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Lung cancer is a major cause of cancer-related deaths globally, with a dismal prognosis.
N7-methylguanosine (m7G) is essential for the transcriptional phenotypic modification of
messenger RNA (mRNA) and long noncoding RNA (lncRNA). However, research on m7G-
related lncRNAs involved in lung adenocarcinoma (LUAD) regulation is still limited. Herein,
we aim to establish a prognostic model of m7G-related lncRNAs and investigate their
immune properties. Eight prognostic m7G-related lncRNAswere identified using univariate
Cox analysis. Six m7G-related lncRNAs were identified using LASSO-Cox regression
analysis to construct risk models, and all LUAD patients in The Cancer Genome Atlas
(TCGA) cohort was divided into low-risk and high-risk subgroups. The accuracy of the
model was verified by Kaplan-Meier analysis, time-dependent receiver operating
characteristic, principal component analysis, independent prognostic analysis,
nomogram, and calibration curve. Further studies were conducted on the gene set
enrichment and disease ontology enrichment analyses. The gene set enrichment
analysis (GSEA) revealed that the high-risk group enriched for cancer proliferation
pathways, and the enrichment analysis of disease ontology (DO) revealed that lung
disease was enriched, rationally explaining the superiority of the risk model. Finally, we
found that the low-risk group had higher immune infiltration and checkpoint expression. It
can be speculated that the low-risk group has a better effect on immunotherapy.
Susceptibility to antitumor drugs in different risk subgroups was assessed, and it
found that the high-risk group showed high sensitivity to first-line treatment drugs for
non-small cell lung cancer. In conclusion, a risk model based on 6 m7G-related lncRNAs
can not only predict the overall survival (OS) rate of LUAD patients but also guide
individualized treatment for these patients.
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INTRODUCTION

Lung cancer is the second most common type of cancer worldwide and the leading cause of
cancer mortality, accounting for approximately 11.4% of diagnosed cancers and 18.0% of deaths
(Sung et al., 2021). Currently, the 5-years survival rate for lung cancer is still very low, only
10–20% in most countries (Allemani et al., 2018). Lung adenocarcinoma (LUAD) is the most
commonly diagnosed subtype of lung cancer, accounting for approximately 40% of all cases

Edited by:
Yan Gong,

Wuhan University, China

Reviewed by:
Xiancai Ma,

Guangzhou Laboratory, China
Xuefeng Li,

Guangzhou Medical University, China

*Correspondence:
Zhe Wang

wangzhe@dlu.edu.cn
Ruoyu Wang

wangruoyu@dlu.edu.cn

Specialty section:
This article was submitted to

Cancer Genetics and Oncogenomics,
a section of the journal
Frontiers in Genetics

Received: 30 March 2022
Accepted: 13 May 2022
Published: 08 June 2022

Citation:
Zhang C, Zhou D, Wang Z, Ju Z, He J,
Zhao G andWang R (2022) Risk Model

and Immune Signature of m7G-
Related lncRNA Based on

Lung Adenocarcinoma.
Front. Genet. 13:907754.

doi: 10.3389/fgene.2022.907754

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 9077541

ORIGINAL RESEARCH
published: 08 June 2022

doi: 10.3389/fgene.2022.907754

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.907754&domain=pdf&date_stamp=2022-06-08
https://www.frontiersin.org/articles/10.3389/fgene.2022.907754/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.907754/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.907754/full
http://creativecommons.org/licenses/by/4.0/
mailto:wangzhe@dlu.edu.cn
mailto:wangruoyu@dlu.edu.cn
https://doi.org/10.3389/fgene.2022.907754
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.907754


(Travis et al., 2015). With the development of surgery,
radiotherapy, chemotherapy, targeted therapy, and
immunotherapy, the 5-years survival rate of lung cancer has
improved, but the performance remains unsatisfactory. There
is an urgent need to develop a convenient and fast prognostic
model that can accurately judge patient prognosis and guide
individualized treatment, which could be very useful for both
patients and clinicians.

In humans, the methyltransferase like 1 (METTL1)/WD
repeat domain 4 (WDR4) complex catalyzes N7-
methylguanosine, one of the most common tRNA
modifications in the tRNA variable loop (Alexandrov et al.,
2005; Lin et al., 2018). METTL1 is an m7G catalytic enzyme
and WDR4 is important in the methyltransferase complex
stabilization (Alexandrov et al., 2002). Recently, it was found
that METTL1 and WDR4 were significantly up-regulated in
lung cancer tissues and played an oncogenic role in lung cancer
via mediating m7G tRNA modification and modulated the
translation of mRNAs, especially METTL1-mediated m7G
tRNA modification and m7G codon usage promoted mRNA
translation and lung cancer progression (Ma et al., 2021). This
suggests that METTL1 and WDR4 may play a significant role
in tumor progression. Therefore, screening m7G-related genes
is essential.

Long non-coding RNAs (lncRNAs) are defined as non-coding
RNAs of more than 200 nucleotides in length. They are not generally
considered to encode proteins but are involved in the regulation of
different levels (epigenetic regulation, transcriptional regulation, and
post-transcriptional regulation) of genes encoding proteins in the
form of RNA (Juhling et al., 2009; Spizzo et al., 2012). Several
lncRNAs, including ferroptosis-related lncRNAs (Chen et al., 2022),
pyroptosis-related lncRNAs (Xu et al., 2022), and autophagy-related
lncRNAs (Luo et al., 2022), have recently been implicated in
prognosis in cancer patients, while m7G-related lncRNAs have
rarely been reported.

Herein, we identified 6 prognostic risk models of m7G-related
lncRNAs and the correlation between the risk model and immune
characteristics. As expected, our model well predicted survival in
LUAD patients and showed greater efficacy in terms of immune cell
invasion and immune checkpoint expression.

MATERIALS AND METHODS

Data Set
RNA sequencing data and associated clinical characteristics of
594 LUAD patients were extracted from The Cancer Genome
Atlas (TCGA) database, including 59 normal tissues and 535
LUAD tissues. Forty m7G-related genes were obtained from the
gene set enrichment analysis (GSEA) website (http://www.gsea-
msigdb.org/gsea/login.jsp) and published articles. Patients
lacking clinical information were deleted from subsequent
analyses.

Selection of m7G-Related lncRNAs
LncRNAs were screened from 594 patients with LUAD using
Strawberry Perl (version 5.30.0). A total of 2093 m7G-related

lncRNAs were identified using the limma R package with the
following criteria: Pearson correlation coefficient >0.4 and p <
0.001. A total of 990 differentially expressed lncRNAs (DELs)
were identified in normal lung tissues and LUAD tissues with the
following criteria: log2 fold change (FC) > 1 and false discovery
rate <0.05.

Development and Validation of
m7G-Related lncRNA Prognostic Model
To rigorously screen out prognostic lncRNAs, the p-value was set
to 0.01 and univariate Cox analysis was used to identify
prognostic lncRNAs. Next, the TCGA cohort was randomly
divided into a training and a validation group, each
accounting for 50%. Based on these prognostic lncRNAs,
Lasso-Cox regression analysis was used to select genes to
minimize the risk of overfitting and a risk prediction model
was constructed. The risk score was calculated using the following
formula:

risk score � ∑
n

i�1
(coefip expri) (1)

where coefi represents the coefficients of each lncRNA and expri
represents the expression level of each lncRNA. Based on the
median value of the risk score, patients were divided into low-risk
and high-risk groups. Survival curves were drawn between low-
risk and high-risk groups using the survival and survminer
packages of the R software. The stability of the risk score was
performed using the validation group. Clinical information
(including age, gender, and stage) of TCGA-LUAD patients
was extracted and combined with the risk score for univariate
and multivariate Cox regression analysis to evaluate whether the
risk score is an independent prognostic factor for overall survival
(OS), and compared predictive results of different factors using
receiver operating characteristic (ROC) curve analysis.

Nomogram and Calibration
The rms R package was utilized to construct nomograms.
Calibration curves were used to quantify the agreement
between the predicted and the actual results for 1-, 3-, and 5-
years survival rates.

Gene Set Enrichment Analysis
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis was performed, and significantly enriched pathways in
different risk subgroups were identified using GSEA software (p <
0.05 and FDR <0.25).

Assessment of Immune Cell Infiltration and
Immune Checkpoints
All TCGA tumor immune cell infiltration files were downloaded
from TIMER 2.0 and the correlation between the explored
immune infiltrating cells and the risk score was analyzed using
limma, scales, ggplot2 and ggtext R packages. Additionally,
immune cell infiltration, immune-related signaling pathways,
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tumor microenvironment (TME) scores, and immune
checkpoints were compared between low-risk and high-risk
groups using the ggpubr package.

Prediction of Drug Susceptibility
The pRRophetic R package was utilized to predict the half-maximal
inhibitory concentration (IC50) value of cancer drugs in different risk
subgroups, which represents the effectiveness of a substance in
inhibiting a specific biological or biochemical process.

Statistical Analysis
All statistical analyses were performed using R software (version
4.0.4). The Wilcoxon signed-rank test was used to investigate
differences in the composition of immune infiltrating cells. The
correlation between m7G-related genes and m7G-related lncRNAs
was investigated using Spearman correlation analysis. Kaplan-Meier
analysis was used to estimate survival curves. p values <0.05 (p), 0.01
(pp), and 0.001 (ppp) were considered statistically significant.

RESULTS

Workflow of Study
The study flowchart is shown in Figure 1. The precise procedure is
as follows: First, we obtained RNA sequencing from the TCGA
database for 594 lung adenocarcinoma patients, as well as 40 m7G-
associated genes from the GSEA database and relevant literature.
Furthermore, a 6-lncRNA prognostic model was developed, and its
stability was validated using multiple techniques. Finally, GSEA and

DO enrichment analysis validated the superiority of themodel, while
immunological correlation analysis and drug sensitivity analysis
extended on the idea of clinical treatment.

Identification of Differentially Expressed
m7G-Related lncRNAs
Data for 594 LUAD samples were obtained from the TCGA
database, and 14,056 lncRNAs and 19,573 mRNAs were detected.
Forty m7G-related genes were obtained from published articles and
the GSEA website (Letoquart et al., 2014; Trotman and Schoenberg,
2019; Galloway et al., 2021; Ma et al., 2021). The co-expression
network between m7G-related genes and lncRNAs is shown in
Figure 2A. A total of 990 DELs were screened from 59 normal
tissues and 535 LUAD tissues (|Log2 FC| > 1 and p < 0.05). Of these,
903 lncRNAs were up-regulated and 87 were down-regulated
(Figure 2B).

Development and Validation of Prognostic
Gene Models
Patients from the TCGA-LUAD database were randomly split into
two groups: a training set and a validation set. To strictly screen
prognosis-related DELs, the p-value was set to 0.01, and performed
univariate Cox regression analysis was performed on the training
group. Eight prognosis-related lncRNAs met the conditions,
including AC092718.3, LINC01352, AP000695.1, AC018647.1,
AL355472.3, AC026355.2, SALRNA1 and AL157895.1 (Figure
3A). These prognosis-related lncRNAs are shown in Figure 3B.

FIGURE 1 | Workflow of this study. The TCGA database was utilized to screen 990 differentially expressed lncRNAs (DELs) in LUAD, which were analyzed with
LASSO-COX regression to develop a prognostic model for m7G-related lncRNAs. The prognostic model had been validated in multiple ways and proved to be stable
and reliable. Therefore, based on this model, we also performed disease ontology enrichment analysis (DO), gene set enrichment analysis (GSEA), immune-related
analysis and drug sensitivity analysis to determine the potential function of prognostic signatures.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 9077543

Zhang et al. m7G-Related lncRNAs in Lung Adenocarcinoma

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Furthermore, these lncRNAs were positively regulated by
corresponding genes in the Sankey diagram (Figure 3E). LASSO
regression analysis was then performed on these prognosis-
associated lncRNAs. Cross-validation was also performed to
obtain the best λ value from the smallest partial likelihood bias
(Figures 3C,D), to further identify lncRNAs significantly associated
with prognosis in LUAD patients. Moreover, multivariate Cox
regression analysis was used to screen six prognosis-related
lncRNAs and calculate the respective coefficients of these
lncRNAs. Finally, six candidates, including LINC01352,
AP000695.1, AC018647.1, AL355472.3, AC026355.2, SALRNA1,
were selected to construct a risk model. The risk score was
calculated using the following formula: LINC01352p(-1.42486) +
AP000695.1p(0.37854) + AC018647.1p(-2.19905) +
AL355472.3p(1.05547) + AC026355.2p(-0.38520) + SALRNA1p(-
1.39428).

The median score was calculated based on the above
formula, and the TCGA-LUAD cohort, training group, and
validation group were classified into low-risk and high-risk
subgroups, and the principal component analysis, risk score
distribution, and survival status distribution were visualized,
respectively (Figures 4A–C). The results revealed that the
sample distribution of the two risk groups was reasonable.
Kaplan-Meier survival analysis showed that the OS was shorter
in the high-risk group than in the low-risk group
(Figures 4D–F).

Independent Prognostic Value of Risk
Models
Univariate and multivariate Cox regression analyses were
performed on the TCGA-LUAD cohort to evaluate the
accuracy of the risk model and determine whether risk
score could serve as an independent prognostic factor for
patient survival. Univariate Cox regression analysis showed
that both the risk score and the stage were significantly related
to the prognosis of the patient (Figure 5A). After controlling
for other confounding factors, multivariate analysis revealed

that risk score and stage were independent prognostic factors
(Figure 5B). To expand the applicability of the risk model, the
stage was divided into two subgroups: early-stage (Stage I and
Stage II) and late-stage (Stage III and Stage IV). The survival
curves are shown in Figures 5C,D. Patients with advanced
Stage had a very poor prognosis, which is completely
consistent with the clinical data.

A time-dependent ROC curve was generated in the TCGA-
LUAD cohort, and the area under the curve (AUC) reached
0.705, 0.686, and 0.723 at 1, 3, and 5 years, respectively
(Figure 4I). In addition, ROC curves confirmed that the
risk signature had better prognostic accuracy compared
with other clinicopathological features (Figure 5F). Time-
dependent ROC curves also showed excellent predictive
power in both the training and validation sets (Figures 4G,H).

Construction of Nomogram
Based on the TCGA-LUAD cohort, risk scores and clinical
factors were integrated to create a nomogram (Figure 5E) to
improve the predictive power of survival in LUAD patients.
Calibration plots for 1-, 3- and 5-years OS revealed good
agreement between nomogram prediction and actual
observations (Figure 5G).

GSEA and DO
GSEA software was used to explore KEGG pathways in the
entire collection to investigate differences in signaling
pathways in different risk subgroups. It was found that
pathways related to cancer proliferation, such as cell cycle,
DNA replication, mismatch repair, proteasome, homologous
recombination, etc., were enriched in the high-risk groups. In
addition, the low-risk group was mainly enriched in pathways
such as autoimmune thyroid disease, asthma, primary bile acid
biosynthesis, arachidonic acid metabolism, and alpha linolenic
acid metabolism (Figure 6A). The majority of enriched
pathways in the high-risk group were closely related to
radiotherapy (Azzam et al., 2012; Haro et al., 2012). Hence,
we speculate that radiotherapy may have unexpected effects on

FIGURE 2 | Identification of m7G-related lncRNAs in LUAD patients. (A) Co-expression network of m7G-related lncRNAs and mRNAs. (B) 990 differentially
expressed lncRNAs.
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FIGURE 3 | Development of a new prognostic model for m7G-related lncRNAs in LUAD. (A) 8 prognosis-related lncRNAs screened by univariate Cox regression
analysis (p < 0.01). (B) Differential expression of prognosis-related lncRNAs in lung normal tissues and adenocarcinoma tissues. (C) LASSO coefficient distribution of
8 m7G-related lncRNAs. (D) The tuning parameter (λ) in the LASSOmodel is chosen by the minimum criterion. (E) The Sankey diagram depicts the detailed connections
between eight prognosis-related lncRNAs and m7G-related genes. *p < 0.05, **p < 0.01, ***p < 0.001.
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patients in the high-risk group, providing foundations for
future research directions. Immune-related pathways were
enriched in the low-risk group, implying that the low-risk
group may be closely related to immune characteristics.
Disease differences of differentially expressed genes (DEGs)
between the two risk subgroups were further investigated.
First, DEGs (|Log2 FC| > 1 and p < 0.05) between the two

risk subgroups were screened, followed by enrichment analysis
of disease ontology (DO). DEGs were enriched in lung
diseases, adenoma, coronary artery disease, and myocardial
infarction (Yu et al., 2012; Yu et al., 2015). This confirms once
again that our risk model is very superior. Surprisingly, DEGs
are also involved in coronary artery disease and myocardial
infarction (Figures 6B,C).

FIGURE 4 | Validation of prognostic models for six m7G-related lncRNAs. (A–C) Principal component analysis, risk score distribution, and survival status
distribution for training, validation, and TCGA-LUAD. (D–F) Kaplan-Meier curves of training group, validation group and TCGA-LUAD at different risk groups. (G–I) ROC
curves for 1 year, 3 years and 5 years.
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FIGURE 5 | Clinical value of risk characteristics in TCGA-LUAD. (A) Univariate Cox regression analysis of risk scores and clinical factors. (B) Multivariate Cox
regression analysis of risk scores and clinical factors. (C,D) Pathological stage was stratified between low- and high-risk groups in the entire collection. (E) Nomogram
combining gender, age, stage, and risk score predicts 1-, 3-, and 5-years overall survival. (F) Clinicopathological features and the predictive accuracy of risk models. (G)
Calibration curves test the agreement between actual and predicted results at 1, 3, and 5 years. *p < 0.05, **p < 0.01, ***p < 0.001.
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Relationship Between Risk Model and
Immune Characteristics
Because GSEA revealed that the low-risk group was enriched in
immune-related pathways, we hypothesized that the m7G-related
lncRNA-based risk model was strongly tied to immunity. Therefore,
the relationship between the risk model and the immunological
signature was investigated further. The relationship between
immune cells and the risk score is shown in the bubble diagram.
The majority of immune cells were negatively correlated with the
risk score, especially hematopoietic stem cells of XCELL, tumor-
related fibroblasts, stroma score, granulocyte-monocyte progenitor
cells, and activated mast cells of CIBERSORT-ABS, resting memory
CD4+T cells,M2macrophages, and Treg cells of QUANTISEQ and
myeloid dendritic cells and endothelial cells of MCPCOUNTER
(Figure 7A). Moreover, single sample gene set enrichment analysis
(ssGSEA) was used to examine the enrichment fraction of 16
different types of immune cells as well as the activity of 13
different immune-related pathways. Interestingly, the low-risk
group had more immune cell infiltration, particularly activated

dendritic cells, B cells, immature dendritic cells, mast cells,
neutrophils, T helper cells, and tumor-infiltrating lymphocytes
(Figure 7C). The activity of type 2 interferon signaling pathway
and human leukocyte antigen was higher in the low-risk group than
in the high-risk group (Figure 7D). Differential analysis was used to
detect differences in the tumormicroenvironment between the high-
risk and low-risk groups, and the results showed that the low-risk
group had higher immune, stromal, and estimate scores (Figure 7B).
It is possible to conclude that the low-risk group had greater immune
cell infiltration and lower tumor purity. Furthermore, most immune
checkpoints were highly expressed in low-risk groups (Figure 7E).
Therefore, low-risk patients may benefit more from immune
checkpoint inhibitor therapy in our risk model.

Clinical Application of Risk Model
Differences in drug sensitivity of different risk subgroups were
analyzed to investigate the clinical application value of the risk
model. Results showed that docetaxel, paclitaxel, etoposide,
gemcitabine, erlotinib, and crizotinib had good effects on patients
in high-risk groups (Figures 8A–E). Patients in low-risk groups were

FIGURE 6 | Enrichment analysis of different risk subgroups. (A) Five pathways were significantly enriched in each of the high-risk and low-risk groups. (B,C) DO
enrichment analysis of DEGs based on different risk subgroups.
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more susceptible to drugs such as CDK4/6 inhibitors (PD.0332,991)
and PI3K inhibitors (GDC0941); however, these drugs are currently
used only for scientific research and may be promising in the future
(Figures 8F,G). Reviewing theGSEA andDO enrichment analysis, it
was found that the high-risk group in the TCGA-LUAD cohort had
pathway enrichment such as cell cycle and DNA replication. The

sensitive medications in the high-risk group are all first-line anti-
tumor drugs for non-small cell lung cancer, among which
chemotherapy drugs include docetaxel, paclitaxel, etoposide and
gemcitabine, and their anti-tumor mechanisms are mainly directed
against cell cycle and DNA replication. Erlotinib and crizotinib are
two targeted medications, with erlotinib acting as an Epidermal

FIGURE 7 | Immune signatures of different risk groups. (A) Correlation between risk scores and immune cells. (B) Comparison of immune-related scores between
low-risk and high-risk groups. (C,D) Enrichment scores for 16 immune cells and 13 immune-related pathways. (E) Differences in the expression of 22 checkpoints in
different risk groups. *p < 0.05, **p < 0.01, ***p < 0.001.
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Growth Factor Receptor (EGFR) inhibitor and crizotinib acting as an
Anaplastic lymphoma kinase (ALK) inhibitor. Both EGFR and ALK
targets are crucial for cancer proliferation. Presumably this is why the
high-risk group is susceptible to the six antitumor drugs. The

sensitive medications in the low-risk group have not been utilized
in clinical practice. Fortunately, we discovered that the low-risk
group had stronger immune infiltration and immune checkpoint
expression, and it is expected that immunotherapy will be effective.

FIGURE 8 | Prediction of drug susceptibility in different risk groups. (A–F) Sensitive drugs in high-risk groups. (G,H) Sensitive drugs in low-risk groups.
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DISCUSSION

Numerous studies have recently revealed that m7G-related genes are
closely linked to the development of cancer (Dai et al., 2021; Ma
et al., 2021). A new class of lncRNAs has gradually become a research
hotspot in various cancer fields in recent years. Some studies have
found that abnormal expression of lncRNAs is associated with the
occurrence and progression of LUAD and some lncRNAs may be
highly correlated with prognosis (Spizzo et al., 2012; Cao et al., 2022;
Xia et al., 2022). However, studies on m7G-related lncRNA
predicting LUAD survival are scanty. The present study
attempted to build a prognostic model of lncRNA in LUAD
patients to test its clinical utility, and systematically explored the
differences of risk models in immune cell infiltration, immune
checkpoints, and drug sensitivity.

Forty publicly reported m7G-related genes were collected. First,
lncRNAs that were differentially expressed in normal and LUAD
tissues were explored. Univariate Cox regression was used to analyze
the DELs, and 8 prognostic-related lncRNAs were screened out.
Lasso-Cox regression analysis was then performed on these
lncRNAs, and 6 prognosis-related lncRNAs (LINC01352,
AP000695.1, AC018647.1, AL355472.3, AC026355.2, and
SALRNA1) were finally identified and a risk prognosis model
was constructed. The Sankey diagram showed that AC018647.1,
AL355472.3, and SALRNA1 are related to DCP2. DCP2 is a
decapping enzyme that plays a significant role in the regulation
of the cell cycle and proliferation (Mugridge andGross, 2018). DCP2
was found to promote lung cancer proliferation (Zhang et al., 2021).
Our data also showed that AC026355.2 was highly correlated with
four mRNAs (ACO2, DCP2, EIF4E, and NCBP1). Although
AC026355.2 is rarely reported, we speculate that it plays a
significant role in tumor development, but its precise role
requires further investigation. EIF4E3 can promote translation,
mRNA export, proliferation, and oncogenic transformation, and
its related lncRNA LINC01352 was found to affect the growth and
metastasis of hepatoma cells (Osborne et al., 2013). Bioinformatics
analysis showed that AP000695.1 is closely related to immunity, and
its related gene NUDT10, could be a potential immunotherapy
target for LUAD in addition to promoting cell proliferation,
inhibiting apoptosis, and causing tumor suppressor gene loss (Jin
et al., 2020; Chen et al., 2021).

GSEA was performed on patients in both risk subgroups to reveal
differences in biological function. Immune-related pathway
enrichment was discovered in the low-risk group but not in the
high-risk group. Immune cell bubble plots showed that low-risk
groups had higher levels of immune infiltration. It has been reported
that the high immune infiltration state tends to have a better
immunotherapeutic effect (Guo et al., 2022; Luo et al., 2022).
Interestingly, immune scores and immune checkpoint expression
levels were also higher in the low-risk group, which is consistent with
the results of Yu et al. (2021). Furthermore, susceptibility to antitumor
drugs in different risk subgroups was assessed, and it found that the
high-risk group showed high sensitivity to first-line treatment drugs
for non-small cell lung cancer (including docetaxel, paclitaxel,

etoposide, gemcitabine, erlotinib, and crizotinib) (Schiller et al.,
2002; Zhou et al., 2011; Liang et al., 2017; Wu et al., 2018a; Wu
et al., 2018b). Collectively, these results suggest that patients in the
low-risk group will respond better to immunotherapy, while those in
the high-risk group will respond better to chemotherapy and targeted
drugs, which has important implications for individualized tumor
therapy.

Although we verified the stability of the risk model frommultiple
aspects, there are still some limitations. First, the model was not
externally validated because other databases lacked lncRNA
information; thus, it was only be validated internally by TCGA.
Further studies with a large sample size are required to draw
definitive conclusions. Future studies will further explore the six
lncRNAs.

CONCLUSION

In summary, this study conducted a comprehensive bioinformatics
analysis and developed a risk model for six m7G-related lncRNAs,
which not only accurately predicts patient survival but also reflects
the immune characteristics of LUAD patients. This may provide
important clues for the development of clinical individualized
treatments and promote the progress of immunotherapy.
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