PREDICTION OF DISEASE PROGNOSIS BY
SPATIAL TRANSCRIPTOMICS

The ecotype of a tumor is related to the survival and prognosis of
patients. Identification of ecotypes of tumor patients by ST can be
used to predict the prognosis of tumor patients. A deconvolution
analysis of the spatial transcriptomic dataset of primary breast
tumor data by Swarbrick et al. revealed a large number of
circulating cells distributed in the basal base, LUMB, and
HER2 enrich (HER2E) tumor tissues. Consensus cluster
divides the breast cancer cohort into nine tumor clusters with
similar cellular components, called ecotypes. These ecotypes
show correlations with tumor subtypes, SC subtype cell
distribution, and the diversity of major cell types. Ecotype 4
(E4) is a highly enriched immune cell associated with anti-tumor
immunity, including depleted CD8+T cells, TH1, and central
memory CD4+T cells. Ecotype 2 (E2) mainly includes LUMA and
normal tumor cells, as well as mesenchymal cells, including
endothelial CXCL12+ and ACKR1+ cells, s1-MSC ICAF, and
exhausted circulating cells. Among these, the prognosis of
patients with E2 tumor is best and that of E7 is poor, which
may be related to the enrichment of Her2E cells (Wu et al., 2021).
The ISS-based molecular subtyping and OncotypeDX recurrence
score were established by Nilsson et al. The OncotypeDX
recurrence score includes the expression of 21 genes divided
into four functional groups, namely, HER2, ER, proliferation, and
invasion. To spatially resolve the expression of a gene related to
OncotypeDX recurrence score, they used the ISS method. Based
on the published algorithm for ISS data, each gene group was
scored, and the recurrence score was then calculated. Six of the
tumors displayed high recurrence score, one tumor showed a
moderate score, and two tumors displayed a low recurrence score.
The OncotypeDX score based on total ISS read counts was
consistent with previous scores based on RT-qPCR performed
on the same tumors (Svedlund et al., 2019). These results indicate
that the ST technology was well suited for tumor subtyping and
prognosis evaluation. Liver metastasis, the leading cause of
colorectal death, exhibits high immune microenvironment
heterogeneity and inhibition. Furthermore, spatial
transcriptomics analysis of tumor immunophenotype can
predict the prognosis of tumor patients. 10x Genomics single
cell sequencing combined Visium ST and multiplex
immunofluorescence was used to deeply analyze the
immunodynamic changes of liver metastasis in colorectal
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cancer by Gao and Zhang. The researchers identified myeloid
cells, CD8+ T cells, CD4+ T cells, NK cells, and B cells from liver
metastasis samples of colorectal cancer. Immunophenotype was
found to undergo anti-tumor remodeling after neoadjuvant
chemotherapy treatment in responsive patients. However,
nonresponsive patients exhibit more immunosuppression,
which is related to their in vivo immunosuppressive cells, such
as MRC1+CCL18+M2-like macrophages, being reprogrammed at
metastatic sites (Wu et al., 2022). This study describes the
immune evolution process of metastasis and reveals how
tumors respond to neoadjuvant chemotherapy. This is a
successful case of ST combined with single-cell sequencing in
clinical efficacy evaluation and prognostic prediction.

CONCLUSION

Intratumor heterogeneity poses significant challenges to accurate
diagnosis and personalized treatment of cancer. ST has been
widely used in the field of tumor heterogeneity research, and its
combination with scRNA-seq analysis provides new analytical
dimensions for the cell subtype identification, spatial distribution,
and movement trajectory of cells in tumor tissues. Additionally,
the construction of spatial transcriptomics map improves
understanding of the TME. Besides, studies combining spatial
transcriptomes with mass spectrometry (Ali et al., 2020; Jackson
et al., 2020; Goltsev et al., 2018) or high dimensional
immunofluorescence (Saka et al., 2019; Lin et al., 2018;
Schwartz et al., 2020) methods will help explore the extent
and origins of tumor heterogeneity and obtain information for
targeted diagnosis and treatment. Proteomics based on mass
spectrometry and metabolomics technology can effectively
determine the differences in protein (modified protein) or
metabolism of different heterogeneous tumors by

simultaneously analyzing the protein expression, post-
translational modification level, and metabolite level in tumor
cells, tissues, or body fluids with different heterogeneous
phenotypes. Further, it can provide a powerful tool to further
explain the molecular mechanism of heterogeneity and explore
intervention pathways.

Although possessing great potential for studying tumor
heterogeneity, current spatial transcriptomic technologies also
face many challenges. Technically, relatively high costs and
laborious experimental procedures, limited area of tissue that
can be analyzed, and difficult to achieve three-dimensional gene
expression profiling still remain problems for ST technologies to
overcome. Scientifically, before it can be used in clinical settings,
enough data to support the links of spatial gene expression
patterns to the development, treatment, diagnosis, and
prognosis still need to be accumulated and analyzed.
Nonetheless, the combination of spatial multi-omics,
including ST, will provide new ideas and insights into
screening tumor drug targets, improving the accuracy of
clinical diagnosis, and exploring new therapeutic
approaches in the near future.
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