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Polygenic risk scores (PRS) leverage the genetic contribution of an individual’s

genotype to a complex trait by estimating disease risk. Traditional PRS

prediction methods are predominantly for the European population. The

accuracy of PRS prediction in non-European populations is diminished due

to much smaller sample size of genome-wide association studies (GWAS). In

this article, we introduced a novel method to construct PRS for non-European

populations, abbreviated as TL-Multi, by conducting a transfer learning

framework to learn useful knowledge from the European population to

correct the bias for non-European populations. We considered non-

European GWAS data as the target data and European GWAS data as the

informative auxiliary data. TL-Multi borrows useful information from the

auxiliary data to improve the learning accuracy of the target data while

preserving the efficiency and accuracy. To demonstrate the practical

applicability of the proposed method, we applied TL-Multi to predict the risk

of systemic lupus erythematosus (SLE) in the Asian population and the risk of

asthma in the Indian population by borrowing information from the European

population. TL-Multi achieved better prediction accuracy than the competing

methods, including Lassosum and meta-analysis in both simulations and real

applications.
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1 Introduction

Genetic risk prediction is an important methodology for understanding the

underlying genetic architecture and the inclusion of information on complex traits,

such as estimating the genetic risk of complex traits or diseases (for example, coronary

artery disease) (Chatterjee et al., 2016; Ge et al., 2019). Polygenic risk scores (PRS) are one

of the approaches to reflect a mathematical aggregation of risk by variants such as single

nucleotide polymorphisms (SNPs) (Peterson et al., 2019). With the application of the best

linear unbiased predictor to estimate PRS, some methods use summary association
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statistics as training data (Consortium, 2009; Vilhjálmsson et al.,

2015; Shi et al., 2016), and others require individual-level data,

such as genotype data and phenotypes (De Los Campos et al.,

2010; Speed and Balding, 2014; Maier et al., 2015; Moser et al.,

2015; Coram et al., 2017). As an implementation, PRS have

become a widely used statistical tool to estimate the genetic risk

of certain diseases or phenotypes (Mak et al., 2017). Specifically,

PRS for a particular disease demonstrates the risk index for

people to suffer from the disease. A remarkable study of five

common diseases (coronary artery disease, atrial fibrillation, type

2 diabetes, inflammatory bowel disease, and breast cancer) found

that people with top 8.0, 6.1, 3.5, 3.2, and 1.5% highest PRS had a

three-fold higher risk to develop these diseases than people with

average PRS (Khera et al., 2018).

However, the majority of public genome-wide association

studies (GWAS) data has been conducted on the European

population (Popejoy and Fullerton, 2016). Due to the limited

availability of non-European ancestral data and the diversity of

linkage disequilibrium (LD) architectures among distinct

populations, previous studies showed that the genetic

architectures of specific phenotypes or diseases were highly

consistent between populations (single-variant level and

genome-wide level) (Huang et al., 2021). Hence, using PRS

derived from the European population can result in disease

associations being under- or over-estimated in other

populations (Kim et al., 2018). Traditional approaches are

insufficient to address this challenge when multiple

populations are involved. Recent genetic statistical studies

have indicated that diverse population variants share the same

underlying causal variants (Brown et al., 2016; Shi et al., 2020),

which raises the possibility of transferability of PRS across

distinct ethnic groups. However, existing studies focus mostly

on the application with one homogeneous population. For

example, LDpred (Vilhjálmsson et al., 2015) and PRS-CS (Ge

et al., 2019) improve the prediction accuracy by enhancing LD

modelling. As an alternative, a penalized regression framework

based on summary statistics, namely Lassosum, was proposed by

Mak et al. (2017), whereas these methods are limited to GWAS

data from one homogeneous population. Current multiethnic

PRS construction approaches that incorporate training data from

both the European and target populations can leverage trans-

ethnic GWAS information and stratify squared trans-ethnic

genetic correlation in the explanation of environmental effects

on genes (Coram et al., 2017; Mak et al., 2017; Shi et al., 2021).

Moreover, Márquez-Luna et al. (2017) proposed PT-Multi for

multiethnic PRS prediction by performing LD-informed pruning

and p-value thresholding (PT) (Consortium, 2009) on each

homogeneous population and linearly combining the optimal

PRS from each specific population.

However, previous studies ignored the information gap

among diverse populations. Li et al. (2022) proposed a high-

dimensional linear regression model to transfer knowledge

between informative samples and target samples to improve

the learning performance of target samples. By using GWAS

summary statistics from different ancestries and incorporating

the idea of transfer learning (Li et al., 2022), we propose a novel

statistical method called TL-Multi to enhance the transferability

of polygenic risk prediction across diverse populations. TL-Multi

assumes most causal variants are shared among diverse

populations. There is a difference between the target samples

and the informative auxiliary samples in the genetic architecture,

which causes estimation bias. TL-Multi further corrects this bias

and estimates the PRS using Lassosum (Mak et al., 2017).

Additionally, TL-Multi inherits the advantages of Lassosum,

ensuring that it has more accurate performance in all

circumstances than initial PT and circumvents convex

optimization challenges in LDpred. Moreover, TL-Multi

extends the application to estimate the genetic risk from

unmatched ancestral populations and employs all available

data without pruning or discarding. For practical analysis, we

investigated TL-Multi prediction performance with informative

auxiliary European samples from UK Biobank (https://www.

ukbiobank.ac.uk), and European summary statistics and Hong

Kong target samples from previous studies to predict PRS in

systemic lupus erythematosus (SLE) (Morris et al., 2016; Julià

et al., 2018; Wang et al., 2021). We obtained a greater than 125%

relative improvement in prediction accuracy compared to only

using GWAS data from the Hong Kong population.

Furthermore, TL-Multi performs more accurately in PRS

prediction in most scenarios in comparison with the recent

multiethnic methods, meta-analysis, and PT-Multi.

Additionally, we refer to Huang et al. (2021) to classify the

PRS methods into two categories: single-discovery methods and

multi-discovery methods. Single-discovery methods use GWAS

data from a single homogeneous population, andmulti-discovery

methods apply the combined GWAS data of multiple

populations.

2 Materials and methods

2.1 Data overview

In this study, we requested the individual-level genotyped

data for a previous SLE GWAS in Hong Kong (Wang et al., 2021)

as the testing dataset, which included 1,604 SLE cases and

3,324 controls. We used GWAS summary statistics of SLE

from both East Asian and European populations to train the

models. The data for East Asians were collected from Guangzhou

(GZ) and Central China (CC), including 2,618 SLE cases and

5,107 controls (Wang et al., 2021). The data for Europeans were

obtained from previous studies (Morris et al., 2016; Julià et al.,

2018; Wang et al., 2021), involving a total of 4,576 cases and

8,039 controls. Variants with minor allele frequency greater than

1% and imputed INFO scores greater than 0.7 in respective

ancestral groups were reserved for the following analyses.
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In our analysis of asthma, we requested the genotyped data of

Indian and European individuals for asthma from UK Biobank.

The UK Biobank data consisted of 4,160 unrelated Indian

samples genotyped at 1,175,469 SNPs after QC and mapping

HapMap 3 SNPs, and we further sampled 48,362 unrelated

British samples genotyped at 1,189,752 SNPs after QC and

mapping HapMap 3 SNPs. We divided the Indian samples

into two groups: 3,160 samples as a training data set and

1,000 samples as a testing data set. As stated previously, the

final data set comprises 3,160 (408 cases and 2,752 controls)

unrelated Indian samples for training, 1,000 (127 cases and

873 controls) unrelated Indian samples for testing, and 48,362

(6,555 cases and 41,807 controls) unrelated British samples for

training. Variants with minor allele frequency greater than 1%

and p-values of Hardy–Weinberg equilibrium Fisher’s exact test

< 1 × 10−5 were kept. We then computed GWAS to derive the

GWAS summary statistics of each population with each genotype

(after quality control) and adjusting for age and gender and the

top ten principal components.

2.2 Lassosum

Lassosum is a statistical approach introduced by Mak et al.

(2017) which enables to tune parameters without validation

datasets and phenotype data via pseudovalidation and

outperforms PT and LDpred in prediction (Consortium, 2009;

Vilhjálmsson et al., 2015). It refers to the idea of Tibshirani

(1996) to deal with sparse matrices and calculate PRS only by

using summary statistics and an external LD reference panel. In

this article, the ancestry-matched LD block is generally estimated

by the 1000 Genome project (https://www.internationalgenome.

org). Additionally, we keep the reference panel’s ancestry

consistent with that of our target population. Furthermore, if

the SNP-wise correlation ri is not available, we can estimate ri
following Mak et al. (2017): ri � ti�����

n−1+t2i
√ .

2.3 PT-Multi

PT-Multi assumes the multiethnic PRS is a linear

combination of the most predictive PRS from each

population. First, it applies LD-pruning and p-value

thresholding (PT) (Consortium, 2009) to each single ethnic

summary statistic and gets the most predictive PRS. Second, it

fits marginal linear regression models to get weights for each

population, respectively. We apply the R package ‘bigspnr’

(Privé et al., 2018) to validation data for LD-informed

clumping with an r2 threshold of 0.1. The p-value

thresholds are among 1, 0.3, 0.1, 3 × 10–2, 10–2, 3 × 10–3,

10–3, 3 × 10–4, and 10–4. We conducted 10-fold cross-validation

to determine the optimal p-value threshold for each

population. We used an independent validation data set to

compute the final PRS and the average value of R2 across the

10 folds.

This study used the single-discovery method (Lassosum)

to regress European, Asian, and multi-discovery methods

(meta-analysis, TL-Multi, and PT-Multi) to determine the

most predictive PRS with the highest R2. For ease of notations,

let PRSa, PRSe, PRSma, PRStl, and PRSpt represent PRS for

Asian, European, meta-analysis, TL-Multi, and PT-Multi,

respectively.

2.4 Meta-analysis of two diverse
ancestries

We generated the estimates of effect sizes of joint GWAS

data by

β̂ma �
β2a
sea

+ β2e
see

se−2a + se−2e
,

where βa and βe are the effect sizes obtained from Asian and

European GWAS data, respectively, and sea and see are the

standard errors obtained directly from ancestry-matched

FIGURE 1
Prediction accuracy of Lassosum, meta-analysis, PT-Multi,
and TL-Multi over 20 replications in simulations. Lassosum_HK is
Lassosum for the Hong Kong population, and Lassosum_Eur is
Lassosum for the European population. Heritability was fixed
at 0.5 and different genetic correlations (0.2, 0.4, 0.6, and 0.8) with
different causal variant proportions (1%, 1.5%, 2%, and 5%) were
generated. A total of 50,000 European samples and 1,000 Hong
Kong samples were simulated. The variants were generated from
the common variants of the first four chromosomes (21,477 SNPs).
The prediction accuracy was measured by R2 between the
simulated and true phenotypes. The error bar indicated the upper
bound of a 95% confidence interval over 20 replications.
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GWAS data. Furthermore, the estimate of the standard error in

meta-analysis is defined as follows:

ŝema �
���������

1
se−2a + se−2e

√
,

and the estimate of z-statistic is obtained from the following:

ẑma � β̂ma

ŝema
.

The p-value is converted from ẑma as follows:

P − value � 2Φ −|ẑma|( ),

whereΦ(·) is the cumulative distribution function of the standard

normal distribution N(0, 1). In this meta-analysis, the ancestry of

the reference panel is consistent with the ancestry of the target

population. Furthermore, due to the majority of the total sample

being of European ancestry, the LD block is estimated from the

European population in the 1000 Genome Project.

2.5 Multiethnic polygenic risk scores
prediction using TL-Multi

In this article, we used European population data as our

informative auxiliary data, owing to its large sample size and

relative accessibility. Additionally, we treated East Asians as the

target population due to the scarcity of public data (Brown et al.,

2016; Shi et al., 2020). The fundamental framework we used for

genetic architecture and phenotype is a linear combination with

effect sizes β and an n-by-p genotype matrix X, where p is the

number of columns containing marker genotype codes

corresponding to the number of reference alleles on the

sample-specific SNP (for example, 0, 1, and 2) and n is the

sample size:

y � Xβ + ,

where y is a vector of clinical outcomes. Tibshirani (1996)

proposed Lasso, which is commonly used to estimate

coefficients β̂ (weights of X), when p (the columns of X or the

number of elements of y) is relative large to result in many β̂

being 0. Specifically, the optimization problem of target

population is equivalent to minimizing the objective function:

L βa( ) � ya − Xaβa( )T ya − Xaβa( ) + 2λ‖βa‖1,

where ya is the vector of Asian phenotypes, Xa is the genotype

matrix of the Asian population, L(·) is an optimizing function,

‖βa‖1 is the L1 norm of βa, and λ is a data-dependent parameter

determining the proportion of βa to be estimated to 0. It can be

widely extended in scenarios in which only the summary

statistics are available (Mak et al., 2017).

Motivated by Lassosum, we further proposed a novel

method, namely TL-Multi, to extend its application to

multiethnic polygenic prediction. We observed additional

samples from auxiliary studies (for example, the European

population). The estimate of the marginal effect sizes of the

European population, β̂e, can be generated using the auxiliary

model:

L βe( ) � ye − Xeβe( )T ye − Xeβe( ) + 2λ‖βe‖1, (1)

where ye is the vector of European phenotypes, and Xe is the

genotype matrix of the European population. For illustration, we

denoted the auxiliary studies, in which informative auxiliary

samples can be transferred, and the target model and auxiliary

model are similar at certain levels (for example, similar genetic

architectures). Furthermore, we assumed that the difference

between auxiliary samples and target samples is denoted as

follows (Li et al., 2022):

δ̂ � β̂a − β̂e,

where β̂a (the weights of the target population, for example, the

Asian population Xa) is the target regression estimator, and β̂e
(the weights of the auxiliary population, for example, the

European population Xe) is the estimator for auxiliary study.

Furthermore, the informative auxiliary set, Aq, has a requirement

to ensure that the information auxiliary set includes sufficiently

different information under a constrained level. Specifically, the

information difference should satisfy the sufficient sparsity:

Aq � ‖δ̂‖q ≤ h{ }, (2)

where q ∈ [0, 1], and ‖δ̂‖q is the Lq norm of the information

difference δ̂ of the informative auxiliary samples. The

assumption requires the auxiliary informative population Aq

to include samples in their contrast vectors with a maximum

Lq-sparsity of at most h.

Moreover, we assumed that Aq is informative to improve the

prediction performance of the target population while h is

relatively small compared to β̂a. Specifically, when q = 0, the

set Aq implies that there are at most h casual variants. For q ∈ (0,

1], this scenario may be explained that all the variants are causal

variants with rapid relative amplitudes decaying effect sizes.

Therefore, the smaller the h, the auxiliary samples of Aq tend

to be more informative, where |Aq| leverages the number of

informative auxiliary samples.

Our goal was to correct the bias between these populations

and improve prediction performance in Asian population. First,

we estimated the marginal effect sizes of the European

population, β̂e by minimizing the objective function based on

Eq. 1:

L β̂e( ) � argmaxβ2r
T
e βe − βTe Reβe − λ‖βe‖1, (3)

where re � XT
e ye is the SNP-wise correlation between the

genotype matrix of European population Xe and the

phenotype ye, and Re is the LD matrix indicating a matrix of
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correlations between SNPs. The estimates of re can be obtained

from summary statistics, and the estimates of Re can be obtained

from publicly available databases, such as the 1000 Genome

project. As Mak et al. (2017) indicated, the PRS can be estimated

by optimizing Eq.3 without extra individual-level data.

Specifically, TL-Multi estimates the PRS of the Asian

population by correcting the bias between European and

Asian populations. We further denoted the bias as δ, which is

the difference between European and Asian populations in

genetic architecture. The new estimate of effect sizes of the

Asian population can be presented as βtl = βe + δ, in which δ

is estimated by

L δ̂( ) � argmaxδ2 rTaδ + δRaβe( ) − δTRaδ − λδ‖δ‖1. (4)

According to pseudovalidation proposed by Mak et al.

(2017), the optimal single-discovery PRS for European and

Asian populations can be determined directly by the highest

R2 without the phenotypes. The optimal estimates of effect sizes

of Asian and European populations that we applied to TL-Multi

are the ancestry-matched optimal PRS, respectively. Algorithm 1

describes our proposed TL-Multi algorithm, and we further

developed an R package, which is publicly available at https://

github.com/mxxptian/TLMulti.

Algorithm 1. Algorithm for TL-Multi.

2.6 Simulation studies

We performed a wide range of simulation studies to evaluate

the performance of TL-Multi. We used real genotypes of the

European population from the UK Biobank and the Asian

population from a previous SLE study (Wang et al., 2021).

Following the quality control procedure provided in Chang

et al. (2015), we utilized the UK Biobank and Asian lupus

genotype data whose p-values of Hardy–Weinberg equilibrium

Fisher’s exact test < 1 × 10−5 with minor allele frequency (MAF)

> 1% and filtered out SNPs and missing samples. Then, we

simulated the effect sizes based on the genetic architecture

correlation and applied the R package ‘bigsnpr’ (Privé et al.,

2018) to generate quantitative phenotypes and conduct GWAS to

determine the summary statistics. Based on these estimated

summary statistics, we employed the following PRS prediction

methods. We further extracted the common variants between

European samples and Asian samples. This resulted in 69,398

SNPs in total, and 4, 049 subjects in the Asian population. We

fixed SNP-heritability h2 at 0.5 and further simulated genetic

architectures by randomly treating 1, 1.5, 2, and 5% variants as

causal variants. We assumed that these causal variants were

shared in multiple populations with different effect sizes.

Additionally, we sampled effect sizes from a multivariate

normal distribution with a wide range of cross-population

genetic correlation values (0.2, 0.4, 0.6, and 0.8) (Bulik-

Sullivan et al., 2015; Huang et al., 2021), where for each

population the variance is σ2 � h2

m and m is the number of

causal variants. There were 12 combinations in total. For each

scenario, we generated 20 replicates and calculated the average

values to assess the prediction accuracy. We took out the original

phenotypes and generated new ones based on a linear

framework:

y � Xβ + ,

FIGURE 2
Prediction accuracy of Lassosum, meta-analysis, PT-Multi,
and TL-Multi over 20 replications in simulations. The selected ratio
of SNPs was the ratio of the actual numbers of SNPs simulated to
the total number of common SNPs (69,398). The actual
numbers of SNPs simulated in the four scenarios were 21,477
(chromosomes 1–4), 32,151 (chromosomes 1–6), 39,682
(chromosomes 1–8), and 49,909 (chromosomes 1–11),
respectively. The average of R2 was plotted. Upper: The sample
size of the European population is 25,000, and the sample size of
the Hong Kong population is 1,000. Lower: The sample size of the
European population is 50,000, and the sample size of the Hong
Kong population is 1,000.
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where X is the training set of the standardized genotype matrix,

and  represents the random error which was generated from

N(0, 1 − h2). In addition, GWAS was implemented using the R

package ‘bigsnpr’ to obtain the summary statistics for each

simulated phenotype.

Due to the possibility that sample size affects performance,

we investigated 25:1 and 50:1 proportions of European samples

to Asian samples. Additionally, we observed that the number of

variants has a significant influence on the prediction

performance, and the majority of variants are located on

chromosomes 1–11. Motivated by previous works

(Vilhjálmsson et al., 2015; Márquez-Luna et al., 2017), we

further extrapolated the performance at a large sample size by

conducting simulations with different subsets of chromosomes to

increase N
M, where N is the total number of samples and M is the

number of SNPs: 1) using chromosomes 1–4; 2) using

chromosomes 1–6; 3) using chromosomes 1–8; and 4) using

chromosomes 1–11.

3 Results

3.1 Simulations

We performed simulations with real genotypes and

simulated continuous phenotypes. We split the data from the

Hong Kong population into two groups: 1,000 samples as a

training data set and 3,049 samples as testing data and drew

50,000 samples from European samples. The training data set

was used to simulate phenotypes, and the testing data were

applied to performance assessments. The prediction accuracy

was assessed by R2, which was based on the simulated phenotypes

generated from the test data. Specifically, LD blocks for the

single-discovery method were ancestry-matched as the

reference panels, and they were in correspondence with the

ancestry of the target population for multi-discovery methods.

In Figure 1, we displayed the average values with a 95% upper

bound of each simulation setting under scenario 1) over

20 replicates. We conducted single-discovery analyses for

Asian and European populations by Lassosum and multi-

discovery analyses by meta-analysis, TL-Multi, and PT-Multi.

Lassosum adopted the PRS with the maximum R2 by 10-fold

cross-validation. We observed that meta-analysis could not

improve the prediction accuracy when a single-discovery

analysis of the European population did not perform better

than the Asian one. Particularly, when the genetic architecture

correlation was quite low (ρ = 0.2), meta-analysis and European

prediction performances were comparably inferior. In this case, it

was explained that the shared information between the Asian and

European populations would be limited, preventing prediction

improvement from being achieved by directly integrating the

European data. It also reflected the consistent relationship

between meta-analysis and single-discovery analysis of the

informative population. Moreover, the meta-analysis could

hardly outperform the European one. The performance of

Lassosum for the European population dominated the

performance of the meta-analysis since the sample size of the

European population is significantly larger than that of the Hong

Kong population. Additionally, we observed that TL-Multi could

always improve the accuracy compared to Lassosum for the

Hong Kong population. If the genetic architecture correlation

was not too high (for example, ρ = 0.4 or 0.6), TL-Multi attained

the highest prediction accuracy compared to competing

approaches. However, when the genetic architecture was high

(ρ = 0.8), we noticed that TL-Multi performed slightly worse than

other approaches. In this example, the results might be explained

by the remarkable similarity of the genetic architecture. When

the genetic correlation reaches 0.8, the majority of information

about the Asian population would be directly explained by that of

the European population. Combining these two groups in the

meta-analysis might increase the accuracy of estimated effect

sizes.

In most scenarios, TL-Multi outperformed PT-Multi.

Specifically, TL-Multi substantially improved multiethnic

prediction accuracy for the instances with 1, 1.5, and 2%

causal proportions. PT-Multi conducted PT, which caused

information loss in the data. However, TL-Multi could take all

the data information into account. We found TL-Multi

performed poorly at a 5% causal proportion. We noted that

under this situation, the result of Lassosum for the Hong Kong

population was significantly inferior to that of the European

population. We referred to assumption (2) to cast doubt on the

breach of our assumption. If the assumption did not hold, the

European population could not be denoted as auxiliary

informative data because the useful information was limited.

Due to it, TL-Multi would fail to borrow the information to

improve the learning performance of the target population.

Alternatively, we considered that the effect sizes were

simulated depending on the number of causal variations, m.

As the proportion of causality rose, the effect sizes tended to

approach zero. Limited by the small sample size of the Asian

population, the bias between the estimated effect sizes derived

from the simulated phenotypes and the actual effect sizes would

be even larger. Some causal variants with relatively small signals

more likely erroneously failed to be captured, which resulted in

the restricted TL-Multi’s performance. However, it is noteworthy

that TL-Multi still enhanced Hong Kong’s prediction accuracy in

this scenario. We discovered that the performance of meta-

analysis and PT-Multi for Hong Kong were nearly identical to

that of Lassosum for Europeans when we attributed the huge

disparity in multiethnic sample sizes. To summarize, the

European population dominated the performance of meta-

analysis and PT-Multi. In particular, TL-Multi could be

employed to moderate genetic architecture correlations (for

example, ρ = 0.4 and 0.6) when the informative auxiliary

population (for example, the European population)
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outperformed the target population (for example, the Hong Kong

population). Referring to assumption (2), the performance of the

European population was supposed to bemore accurate than that

of the target population; therefore, it would be appropriate to

borrow information from it. Moreover, if the proportion of

casuals increased, the estimated effect sizes of the target

population would be relatively biased. We found that the

precision of the effect sizes of the target population would

have a substantial effect on TL-Multi.

Alternatively, we generated phenotypes using different

chromosome subsets and sample sizes of the European

population while maintaining a fixed Hong Kong sample size.

Over 20 replicates, we took the performance using a fixed genetic

correlation of 0.4 and 1.5% causal variants as an example. In

Figure 2, we drew 25,000 European subjects and 1,000 Hong

Kong subjects. We observed that TL-Multi performed much

better than the competing approaches. While the performance

of the Hong Kong population was superior to that of the

European population, the performance of the meta-analysis

was poor compared to that of Hong Kong. As the total

number of SNPs increased, the prediction accuracy of Hong

Kong dramatically decreased. However, the prediction accuracy

of Europeans decreased relatively slowly. Specifically, under

scenario (4), TL-Multi was inferior to the other two multi-

discovery methods. This could be explained by fact that for

this case, there were 1,000 subjects from Hong Kong with

49,909 SNPs which resulted in a significant bias while

estimating the effect sizes by applying GWAS. In this case,

TL-Multi thus failed to improve the accuracy of the forecast

compared to the previous scenarios, as the bias in the estimates of

Hong Kong’s effect sizes was larger. Moreover, the consistent

trend in European meta-analysis and PT-Multi supported our

previous extrapolation that the performance of the European

population could determine the primary contribution of the

other two. In Figure 2, we simulated 50,000 European

subjects. We further observed that the performance of PT-

Multi was inferior to TL-Multi under scenarios (1)–(3), and

both of them outperformed the single-discovery method and

FIGURE 3
Receiver operating characteristic curve of Lassosum,meta-analysis, and TL-Multi in the analysis of SLE study. Lassosum_HK is Lassosum for the
Hong Kong population, and Lassosum_Eur is Lassosum for the European population. The corresponding AUC values with the optimal PRS of
Lassosum for the Hong Kong population and European population, meta-analysis, and TL-Multi are 0.6872, 0.6943, 0.7098, and 0.7131, respectively.
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meta-analysis. Furthermore, the performance of the meta-

analysis was consistent with that of European. As a result,

even though the prediction accuracy of TL-Multi went down,

it was still better than the meta-analysis’s prediction accuracy

under all the scenarios.

3.2 Analysis of SLE in the Hong Kong
population

We further applied the four abovementioned approaches

to predict SLE risk in the Hong Kong population to evaluate

the performance in real data analysis. We used European SLE

GWAS summary statistics from previous studies (Morris

et al., 2016; Julià et al., 2018; Wang et al., 2021)

(4,576 cases, and 8,039 controls) and the ancestry-matched

GWAS summary statistics (Wang et al., 2021) (2,618 cases and

5,107 controls). The validation data for the Hong Kong

population were from Wang et al. (2021) (1,604 cases and

3,324 controls) employing 10-fold cross-validation following

Mak et al. (2017).

We reported the area under the receiver operating

characteristic curve (AUC) to assess the prediction

accuracy of derived PRS. The ethnicity of the LD block is

consistent with that of the majority population in GWAS data,

and the LD block was derived from Berisa and Pickrell (2016).

Furthermore, the reference panel was obtained from the

1000 Genome Project, and its ethnicity was consistent with

the target populations. We set the p-value thresholds to be the

same as the values in simulation studies, and r2 = 0.1. In real

data analysis, TL-Multi outperformed the competing

methods. The optimal PRS from European GWAS data

yielded AUC of 0.6872 and 0.6943 from East Asian GWAS

data. We further obtained the optimal PRS of meta-analysis,

TL-Multi, and PT-Multi, with AUC values of 0.7098, 0.7131,

and 0.5447, and the corresponding ROC curves are depicted in

Figure 3. For binary classification, we used logistic regression

to obtain the mixing weights in PT-Multi. Consistent with the

evaluations in simulation studies, we observed that TL-Multi

improved 2.7% in prediction accuracy compared to Lassosum

for the Hong Kong population, and meta-analysis improved

2.2% compared to Lassosum. However, PT-Multi performed

even worse than the single-discovery method in real data

analysis.

Moreover, we reported the case prevalence of the bottom 2, 5,

and 10% and top 2, 5, and 10% of PRS distribution, constructed

by single-discovery method, meta-analysis, and TL-Multi in

Table 1. This summary report demonstrated the case

prevalence under different PRS conditions. For instance, the

bottom numbers indicate the prevalence of SLE among

individuals with low PRS. We observed that TL-Multi had

satisfactory performance and showed 10.66-, 7.50-, and 5.80-

fold increases comparing the top 2, 5, and 10% with the bottom 2,

5, and 10% of the PRS distribution, respectively.

3.3 Analysis of asthma in the Indian
population

We applied the same methods to the Indian and European

samples from UK computing associated summary statistics by the

‘bigsnpr’ R package. We split 1,000 (127 cases and 873 controls)

unrelated Indian samples as validation data, and 3,160 (408 cases

and 2,752 controls) unrelated samples as training data, and further

sampled 48,362 (6,555 cases and 41,807 controls) unrelated

European samples. We further reported the AUC of the above

four methods to evaluate the optimal prediction method. The

ancestry of LD blocks matches that of the data’s predominant

population. We used training data as a reference panel whose

ancestry was always identical to that of the target population.

During pruning and clumping, the p-value thresholds were set to

be equal to simulation with r2 = 0.1.

The ROC curves for binary classification are depicted in

Figure 4. The optimal PRS from European and Indian samples

revealed AUC values of 0.5657 and 0.5441, respectively. In

addition, for the multiethnic PRS construction methods, the

optimal PRS of meta-analysis, TL-Multi, and PT-Multi

resulted in AUC values of 0.5705, 0.5721, and 0.6427,

respectively. We found that TL-Multi was superior to the all

singe-discovery methods and meta-analysis. For binary

classification, TL-Multi improved 5.15% in prediction

accuracy compared to Lassosum for the Indian population,

and meta-analysis improved 4.85% compared to Lassosum for

the Indian population. We noted that PT-Multi performed better

than ours. However, the comparison of the PT-Multi method

with other methods might not be fair since PT-Multi required

individual-level data, whereas the other four approaches solely

relied on summary statistics. Moreover, access to individual-level

data was typically difficult.

Additionally, the case prevalence of the bottom 2, 5, and 10%

and top 2, 5, and 10% of PRS distribution, conducted by

Lassosum, meta-analysis, and TL-Multi for Indian and

TABLE 1 Case prevalence of 2, 5, and 10% for the top and bottom
quantiles of the PRS distribution in the analysis of SLE study with
the target Hong Kong population and auxiliary European population,
generated by Lassosum, meta-analysis, and TL-Multi.

Prevalence Bottom Top

2% 5% 10% 10% 5% 2%

Lassosum_HK 0.0864 0.1133 0.1309 0.6963 0.7192 0.7407

Lassosum_Eur 0.1111 0.1281 0.1704 0.6938 0.7389 0.8148

Meta-Analysis 0.0864 0.0985 0.1309 0.7432 0.8030 0.8519

TL-Multi 0.0741 0.0985 0.1235 0.7160 0.7389 0.7901
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European populations, is reported in Table 2. We observed that

TL-Multi would also perform with more accuracy in terms of

case prevalence than the competing methods.

4 Discussion

In this article, we proposed a novel approach named TL-

Multi to improve the accuracy of PRS prediction for non-

European populations. Our proposed method leverages

summary statistics and makes complete use of all available

data without clumping. We have shown that transferring the

information from the informative auxiliary populations (for

example, European) to the target populations (for example, East

Asian) can indeed improve learning performance and the

prediction accuracy of the target populations compared to

the single-discovery methods. Particularly, TL-Multi shows a

higher AUC compared to meta-analysis and PT-Multi in the

analysis of SLE in the Hong Kong population. In our analysis of

asthma in the Indian population, TL-Multi outperforms

Lassosum and meta-analysis in terms of prediction

performance and case prevalence prediction accuracy.

Moreover, we noted that in the field of PRS prediction, there

is no particular method that outperforms all the others. It

depends on the specific situation to select an appropriate

FIGURE 4
Receiver operating characteristic curve of Lassosum, meta-analysis, and TL-Multi in the analysis asthma study. Lassosum_Ind is Lassosum for
the Indian population, and Lassosum_Eur is Lassosum for the European population. The corresponding AUC values with the optimal PRS of
Lassosum for the Indian population and European population, meta-analysis, and TL-Multi are 0.5657, 0.5441, 0.5705, and 0.5721, respectively.

TABLE 2 Case prevalence of 2, 5, and 10% for the top and bottom
quantiles of the PRS distribution in the analysis of asthma study
with the target Indian population and auxiliary European population,
generated by Lassosum, meta-analysis, and TL-Multi.

Prevalence Bottom Upper

2% 5% 10% 10% 5% 2%

Lassosum_Ind 0.1500 0.1800 0.1600 0.1900 0.1800 0.2000

Lassosum_Eur 0.1500 0.1200 0.1300 0.1600 0.1800 0.0000

Meta-Analysis 0.4000 0.2000 0.2100 0.1400 0.1600 0.100

TL-Multi 0.1000 0.1800 0.1700 0.2000 0.2400 0.2500
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method. For instance, PRS-CS can always outperform PT

(Huang et al., 2021), but PRS-CS may be inferior to PT

(Weissbrod et al., 2022) in some circumstances. Therefore,

we provided some potential circumstances in which TL-

Multi would be an appropriate choice. First, TL-Multi is

implemented using summary statistics and performs well

under the moderate genetic architecture correlation (for

example, ρ = 0.4 and 0.6) and moderate causal proportions

(for example, m
M = 1%, 1.5%, and 2%). Second, based on

assumption (2), TL-Multi would be a good alternative when

the single-discovery method’s performance of the informative

auxiliary population is superior to that of the target population.

Compared to the single-discovery methods, we showed that

the performance of TL-Multi was always more accurate with an

acceptable running time (for example, 2 min) than the

performance of Lassosum for the Hong Kong population,

especially under moderate genetic correlation (for example,

ρ = 0.6). When the sample size of the target data set is

limited, increasing the sample size of the informative data set

can enhance the prediction accuracy of TL-Multi. In the

simulation studies, we found that the performances of meta-

analysis and PT-Multi were dominated by the performance of

Lassosum for the European population. As the genetic

architecture correlation was rather high (ρ = 0.8), TL-Multi

may perform poorly, and it would be more prudent to

consider approaches that integrate the whole data set across

distinct populations. Therefore, the performances of PT-Multi

and meta-analysis were unsatisfactory, while the performance of

the European population was worse than that of the Hong Kong

population.

Another advantage of TL-Multi is its powerful transferability,

which corrects the bias in estimation between European and non-

European populations. De Candia et al. (2013) showed that the

cross-population genetic correlation could leverage the causal

effect sizes in different populations. In simulation studies, TL-

Multi performed better when the genetic correlations were

0.4 and 0.6. It indicated that TL-Multi could be widely

applied to two different populations which share some

common genetic architecture information. Moreover, TL-

Multi retained the pseudo validation proposed by Mak et al.

(2017). It extended the application of TL-Multi to fit the data

without a validation data set and phenotype data.

Despite these advantages, some limitations of TL-Multi still

remain for future work. For example, if the difference between

two populations is too enormous, our proposed approach’s

assumptions will fail to hold. It is worth bearing in mind to

deal with this scenario. In this article, we did not consider the X

chromosome, whose information could also contribute to

prediction accuracy (Tukiainen et al., 2014). In recent years,

some approaches have fitted multiple diseases simultaneously

(Maier et al., 2015; Turley et al., 2018; Chung et al., 2019;

Musliner et al., 2019; Graff et al., 2021). These studies inspire

us to investigate other TL-Multi extensions that bridge not only

the gap between populations but also the gap between illnesses in

the interim.
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