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Background: Immunosuppression is an important trigger for infection and a significant
cause of death in patients with severe burns. Nevertheless, the prognostic value of
immune-related genes remains unclear. This study aimed to identify the biomarkers
related to immunosuppression in severe burns.

Methods: The gene expression profile and clinical data of 185 burn and 75 healthy
samples were obtained from the GEO database. Immune infiltration analysis and gene set
variation analysis were utilized to identify the disorder of circulating immune cells. A
weighted gene co-expression network analysis (WGCNA) was carried out to select
immune-related gene modules. Enrichment analysis and protein–protein interaction
(PPI) network were performed to select hub genes. Next, LASSO and logistic
regression were utilized to construct the hazard regression model with a survival state.
Finally, we investigated the correlation between high- and low-risk patients in total burn
surface area (TBSA), age, and inhalation injury.

Results: Gene set variation analysis (GSVA) and immune infiltration analysis showed
that neutrophils increased and T cells decreased in severe burns. In WGCNA, four
modular differently expressed in burns and controls were related to immune cells.
Based on PPI and enrichment analysis, 210 immune-related genes were identified,
mainly involved in T-cell inhibition and neutrophil activation. In LASSO and logistic
regression, we screened out key genes, including LCK, SKAP1 and GZMB, and LY9. In
the ROC analysis, the area under the curve (AUC) of key genes was 0.945, indicating
that the key genes had excellent diagnostic value. Finally, we discovered that the key
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genes were related to T cells, and the regression model performed well when
accompanied by TBSA and age.

Conclusion:We identified LCK, SKAP1, GZMB, and LY9 as good prognostic biomarkers
that may play a role in post-burn immunosuppression against T-cell dysfunction and as
potential immunotherapeutic targets for transformed T-cell dysfunction.

Keywords: immunosuppression, burns, WGCNA, LASSO, GSVA, CIBERSORT, prognostic biomarker

INTRODUCTION

There are 180,000 people who die as a result of burns, with 47 percent
of those fatalities linked to infection-related complications. Infections
in severe burns are often caused by an overactive inflammatory
response and immunosuppression. In severe burns, adaptive immune
functions represented by T cells are suppressed and inflammatory
responses represented by neutrophils and dendritic cells are activated
(Miller et al., 2007; Sood et al., 2016; Hampson et al., 2017). Impaired
skin and intestinalmucosal barriers are exposed to pathogens, and the
disorder of peripheral blood cells results in a low response to
pathogens (Neely et al., 2004; Wrba et al., 2017). All of that
mentioned above lead to uncontrollable infection and death
(Fitzwater et al., 2003).

Immunosuppression in severe burns is considered to be
significantly correlated with prognosis. In the early stages of
burns, PAMP-mediated innate immune translation was
enhanced, such as macrophages, dendritic cells, and neutrophils
being recruited to the injured site to clear necrotic tissue.
Subsequently, the adaptive immune response is impaired, such as
Th cell subtype imbalance, where Th1 cells are inhibited and Th2
cells are activated, resulting in immunosuppression. Inflammatory
factors, cytokines, and immune cells have a significant prognostic
value in severe burns (Hur et al., 2015; Osuka et al., 2019). Previous
studies have explored the prognostic value of platelets, inflammatory
factors, immune-related cytokines, and scoring scales. However, the
accuracy and clinical practicability need to be improved. These
prognostic factors cannot explain the disturbance of homeostasis
after severe burns, especially immunosuppression (Hur et al., 2015;
Lip et al., 2019; Geng et al., 2020). Alterations in gene expression
profiles underlie disease development and can reflect changes in
homeostasis from a pathophysiological perspective, explaining the
mechanisms that affect prognosis and providing therapeutic targets
for subsequent studies (Gaetani et al., 2019; Zou andWang 2019). In
addition, gene detection is convenient, economical, and has a strong
stability in the application of prognosis. Genes have been used as
biomarkers to model the prognosis of a variety of diseases, showing
strong prognostic power. However, their application to burns is rare
(Sandquist and Wong 2014; Foth et al., 2016; Gavrielatou et al.,
2020). Therefore, it is meaningful to explore immune-related genes
in severe burns for revealing their value as prognostic biomarkers
and immune therapeutic targets.

This study is a large population-based prognostic study
involving 185 burn patients. We investigated the relationship
between gene expression profiles and the prognosis of severe
burns using machine learning algorithms (Newman et al., 2015).
The disorder of immune cells in severe burns was investigated by

CIBERSORT and gene set variation analysis (GSVA)
(Hänzelmann et al., 2013). The genes related to the disorder
of immune cells were identified in WGCNA. We used the Least
Absolute Shrinkage and Selectionator operator (LASSO) and
logistic regression to create a prognostic model for immune-
related genes. Additionally, we identified the correlation between
cellular subtypes and genes, which were associated with immune
abnormalities following severe burns. The research aimed to
provide a certain basis and reference value for revealing the
prognostic value of genes associated with immunosuppression.

METHODS

Acquisition of RNA Data
We downloaded three microarray expression profiles and clinical
data of severe burns (GSE19743, GSE77791, and GSE37069) from
the GEO database (http://www.ncbi.nlm.nih.gov/geo/). Patients
>18 years or <55 years and sampling time between 280 and 705 h
were selected to remove the influence of age and sampling time.
(Table 1). Meanwhile, we downloaded clinical information
(survival, burn area, sampling time, and age) from three
datasets. GSE37069 was utilized to screen immune- and
prognostic-related genes between burn and control
(Supplementary Data Sheet S1), GSE77791 and GSE19743
were utilized to be the training cohort and validating cohort,
between survival and non-survival, respectively (Supplementary
Data Sheets S2, S3). There was no need for patients’ consent and
ethical approval as all data were taken from public databases. The
experimental procedure was as shown in Figure 1.

TABLE 1 | Clinical data of burn patients and health controls in GSE37069 and
GSE19743.

Group (burn) Sex Age Time of sampling

N Male Female

GSE19743 28 24 4 37.61 ± 7.98 439.28 ± 117.86
GSE37069 81 57 24 37.41 ± 10.45 411.92 ± 124.76
P 0.109 0.271 0.311

Group (health) Sex Age Time of sampling

N Male Female

GSE19743 25 14 11 30.21 ± 8.16 —

GSE37069 37 17 20 32.59 ± 11.03 —

P 0.709 0.364 —
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Data Processing
The expression profiles were processed by the package of R
software, “Affy.” The background correction of the expression
value and normalization of the expression profile data were
performed, including conversion of original data format, the
supplement of missing value, background correction, and data
standardization by using the Quantile method.

GSVA
GO term related to immune cells was selected from theGSEAwebsite
(http://www.gsea-msigdb.org/gsea/index.jsp). The GSVA analysis
was performed between burns and healthy controls in GSE37069
by the “GSVA” package in R software. Unqualified samples were
removed prior to the variance analysis. The result of GSVA was
analyzed by the R package “limma” to calculate the differences in
enrichment results between severe burns and healthy controls.

Immune Infiltration Analysis
“CIBERSORT” is a machine learning algorithm that can analyze
the proportion of immune cells from RNA-seq (Newman et al.,
2015). We downloaded the expression profile of GSE37069,
GSE19743, and GSE77791 to select 81, 28, and 76 burn
patients and 37, 25, and 13 healthy controls, respectively, and
performed an immune infiltration analysis by using the
“CIBERSORT” package in R software. Cell subtypes with p <
0.05 in three gene sets were considered as key immune cells
(KICs) for further analysis. Next, the “ggplot2” package in the R
software was used to visualize the different proportion of KICs
between burn patients (Group2) and healthy controls (Group1).

WGCNA
WGCNA could construct a scale-free distribution network by using
soft power to classify genes with the same expression trend and
analyze the correlation between genes and traits (Langfelder and
Horvath 2008). We performed WGCNA on the gene set GSE37069
by using the “WGCNA” package in the R software and identified
gene modules associated with key immune cells. The intersection of
GSVA and immune infiltration analysis are defined as clinical traits
to identify immune-related gene modules.

Differential Expression Analysis
We utilized the “LIMMA” package in R software (version 4.0.5) to
analyze DEGs in GSE19743, GSE77791, and GSE37069 datasets
(FDR<0.05, |logFC|>1) and took the intersection of genes in
GSE19743, GSE77791, GSE37069, and immune-related modules.

Enrichment Analysis and PPI
We performed an enrichment analysis of differently expressed
genes in the immune-related gene modules.(modules with
differential genes more than 20 were selected). We used the
DAVID6.8 online tool (https://david.ncifcrf.gov) to perform
the enrichment analysis of Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO) and the “ggplot2”
package in R software was used to draw a bubble chart. We
constructed the interaction network between the enrichment
results (FDR<0.05). We selected immune-related genes in the
enrichment analysis and constructed the PPI network which
was visualized by Cytoscape and hub genes selected by
MCODE.

FIGURE 1 | A graphical summary of the research design.

TABLE 2 | Clinical data of burn patients in GSE77791 and GSE19743.

Group Sex Age TBSA Time
of sampling (GSE19743)N Male Female Severe (30–49) Major (49–100)

Death 23 19 4 40.73 ± 7.67 3 20 422.24 ± 122.32
Survival 81 70 11 40.67 ± 10.74 21 60 393.33 ± 113.19
P 0.147 0.974 0.001 0.544
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LASSO and Logistic Regression
In GSE19743 and GSE77791 (age 18–55, TBSA >30%,
sampling time 280–705 h), we performed a LASSO
regression analysis by using the “lasso” package of R
software to screen hub genes. The hub genes were
analyzed by ROC curves and the variables with AUC>0.6

were selected for a logistic regression to establish the
regression model. The regression model used GSE77791 as
the training cohort and GSE19743 as the validation cohort.
The nomogram plot was utilized to calculate the risk score,
and the model was evaluated by the ROC curve and
calibration curve.

FIGURE 2 | Results of GSVA and CIBERSORT (A) Heat map of 203 GO terms between severe burns and controls. (B,C) Different terms of GSVA with |logFC|
>0.35, p < 0.05.
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Multidimensional Validation
To explore the effects of burn area and age on the model, we
reincorporated 161 patients of GSE19743 and GSE77791 to
validate the prognostic ability of the key genes. Burn area, age,
and key genes were included in for modeling. Regression models
were constructed by random grouping (70% training cohort and

30% validation cohort). A nomogram was drawn to calculate the
risk score, and the ROC curve was used to evaluate the accuracy.

Correlation Analysis
A correlation analysis was performed between key immune cell
subtypes and genes, LCK, SKAP1, GZMB, and LY9. The patients

FIGURE 3 | Results of CIBERSORT. (A) Different ratios of the 22 immune cells between severe burns and controls in GSE19743. (B) Different ratios of the 22
immune cells between severe burns and controls in GSE37069. (C) Different ratios of the 22 immune cells between severe burns and controls in GSE77791.
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FIGURE 4 |Results ofWGCNA and different expression analysis. (A)Genes in GSE37069 were divided into 12modules in different colors. Genes in the same color
module have similar expression patterns. (B,C) Soft power of WGCNA. (D) Correlation genes and immune cells. The ordinate is the gene module; the abscissa is the cell
type. Blue are negative correlations and red are positive correlations. (E–G) The ordinate is the -log10p value; the abscissa is the logFC. (H) Intersection of genes in
GSE19743, GSE37069, GSE77791, and immune cell-related genes in WGCNA.
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were divided into two groups according to the risk score (high
risk: score>0.5, low risk: score<0.5). The prognosis, age, gender,
TBSA, and inhalation injury were contrasted between the high-
and low-risk groups.

Validation of Key Gene Expression
To further verify the prognostic value of the key genes, we verified
the expression profiles of key genes in death and survivors of burn
patients in independent cohorts, GSE19743 and GSE77791. We
converted the fluorescence values of each sample to log2 and
averaged the different probes of the same gene.

Statistics Method
Variables are represented by mean±σ. Comparisons of data were
made by using the Chi-square test for categorical data or
Student’s t-test for normalized quantitative data as
appropriate. The multiple logistic regression model was
utilized to examine the relationship between mortality and
variables. The criterion variable was death as the outcome.
The explanatory variables included age, gender, %TBSA, and
expression of genes. ROC and calibration curves were utilized to
process prognostic ability logistic models.

RESULT

Acquisition of RNA Data
We selected 28, 76, and 81 burn patients with a control group of
25, 13, and 37 health controls in the GSE19743, GSE77791, and
GSE37069 datasets. GSE19743 and GSE77791 (training and
validating cohorts) had 104 severe burns, with 81 survivors
and 23 deaths (Table 2).

GSVA
We selected 203 immune-related GO terms which had significant
differences in immune-related pathways between normal and severe
burns (Figure 2A). Adj. p < 0.05, |logFC| > 0.35 are considered to be
different GO terms in the differential analysis (Figure 2B). In severe
burns, the enrichment score of neutrophil, dendritic, monocyte, and
NKT cell-related pathways were increased while T cells, B cells, and
macrophages were decreased (Figure 2C).

Immune Infiltration Analysis
An analysis of immune infiltration showed that plasma cells,
T cells CD8, T cells CD4 naive, T cells CD4 memory resting,
T cells CD4 memory activated, NK cells resting, monocytes,
macrophages M0, dendritic cells resting and neutrophils were
KICs (Figures 3A–C). We took the intersection of GSVA and
CIBERSORT results. All seven kinds of immune cells, which were
utilized for WGCNA, had a significant difference between burns
and healthy controls.

WGCNA
Genes in GSE37069 were divided into twelve modules
(Figure 4A). The soft power was 22 (R > 0.85) (Figures
4B,C). Yellow, turquoise, green, and blue modules were
related to the proportion of immune cells and named

immune-related modules (correlated to T cells, p < 0.05,
correlation coefficient > 0.5) (Figure 4D).

Differential Expression Analysis
We obtained 2,937, 5,481, and 3,233 differential expression genes
from GSE37069, GSE19743, and GSE77791 (|logFC|>2, adj. p <
0.05) and there are 748 differential expression genes in immune-
related modules (Figures 4E–G).

Enrichment Analysis and PPI
The blue module was mainly enriched in T-cell activation,
lymphocyte differentiation, and T-cell differentiation
(Figure 5A). The green module was mainly enriched in
neutrophil degranulation and neutrophil activation involved in
immune response (Figure 5B). Turquoise was mainly enriched in
neutrophil degranulation and neutrophil activation involved in
immune response and regulation of inflammatory response
(Figure 5C). Yellow was mainly enriched in the antigen
receptor-mediated signaling pathway, immune response-
activating cell surface receptor signaling pathway, and immune
response-activating signal transduction pathway (Figure 5D). A
total of 210 immune-related genes were found in the
aforementioned immune-related enrichment results, which
were mainly related to the function and cell structure of
immune-related genes such as T cells, immune response,
MHC II class protein complex, CD4 receptor, and Ca2+ signal
pathway (Figures 5E–G). Three core modules were selected in the
MCODE module, which were marked by blue, red, and orange,
with a total of 53 hub genes (Figures 6A–D).

LASSO and Logistic Regression
26 variables were screened out in LASSO and logistic regression,
and 7 genes that had AUC >0.6 were selected. Four immune-
related genes LCK, SKAP1, GZMB, and LY9 were obtained by
logistic regression modeling (Figures 7A–D). A nomogram plot
was drawn to calculate the risk score of each patient, and the ROC
curves were used to evaluate the prognostic ability of the risk
score. AUC was 0.930 in the training cohort and AUC was 0.919
in the validation cohort (Figures 7E–G). The aclibration curve
shows that the regression model has a good prediction ability
(Figure 7H). 161patientswere randomly divided into two groups,
training cohort (70%) and validation cohort (30%). Results
showed that AUCtraining = 0.946, AUCvalidation = 0.902
(Figures 7I,J). The risk of non-survival was calculated by the
nomogram containing risk score, age, and TBSA. AUCrisk

score+TBSA+age = 0.945 > AUCrisk score = 0.933 (p < 0.05)
(Figures 7K,L). Incorporating TBSA and age improves model
predictive ability. Dead patients were older in age, had larger
TBSA, and were not different in inhalation injury (Figures 8A,B)
(Table 3). LCK, SKAP1, GZMB, and LY9 are associated with
T cell CD4 naive, T cell CD4 memory activated, and T cell CD8
(Figures 8C,D).

Validation of Key Gene Expression
In GSE19743 cohort, key genes, LY9, SKAP1, GZMB, and LCK,
were highly expressed in survival patients. The same result was
presented in GSE77791 (Figures 9A–H).
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FIGURE 5 |Results of the enrichment analysis. (A–D) The ordinate is the pathway name and the abscissa is the proportion of genes in the pathway. The redder the
circle, the bigger the p value. (A) Enrichment analysis of genes in the blue module in WGCNA, (B) in green, (C) in turquoise, and (D) in yellow. (E–G) Results of the
enrichment analysis with 210 immune-related genes that we got from the pathway in the enrichment analysis in the four gene modules.
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FIGURE 6 | Results of PPI network of 210 immune-related genes. (A) The interaction of 210 genes, different colors means different interaction groups. (B–D) Blue
is module 1, orange is 2 and red is 3.
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FIGURE 7 | Results of regression, multidimensional verification, and correlation between key genes and immune cells. (A,B) The ordinate is the correlation
coefficient between gene expression and prognosis. λ was utilized to screened genes and the number aforementioned is the number of genes. (C) AUC of the four key
genes in GSE77791. The larger the area under the curve, the stronger the prediction ability. (D) AUC of the four key genes in GSE19743. (E) Nomogram plot of logistic
regression which can be utilized to calculate the risk score between severe burns and controls. (F) AUC of logistic regression with selected patients (18 < age<55,
TBSA>30, 280 h < sample times <706) in the training cohort (GSE77791). (G) AUC of logistic regression with selected patients (18 < age<55, TBSA>30%, 280 h <
sample times <706) in the validation cohort (GSE19743). (H) Calibration curve of logistic regression. The closer bias-corrected curve and ideal curve are, the better
predictive regression model is. (I,J) Selected patients (N = 104, 18 < age<55, TBSA>30, 280 h < sample times <706) were divided into two cohorts in randomly to train
and validate regression model, the training cohort had 70% patients, and the validation cohort had 30%. (K,L) All patients (N = 161, 1 < age<99, TBSA>30%, 280 h <
sample times <706) in GSE77791 and GSE19743 were divided into two cohorts randomly to train and validate the regression model, the training cohort had 70%
patients, and the validation cohort had 30%.
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DISCUSSION

Physiological characteristics of the inflammatory response and
immunosuppression in severe burns are the disorder of the
number and proportion of immune cells. After severe burns,
monocytes, macrophages, and neutrophils are activated. DAMP
and PAMP recognize TLR to activate NF-κB. NF-κB is involved
in the activation of inflammatory factors such as IL-1, IL-6, IL-8,

FIGURE 8 | Results of the correlation between key genes and immune cells. (A,B) Different TBSA and years between survival and non-survival patients. Non-
survival is older and has a larger TBSA. (C,D) Horizontal and ordinate are the names of the genes and cells. The figure in the circle means correlation and red means
positive correlation and blue means negative.

TABLE 3 | Differences between high- and low-risk burns that were divided by the
regression model in inhalation injury.

Group In inhalation
injury

Value of chi-square P

Yes No

High risk 6 9 0.216 0.624
Low risk 14 28
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IL-18, and TNF, resulting in a strong inflammatory response
(D’Arpa and Leung 2017). Subsequently, immune function is
inhibited. The antigen-presenting function of the macrophages

and the killing function of the neutrophils are weakened, followed
by the decreasing proliferation of T cells, particularly in the
differentiation, proliferation, and function of Th cells (Miller

FIGURE 9 | Results of the differential expression analysis of the microarray data in two independent cohorts.(A–D) In GSE19743, key genes, SKAP1, LY9, LCK,
and GZMB, were up-regulated in survival patients. (E–H) In GSE77791, key genes, SKAP1, LY9, LCK, and GZMB, were up-regulated in survival patients.
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et al., 2007). The main manifestation is the inhibition of Th1 cell
differentiation, and a relative increase of Th2 cell differentiation
leads to pro-inflammatory inhibition and anti-inflammatory
activation. The changes in cytokines and cell proportion are
not only the results of severe burns but also the important
causes of immunosuppression and inflammatory response
syndrome, which are related to the prognosis of patients and
play an important role in the development of immunotherapy
targets (Hur et al., 2015). In the GSVA results (Figure 2C), we
found that the pathway of the T cell, and macrophage (negative
regulated) were activated in the controls contrast to severe burns,
and the pathways of the neutrophil and monocyte were inhibited,
which may be an important reason for the activation of
neutrophil, monocyte, and macrophages and the inhibition of
T-cell function in severe burns. All the aforementioned data are
consistent with the previous research. In addition, we also found
that the pathways of B cells, NK cells, and T follicular-
assistedpara-cellular were inhibited while dendritic cells were
activated. These cells are the key to the immune response, but
have not been revealed in the immunosuppression of
severe burns.

The intersection of Cibersort and GSVA results showed
that the disorder of immune cell subtypes in severe burns
included T cell CD8, T cell CD4 naive, T cell CD4 memory
resting, T cell CD4 memory activated, NK cell resting,
monocytes, macrophages M0, dendritic cells resting, and
neutrophils. Subtype disorders of immune cells are an
important basis for immune dysfunction. Although the
quantitative changes and pathway activation/inhibition of
these subtypes have not been studied in the burn, they play
an important role in the proliferation, differentiation, and
function of T cells, NK cells, mononuclear macrophages,
dendritic cells, and neutrophils. The decrease of CD4 naive
T cells directly leads to the decrease of Th cells. In our study,
we found that CD4 naive T cells decreased in severe burn
patients, which could differentiate into Th1, Th2, Th17, and
Treg cells (Zhou et al., 2009). In addition to the decrease in cell
number, the proportion of different cell subtypes is also
imbalanced. For example, Th1/Th2 decreased and Treg/
Th17 increased in severe burns, which are important causes
of adaptive immune dysfunction (O’Sullivan et al., 1995;
MacConmara et al., 2011; Rendon and Choudhry 2012;
Valvis et al., 2015). Our study found that CD8T cells and
NK cells decreased in severe burns, which are principal cells
against pathogens. In the early stages of burns, an
inflammatory response will lead to an increase in the
number of CD8 cells and NK cells, but a significant
decrease will soon follow (Sherwood and Toliver-Kinsky
2004; Patil et al., 2016). Although the reason for the
depletion of NK cells has not been found, excessive stress
can lead to the depletion of CD8T cells, which may be the
reason for the significant reduction of CD8T cells in the mid-
burn stage (Sherwood and Toliver-Kinsky 2004; Kurachi
2019). Our study also found that monocytes, macrophages,
dendritic cells, and neutrophils were significantly increased in
patients with severe burns. The aforementioned cells were the
key cells of the inflammatory response, connecting innate

immunity, and adaptive immunity. Neutrophils, dendritic
cells, and mononuclear macrophages are activated after a
burn, causing a strong inflammatory response, which is an
important cause of subsequent multiple organ failure and
sepsis (Sherwood and Toliver-Kinsky 2004). In addition,
over-activated neutrophils will also suppress the function
of T cells and affect the adaptive immune response (Aarts
et al., 2019). We believe that the changes of these cell subtypes
play an important role in the immunosuppression of severe
burns, and have a significant prognostic and therapeutic
value. Therefore, we used WGCNA to analyze gene changes
associated with these immune cells.

Considering that T cells are the main effector cells of adaptive
immune response and play an important role in
immunosuppression after burns, we selected modules
correlated to T cells. Four modules containing differently
expressed genes were found to be associated with cell subtypes
in the WGCNA analysis (Figures 4A–D), with 748 genes related
to the immune pathway (Figures 4E–H). The related pathways
are mainly related to the immune-related gene functions and cell
structures such as T cells, immune response, MHC II class protein
complex, CD4 receptor, and Ca2+ signal pathway (Figures
5A–D). The main physiological manifestation of
immunosuppression in patients with severe burns is a decrease
in the adaptive immune response. T cells are key cells for adaptive
immune response. Th1/Th2 ratio is an important factor in
immune function. Th-1 produces IL-2 and IFN-γ and activates
the immune response. Th-2 produces IL-4 and IL-10 and inhibits
the immune response (Abbas et al., 1996). The Ca2+ signal
pathway is associated with IL-2 production and plays an
important role in immune function (Sayeed 1996). In
addition, Th17 secretes IL-22 to active epithelial cells,
participating in chemotaxis, tissue repair, and antimicrobial
peptide expression to prevent bacterial invasion and
epithelial cell proliferation and differentiation (Rendon and
Choudhry 2012). This effect of Th-17 cells is important
because severe burns can induce mucosal atrophy and
apoptosis, as well as damage to the homeostasis of intestinal
epithelial cells (Magnotti and Deitch 2005). Intestinal mucosal
barrier is impaired as early as 5 minutes after severe burns,
which increases the risk of bacterial translocation and sepsis.
Th-17 cells have been proved to be able to prevent local and
systemic proliferation of common infection sources after
burning, such as Bacteroides fragileus, Klebsiella pneumoniae,
and Candida albicans (Rendon and Choudhry 2012; Rani et al.,
2014). T cells are not only an important manifestation of
immunosuppression, but also an important therapeutic target
for improving immune function. IL-15 treatment can improve
the reduction of CD4 + T (Th) cells. Blocking CD47/CD172
signaling pathway can improve the reduction of CD4 + T cells
and CD8 + T cells, thereby improving immune function (Patil
et al., 2016; Beckmann et al., 2020). Flt3 ligand treatment can
alleviate T-cell dysfunction and significantly improve the
prognosis of septic mice. Therefore, we believe that T-cell-
related genes play an important role in the development of
T-cell function inhibition, have an important prognostic value,
and are likely to be targeted for immunotherapy.
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Among 210 immune-related genes in PPI network, 53 genes
are hub genes (Figures 6A–D). Twenty-six genes were finally
selected by LASSO regression, of which seven genes had
significant indigenous prognosis (AUC > 0.7, p < 0.05),
namely LCK, SKAP1, CX3CR1, FYN, GZMB, LY9, and FYN.
The genes were incorporated into the logistic regression to
construct the regression that included 4 key genes, LCK,
SKAP1, GZMB, and LY9 (Figures 7A–D). In the GSE77791
(training cohort), AUC = 0.930 (Figure 7F), and calibration curve
indicated that the model had an excellent prediction ability
(Figure 7H). In the GSE19743 (validation cohort), AUC =
0.919 (Figure 7G). We included age and TBSA in the
regression model for all patients (161), AUCrisk score+TBSA+age =
0.945 >AUCrisk score = 0.933 (Figure 7L). The prediction ability of
the model was improved. In addition, there were significant
differences in the burn area and age between survival and
non-survival patients (Figures 8A,B). So, the prognostic
function of our regression includes the effects of burn area
and age.

LCK, SKAP1, GZMB, and LY9 are related to T cells, such as
T cells CD4 naive, T cells CD4 memory activated, and T cells
CD8. The correlation between gene expression and cell
proportion indicates that genes may be potential biomarkers
that characterize the number and function of cells.

The protein encoded by the LCK gene is a key molecule for
differentiation and maturation of developing T cells. LCK
exists in all normal T cells. In the cells, LCK is located in the
plasma membrane and vesicles around the centrosome, which
is related to the cytoplasmic tail of CD4 co-receptors on helper
T cells and CD8 co-receptors on cytotoxic T cells, to help
T-cell receptor (TCR) complexes signal and participate in the
TCR-mediated T-cell activation (Shebzukhov et al., 2017).
Human somatic cell experiments showed that the inhibition
of LCK expression led to the inhibition of the TCR pathway,
thereby hindering the differentiation and development of
T cells. Targeted destruction of LCK can lead to T-cell
development stagnation in the thymus (van Oers et al.,
1996). Although there are few studies on the LCK gene in
severe burns, the expression of the LCK gene is significantly
related to T-cell subtypes, which is an important molecule to
characterize the number and activity of T cells. In addition,
therapies targeting LCK have been shown to promote/inhibit
T-cell growth and development in a variety of diseases such as
type 1 diabetes, colon cancer, asthma, and organ transplant
rejection, thereby altering disease outcomes (Sabat et al., 2006;
Gholamin et al., 2015). Therefore, LCK, depending on its
correlation with T cells, is expected to provide a predictive
value for T-cell function and become an important target for
the treatment of T-cell dysfunction in severe burns.

SKAP1 gene encodes T-cell adaptor protein which is a key
regulator of TCR-mediated LFA-1 signaling (inside-out/
outside-in signaling), T-cell receptor-induced activation of
LFA-1 to promote T-cell adhesion and interaction with
antigen-presenting cells (APCs) (Witte et al., 2017). SKAP1
deficiency affects TCR activation (Lim et al., 2016). The
expression of SKAP1 was correlated with T-cell function
and disease development. In SKAP1 deficient mice, it was

found that IL17 cytokines decreased and T-cell infiltration
decreased, which alleviated collagen-induced osteoarthritis
(Smith et al., 2016). Th17 is an important mucosal immune
cell, which has an important relationship with intestinal flora
translocation after burns. SKAP1 deficiency may lead to Th17
deficiency and promote the development of the disease.
Although SKAP1 has not been studied in
immunosuppression after burns, we believe that SKAP1 can
characterize T-cell function and is a promising
immunotherapy target for improving T-cell function.

GZMB encodes Granzyme B which is mainly secreted by
natural killer (NK) cells and cytotoxic T lymphocytes (CTLs).
Granzyme B induces target cell apoptosis and can impact
processes such as tissue remodeling, barrier function,
autoantigen generation, and angiogenesis. It plays an
important role in wound healing, chronic inflammation,
and scar formation (Śledzińska et al., 2020). Therefore, the
expression of GZMB reflects the differentiation of T-cell
subtypes to some extent. LY9 encodes a homocellular
surface receptor that exists on all thymocytes and is highly
expressed on innate lymphocytes such as iNKT cells. LY9 plays
an important role in maintaining T-cell subtype
differentiation. The level of IL-4 in LY9-deficient mice was
significantly increased, and IL-4 was mainly secreted by Th2
cells, which inhibited the inflammation and immune responses
(Cuenca et al., 2018). In our experiment, we found that LY9
was significantly down-regulated, which may be one of the
molecular mechanisms of the Th cell subtype disorder.
Although GZMB and LY9 have not been further studied in
the immunosuppression of severe burns, the proteins encoded
by GZMB and LY9 play an important role in T-cell immune
function, T-cell subtype differentiation, and wound healing.
Obviously, GZMB and LY9 can be used as prognostic factors
which can characterize physiological changes after
severe burns.

Key genes have great potential in post-burn
immunosuppression, which will be a meaningful research
direction. In addition, in the differential expression analysis, it
was found that in the two independent cohorts, the expression of
key genes in survival patients was significantly increased (Figures
9A–H), which may indicate that the down-regulation of key
genes is an important factor leading to immunosuppression and
death, which needs further research.

Our experiment is the first to use WGCNA, GSVA, and
LASSO regression to construct a gene prognosis model with
genes in three severe burns cohorts (185 patients). In contrast to
prognostic models for platelets, coagulation disorders, IFN-γ,
IL-2, IL-4, Burn Severity Index (ABSI) score, Ryan score,
Belgium Outcome Burn Injury (BOBI) score, and modified
Baux score, our prognostic model was based on gene
expression profile, which had a higher accuracy and was
more convenient for clinical operation (Hur et al., 2015; Lip
et al., 2019; Geng et al., 2020). Others use bioinformatics
methods to study the pathophysiology of severe burns, but
most are limited to animal models or have unstable and
inaccurate prognostic indicators (Li et al., 2016; Fang et al.,
2020; Liu et al., 2021). We first introduced WGCNA,
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CIBERSORT, GSVA, and LASSO into the analysis to find
prognostic factors from the pathophysiological mechanism of
immunosuppression after severe burns, so our prognostic model
is more stable and reliable. In addition, we found that key genes
were associated with immunosuppression after severe burns and
were related to the ratio of specific immune cell types, which
provided an important direction for the future development of
immunotherapy targets. Of course, our experiment is also
insufficient. We need to collect more information about
patients, such as whether shock resuscitation or sepsis
occurs, to further stabilize our model. Nevertheless,
compared with other clinical prognosis models, our model
showed a good prognosis ability in collaboration with age
and burn area, and the gene expression and prognosis model
were verified multi-dimensionally (three large cohorts,
sequencing datasets, and multiple groupings).

SUMMARY

Our study found that immunosuppressive-related genes after
severe burns had important prognostic value. The prognostic
ability of LCK, SKAP1, GZMB, and LY9 in the gene expression
profiles of 185 severe burns was superior to the current prognostic
models and scale score.
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