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Traditionally, cancer-associated fibroblasts (CAFs), an essential component of tumor
microenvironment, were exert a crucial part in colon cancer progression. In this study,
single-cell RNA-sequencing (scRNA-seq) data from 23 and bulk RNA-seq data from
452 colon cancer patients were extracted from the GEO database and TCGA-COAD and
GEO databases, respectively. From single-cell analysis, 825 differentially expressed genes
(DEGs) in CAFs were identified between each pair of six newly defined CAFs, named enCAF,
adCAF, vaCAF, meCAF, erCAF, and cyCAF. Cell communication analysis with the iTALK
package showed communication relationship between CAFs, including cell autocrine, cytokine,
and growth factor subtypes, such as receptor-ligand pairs of TNFSF14-LTBR, IL6-F3, and IL6-
IL6ST. Herein, we demonstrated the presence and prognostic value of adCAF and erCAF in
colon cancer based on CIBERSORTx, combining single-cell marker genes and transcriptomics
data. The prognostic significance of the enCAF and erCAF has been indirectly proved by both
the correlation analysis with macrophages and CAFs, and the quantitative reverse transcription-
polymerase chain reaction (qRT-PCR) experiment based on 20 paired tumor samples. A
prognostic model was constructed with 10 DEGs using the LASSO Cox regression method.
The model was validated using two testing datasets, indicate a significant survival accuracy (p <
0.0025). Correlation analyses between clinical information, such as age, gender, tumor stage
and tumor features (tumor purity and immune score), and risk scores revealed our CAF-related
model’s robustness and excellent performance. Cell infiltration analysis by xCell revealed that the
interaction betweenCAFs andmultiple non-specific immune cells such asmacrophages and the
dendritic cell was a vital factor affecting immune score and prognosis. Finally, we analyzed how
common anti-cancer drugs, including camptothecin, docetaxel and bortezomib, and
immunotherapy, such as anti-PD-1 treatment, could be different in low-risk and high-risk
patients inferred from our CAF-related model. In conclusion, the study utilized refined colon
cancer fibroblast subsets and established the prognostic effects from the interaction with
nonspecific immune cell.
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INTRODUCTION

Colon cancer is the third most common cancer among women
and men and has the second-highest cancer mortality rate
worldwide (Siegel et al., 2020a; Siegel et al., 2020b). Even with
intensive treatments, the 5-year overall survival (OS) rate of colon
cancer is below 60% (Moghimi-Dehkordi and Safaee, 2012).
What’s worse, the number of colon cancer patients under
50 years old has been rising sharply in recent years, and the
mortality of colon cancer in young men is the highest during
2012–2016 (Wolf et al., 2018; Kasi et al., 2019).

Colon cancer is usually caused by continuous malignant gene
mutations and epigenetic changes in the colon and rectum. The
tumor microenvironment (TME) plays a vital role and is one of
the driving factors in many types of cancer (Kalluri, 2016). The
TME is composed of various non-epithelial cells and extracellular
matrices. The non-epithelial cells mainly include tumor-
infiltrating immune cells, fibroblasts, and vascular endothelial
cells. Tumor-infiltrating immune cells, including macrophages,
T cells, B cells, NK cells, dendritic cells (DCs), myeloid-derived
suppressor cells (MDSCs), and regulatory T cells (Tregs), could
affect tumor development and progression through interaction
with tumor cells (Quail and Joyce, 2013; Hui and Chen, 2015).
Cancer-associated fibroblasts (CAFs), a type of permanently
activated fibroblasts, are shown to be important in tumor
development and drug resistance (Pietras and Ostman, 2010;
Kobayashi et al., 2021). However, the expressions of multiple
commonly used fibroblast markers, such as COL3A1 and THY1,
vary greatly in different CAF subgroups (Bu et al., 2019).
Therefore, in order to develop better colon cancer treatment
strategies based on CAFs, new methods are required to better
classify CAFs and identify how different CAFs affect tumor
development differently. Single-cell sequencing can uncover
the cell diversity in tumor tissues in a comprehensive and
unbiased manner. In recent years, single-cell Transcriptome
sequencing technology has been widely adopted in the study
of TME. However, in TME of colon cancer (CC), gene markers
for CAFs have not been well elucidated.

Over the past decades, technological development in omics
and bioinformatics, such as bulk RNA-seq and scRNA-seq, has
dramatically advanced the diagnosis and treatment of many types
of cancer (Gustafson et al., 2010; Wang et al., 2010). Hae-Ock Lee
et al. did scRNA-seq on two colon cancer samples and made their
data publicly available (Lee et al., 2020), providing researchers
with much information on the characteristics and function of
different CAF subgroups. However, due to the high demand for
throughput and budget, it is unrealistic to apply large-scale
scRNA-seq to a large number of tumor samples. Instead,
developing a strategy to explore the valuable information from
these existing scRNA-seq data would be more appealing.
Furthermore, databases such as TCGA provide us with rich
resources, including transcriptomic profiles and clinical
information. Combining bulk RNA-seq and scRNA-seq data

would be a more time- and cost-efficient approach. Thus, in
the current study, we explored the prognosis value of different
CAF subtypes in colon cancer patients using TCGA data
(i.e., bulk RNA-seq data and OS information) and scRNA-seq
data. The CIBERSORTx algorithm was applied to the TCGA bulk
RNA-seq data, and the Seurat package was applied to the scRNA-
seq data. Finally, we established a CAF-related prognostic
signature model that could predict the OS of colon cancer
patients. The reliability and accuracy of our weighted model
was evaluated comprehensively using the TCGA test dataset and
related clinical information. Our model could be well explained
by factors such as immune cell infiltration, immune scores, and
specific tumorigenic pathways. We further carried out various
analyses to make our model accurate for providing suggestion for
clinical treatment (Figure 1).

RESULTS

Classification of CAFs in Colon Cancer
The high dimensional information of scRNA-seq enables the
identification of CAFs out of a pool of heterogeneous cells, the
clustering of CAFs into various subtypes, and the determination
of DEGs in different CAF subtypes. In total, scRNA-seq data were
extracted for 33 samples, including 23 tumor samples and
10 paracancerous tissue samples from the SMC cohort
(GSE132465). After quality control based on the proportion of
cell signatures and mitochondrial and ribosomal gene expression,
all the cells were classified by the dimensionality reduction
algorithms, namely, t-distributed stochastic neighbor
embedding (t-SNE) and uniform manifold approximation and
projection (UMAP) into seven major and 32 more detailed
clusters (Figures 2A,B). According to instructions in the
original research, we successfully repeated the stromal cell
classification results. We further divided the classified stromal
cells into fibroblast and non-fibroblast subgroups. Classification
of different cell groups, including the fibroblast subgroup, was
validated using a combination of specific gene markers. Common
gene markers for CAFs are shown in Figures 2C,D. The CAFs did
not express any other cell markers. Specific gene markers,
including SPARC, COL1A1, COL1A2, LUM, and DCN, and
common gene markers, including COL3A1 and THY1, were
highly expressed in a high proportion of fibroblasts. A low
percentage of stromal cells expressed fibroblast gene markers
at lower levels, but these stromal cells could be excluded by
negative markers of fibroblasts, such as PECAM1. The cell types
and proportions of different clusters, including stromal cells and
fibroblasts, are shown in Figure 2E.

Overall, T cells and epithelial cells (ECs) accounted for a
higher proportion, while stromal cells and B cells accounted for a
lower proportion, within the tumor samples. Immature ECs and
fibroblasts were the dominant cell types in stromal cells. There
were significant clustering differences for fibroblasts in tumor and
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paracancerous tissues (Figure 2E). For instance, there were more
activated fibroblasts in the tumors than predominant stromal sub
I and III cells in the paracancerous tissues.

We used an unsupervised trajectory analysis to establish a
novel classification for the previously classified fibroblast cells. In
this approach, we divided all the fibroblast cells in the tumor
samples into six subgroups, i.e., CAF1-6, according to the result of

an unsupervised trajectory analysis (Figure 3). According to the
characteristics of each subtype, we renamed CAF1-6 to enCAF
(entoderm-related CAF), adCAF (adhesion-related CAF), vaCAF
(vascular-related CAF), meCAF (mesenchyme-related CAF),
erCAF (endoplasmic reticulum-related CAF), and cyCAF (cell
cycle-related CAF), respectively. The top 10 marker genes for
each subgroup are shown in Figure 3E.

FIGURE 1 | Technical roadmap for this study. We combined experiments and database analysis to reveal the characteristics, prognostic mechanisms and
treatment recommendations of CAFs from different perspectives at the gene and cell level.

FIGURE 2 | The cell group in CRC based on scRNA-seq. (A). UMAP plot of all cell from the original article (B). UMAP plot of the cluster based on scRNA-seq; (C).
Bubble chart of maker gene within all cell type; sizes of dots show gene abundance, while shade shows gene expression level. The main difference of fibroblasts and
stromal cells marked with black boxes was the negative selection maker PECAM1. (D). Heatmap of maker gene expression graph for every cell. (E). The proportion
structure of all cells, stromal cells and fibroblasts for each patient with clinical information.
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Cell Communicational Signal Analysis and
Construction of a Ligand-Receptor
Interaction Atlas Among CAFs in Colon
Cancer
To analyze the intercellular communication between CAF
subgroups, we used iTALK, a cell communication signal analysis
tool, to analyze the TCGA colon cancer samples. We explored other
factors, including checkpoints, cytokines, and growth factors, which
revealed mechanistic insights into the CAF subtype interactions
(Figure 3). Many cytokines were identified within the enCAF, acting
as the receptor in the intercellular communication. IL6 was most
abundant in the erCAF, forming IL6-IL6ST and IL6-F3 receptor-
ligand pairs with other CAF subtypes (i.e., erCAF and enCAF). In
terms of immune checkpoint genes, TNFSF14 was highly expressed
in erCAF and interacted with other CAF subgroups through the
TNFSF14-TNFRSF14 and TNFSF14-LTBR receptor-ligand pairs.

Quantitatively, meCAF had more intensive immune checkpoint
interactions with other CAF subtypes. Unexpectedly, erCAF only
express the receptor, while other CAF subtypes, especially cyCAF
and enCAF, could secrete growth factors, such as CTGF, and interact
with other CAF subtypes through the CTGF-ITGA5 and CTGF-
LRP1 ligand-receptor pairs. Overall, these results showed that the
erCAF subtype interacts with the cyCAF subtype via the COL1A1-
ITGB1 and COL1A1-CD44 signaling pathways; cyCAF subtype also
interacts with the other subtypes (i.e., erCAF and enCAF) via the
TIMP1-CD63 signaling pathway.

Functional Enrichment Analysis on Different
CAF Subtypes and Association Between
CAF Subtypes and Prognosis
To explore the CAF profiles and understand how different CAF
subtypes could affect prognosis in colon cancer patients, we

FIGURE 3 | The regroup and cell communication analysis of CAFs in CRC based on scRNA-seq. (A). tSNE plot of the stromal cell from the original article (B). UMAP
plot of the stromal cell from the original article (C). The tSNE of pseudotime trajectory analysis (D). tSNE plot showed the regroup of CAFs in CRC based on the
pseudotime trajectory analysis. (E). Dot plot for top 10 markers of each CAF subgroup; sizes of dots show gene abundance, while shade shows gene expression level.
for the subgroups of CAFs in CRC. The upper parts are the circos plots representing top20 highly expressed ligand-receptor interactions among CAF subgroups;
the lower parts are the network plots showing the number of ligand-receptor interactions among CAF subgroups. (F). cytokines/chemokines (G). immune checkpoint
genes (H). growth factors (I). others.
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applied the CIBERSORTx algorithm to analyze the abundance of
different CAF subtypes and immune cells in colon cancer. We
found that the adCAF subtype was a risk factor (Figure 4A) while
the cyCAF subtype was a protective factor (Figure 4B) regarding
OS of the colon cancer patients. Moreover, we found that the
abundance of the enCAF subtype was negatively associated with

the abundance of the M1-type macrophages (Figure 4C), while
the abundance of the erCAF subtype was negatively related to the
abundance of the M2-type macrophages (Figure 4D). To explore
the specific function of each CAF subtype, we carried out Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses, of which the results are shown in

FIGURE 4 | The identification of prognostic CAF subgroup. (A). The Kaplan–Meier plot of the abundance of adCAF, the red line for high abundance, the aquamarine
line for low abundance (B). The Kaplan–Meier plot of the abundance of cyCAF, red line for high abundance, aquamarine line for low abundance (C). Figure for the
Pearson correlation between enCAF and macrophage M1 (D). The figure for the Pearson correlation between erCAF and macrophage M2 (E). Network diagram for the
GO enrichment of CAFs marker genes (F). Network diagram for the KEGG enrichment of CAFs marker genes.
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Figures 4E,F, and the related -log10 (p-values) are shown in
Supplementary Figure S1.

Of special note, two key marker genes, GREM1, and IGF1,
were significantly differently expressed in 20 pairs of colon
cancer and paracancerous tissues. GREM1 as enCAF maker
gene was highly expressed in colon cancer tissues. On the
contrary, IFG1 as erCAF maker gene was highly expressed in
the paracancerous tissues (Figure 9C).

Construction of a CAF-Related Prognostic
Signature Model
We identified 825 highly expressed ligand or receptor genes in
different CAF subtypes. To further explore how different CAF
subtypes relate to the prognosis of colon cancer patients, we
constructed a CAF-related prognostic signature model based
on these 825 genes. Fifteen genes that were significantly
associated with the prognosis of colon cancer patients were
identified by the univariate Cox regression analysis (p < 0.05)
(Figure 5A). Consistently, expression levels of these 15 genes

were significantly different between colon cancer and
paracancerous tissues (Figure 5C). The OS was significantly
different in the high- and low-expression groups of each of
these 16 genes (Figure 5B).

The TCGA colon cancer patients were divided into the
training and internal testing datasets by an 8:2 ratio. The least
absolute shrinkage and selection operator (LASSO) Cox
regression was used to construct the CAF-related signature
model. Ten genes were recovered from the LASSO regression
analysis under optimal regularization parameters (Figure 5E).
Using our model, the OS of patients with colon cancer group by
different genes could be well distinguished (Figure 5B).
Prognostic genes are weighted by lasso regression, ie the
following formula is a simplified weighted model after
removing expression correlations between genes. Risk score =
(CACNA1C × 0.195) + (COL4A5 × 0.563) + (ADRA2B × 0.734)
+ (EGFR × 0.082) + (LMBR1L × 0.299) + (FZD7 × 0.119) +
(PKM × 0.007) + (IL20RB × 0.384)—(PMCH × 3.74)—(EPHB2 ×
0.055). Each gene here represents the transcript expression of the
gene (hg38 version), and the coefficient of each gene is the

FIGURE 5 | CAF-related gene prognosis model based on TCGA data (A). Forest plot of the 16 genes selected by single factor COX regression (B). The
Kaplan–Meier plot of the 16 genes (C). Box plot showing the different expression levels of 16 genes in tumor and normal tissues. (D). Box plot of survival events under
lasso optimal regression parameters (E). Number of lasso regression variables genes under the best regression parameters.
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weighted value. The positive and negative values represent
tumor-promoting or tumor-suppressing genes, respectively.

Based on the risk model, the patients were divided into high and
low scores groups, respectively. Based on this classification, the K-M
plot showed a significant difference in high- and low-risk groups in
the training dataset (p < 0.0001) and the two testing datasets (p =
0.0025 and p < 0.000, respectively). The area under the curve (AUC)
values for OS prediction at 1-, 3- and 5-years of the training dataset
were 0.79, 0.75, and 0.86, respectively. Consistently, the AUC values
for OS prediction at 1-, 3- and 5-years of the internal and external
testing datasets were 0.69, 0.72, 0.57, and 0.67, 0.65, 0.63, respectively,
indicating that our signature model is robust and of great prognostic
value (Figure 6).

Accuracy and Robustness of Our
Constructed CAF-Related Prognostic
Signature Model
We calculated the risk scores for all patients using our model. The
risk scores were different between different subgroups when
classifying using different clinical features, including old, N
stage, T stage, M stage, and Tumor stage (p < 5e-6), except for
the MSI mutation feature. The distribution of scores was
consistent with clinical characteristics. As shown in
Figure 7D, patient groups with older age, M1 stage (M
staging system), N2 stage (N staging system), stage 4 (tumor
staging system), and T3-4 (tumor grade) had higher risk scores.
The CAF-related prognostic model performed well, not interfered
by multiple clinical factors (Figure 7A). In the multiple Cox
regression analysis combining risk scores and clinical factors such
as MSI mutation type, patient age, tumor grade, and TNM stage,
the prognostic prediction was not affected compared with that
from risk scores alone. However, age could contribute
significantly to the risk model (p = 0.004). Overall, our risk
scores correlated better with OS at 1-, 5- and 10-years compared

with tumor stage and age (Figure 7B). The calibration curve of
the model was very stable, and there were limited variations
between the training and the two testing datasets (Figure 7C).

Possible Molecular Mechanisms Related to
Our Prognostic Signature Model
To better understand the differences in immune cell infiltration
status between different groups classified based on our CAF-
related prognostic model, we used xCell to infer the cell
infiltration ratio in each sample. Using xCell gene signatures,
11 out of 64 cell types were highly infiltrated with a ratio higher
than 5%, including Th1 cells and smooth muscle cells (>25%)
(Figure 8A). Of the top seven cell types, epithelial cells and
mesenchymal stem cells (MSCs) were identified to be risk factors
as these 2 cell types had a high percentage in the high-risk
group. On the contrary, common lymphoid progenitors
(CLPs), smooth muscle cells, classic dendritic cells (cDCs) and
interstitial dendritic cells (iDCs) were identified as protective
factors as these cell types had a low percentage in the low-risk
group. In addition, immune scores were also significantly
different between high- and low-risk groups.

To evaluate how different tumor indicators affect the accuracy of
our model, we used ESTIMATE to calculate parameters, including
ESTIMATE score, tumor purity, immune score, and stromal score
for each of the TCGA-COAD samples and did correlation analyses
between these parameters and risk scores. The analyses showed that
there were significant correlations between immune scores
(R = −0.15, p = 0.0046), ESTIMATE score (R = −0.18, p =
0.00079), tumor purity (R = 0.18, p = 0.00079) and stromal score
(R = −0.17, p = 0.0014), and risk scores.

Checkpoint-related genes, such as CD80, CD86, CD274 and
PDCD1, were all highly expressed in the high-risk scores
(Figure 8D). GO analysis showed many significantly enriched
pathways, such as translational initiation, protein-DNA subunit

FIGURE 6 | The establishment of CAF-related prognostic signature. The upper left parts are distribution plots for the relationship between risk score and survival
status (A); the lower left parts are heatmaps for the expression of 10 genes in the cohort; the upper right parts are ROC curve for the CAF-related signature in the cohort
(B); the lower right parts are survival curves between high-risk and low-risk groups (C). (A). Training set (B). Internal testing set (C). External validation set.
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assembly, and G2/M-related cell cycle (Figure 8E). The
HEDGEHOG pathway, which is closely related to tumor
development, was among the top 10 enriched pathways
(Figure 8B). Our model inferred a significant linear correlation
among these pathways and risk scores. In the high-risk group, six
classical hallmark pathways, including the HEDGEHOG, APICAL,
and NOTCH pathways, were highly activated, while two pathways,
including the MYCV1 and E2F pathways, were inhibited. As shown
in Figure 8B, most of the cancer-promoting pathways showed a
strong autocorrelation in Figure 8B.

From the CGP database, we identified 10 drugs which was
sensitive to colon tumors (Figure 9A). We tested these drugs and
identified a total of seven drugs with relatively insignificant
IC50 values. Three of the seven drugs, cisplatin, dasatinib, and
BMS.536,924, showed poor drug sensitivity, while another 3,
camptothecin, docetaxel, and bortezomib, showed strong drug
sensitivity. For docetaxel and bortezomib, there was a significant
relationship between drug sensitivity and risk scores (Figure 9B),
indicating that docetaxel and bortezomib may be more effective in
treating low-risk colon cancer patients defined using our model. It is
worth noting that the drug sensitivity is more significant in the linear
correlationmodel than in the grouping test. The discrete type of drug
sensitivity data in different samples was more significant without an
obvious clustering effect.

METHODS

Data Source
Bulk RNA-seq data and microarray data were downloaded from
the TCGA-COAD (Network, 2012) and GSE39582 cohorts
(Marisa et al., 2013), respectively. scRNA-seq data (SMC
cohort) from 23 colon cancer and 10 paracancerous tissues
were downloaded from the GSE132465 cohort (Lee et al.,
2020). For bulk RNA-seq data from TCGA, only those with
corresponding detailed clinical information were included. As a
result, 452 patients from the TCGA-COAD cohort and
579 patients from the GES39582 cohort were included in our
study. The TCGA-COAD cohort was used as a training dataset
and an internal testing dataset with 8:2 radio. The
GSE39582 cohort was used as an external testing dataset. This
study followed the guidelines of the TCGA and GEO databases.

scRNA-Seq Data Preprocessing and
Classification of CAF Subtypes
The quality control process was performed using the Seurat R
package (version 4.0.1) (Hao et al., 2021). Low-quality cells,
which were defined as cells with more than 10%
mitochondrion-derived UMI counts, were removed.

FIGURE 7 |Model robustness analysis based on TCGA clinical information. (A). Forest plot of multivariate COX regression combined withmultiple clinical indicators
and risk scoring models. Training set (B). Survival nomogram of risk model, age and stade factors (C). The error fitting graph of the risk model under the training set and
the test machine (D). Box plot of distribution differences of risk factors in all clinical information groups.
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FIGURE 8 | The molecular mechanism of prognostic models based on multiple analyses. (A). Differences in cell infiltration between high and low risk groups based
on xCell (B). Correlation heatmap of 50 classic tumor pathways and risk factors (C). Violin chart of the expression levels of immune checkpoint genes in high-risk and low-
risk groups (D). Correlation scatter plot of risk factors and multiple infiltration scores (E). The top 5 pathways of gseGO enrichment. (F). Bubble chart of all significant
pathways analyzed by gseGO.
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IntegrateData module in the Seurat was used to eliminate the
batch effects among different patients. Here a relatively strict
fibroblast system. 1. Preliminary classification of cells group
according to the classification method in the original study; 2.
Perform final verification according to specific maker and
negative selection maker. 3. Perform preliminary
verification and statistics according to the common maker

of various types of cells (Zhou et al., 2020). The CAF definition
in the current study: 1. From tumor samples; 2. Strict
Fibroblasts. The CAF subtypes were firstly identified
according to the definition in the original article visualized
by 2D uniform manifold approximation and projection
(UMAP) or t-Distributed Stochastic Neighbor Embedding
(tSNE) (Becht et al., 2019).

FIGURE 9 | Drug susceptibility prediction and QPCR experimental verification results. (A). Statistical violin chart of IC50 predictions of 10 drugs in high and low risk
groups (B). Graph of linear correlation between risk factors and three drugs (C). Box plot of differential expression of key maker genes for enCAF (GREM1) and erCAF
(IGF1).
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Pseudotime Trajectory Analysis
To better classify CAFs, we tried pseudotime trajectory analysis by
applying the Monocle 2 R package (Qiu et al., 2017). The “mean
expression” parameter was set as> 0.125; the “num_cells_expressed”
parameter was set as R10; the p-value was set as < 0.01 in the
“differentialGeneTest” function. t-SNE plots were used for
visualization of the pseudotime trajectories. The
2000 hypervariable genes were selected for analysis, and then the
number of principal components (PCs) was set to 20 to obtain cell
cluster clusters, and then these clusters were displayed in the form of
a “tSNE” diagram. The best category was judged from the number of
leaves in the quasi-sequential analysis and the clustering of tSNE.

Identification of Differently Expressed
Genes (DEGs) and Enrichment Analysis
DEGs of the CAF subgroups were identified by the FindMarkers
function of Seurat, with cut-offs set as fold change (FC) > 1.5 and
adj. p-value < 0.01. GO and KEGG enrichment analyses were
carried out based on the DEGs, with an adj. p-value <
0.05 considered significant.

Communication Analysis for CAF Subtypes
The identifying and illustrating alterations in the intercellular
signaling network (iTALK) R package is a novel tool for
intercellular communication analysis based on scRNA-seq (Wang
et al., 2019), which could capture highly abundant downregulated or
upregulated ligand-receptor gene pairs. We applied iTALK to
analyze the ligand-receptor communications among the CAF
subgroups and identified a total of 2,648 known ligand-receptor
gene pairs. For further analysis, we further divided these gene pairs
into four groups, namely, cytokines/chemokines, immune
checkpoint genes, growth factors, and the rest.

Combination of Bulk-Seq and scRNA-Seq
Data
CIBERSORTx, which is also known as “digital cytometry”, could
infer the proportion of cell types by deconvoluting bulk RNA-seq
data (Steen et al., 2020a). We applied CIBERSORTx to estimate
the abundance of each CAF subtype in TCGA-COAD patients.
We used the software X-tile to set the optimum cut-off values.
Patients in each subgroup were divided into CAF-high
abundance and CAF-low abundance groups. Univariate Cox
regression analysis was performed to analyze the prognostic
value of different CAF subtypes in the TCGA-COAD cohort.

Quantitative Reverse
Transcription-Polymerase Chain Reaction
Twenty pairs of fresh colon cancer and paracanceroush tissues from
the Fudan University (Shanghai, China) were collected and snap-
frozen in liquid nitrogen between October 2020 and September
2021. The samples were then stored at −80°C for later qRT-PCR
analysis. In brief, total RNA was extracted using TRIzol reagent
(Takara Biotechnology Co., Ltd., Dalian, China). Primers used for
qRT-PCR were designed using the Primer5 software. cDNA was

prepared using a reverse transcription kit (Takara Biotechnology
Co., Ltd.), and qRT-PCRwas carried out using the TBGreen Premix
ExTaq kit and the Applied Biosystems Step One Plus Real-Time
PCR system. Ct values were calculated based on housekeeping genes,
ACTB and GAPDH. All the primers were purchased from Takara
(Dalian, China) and showed in Supplementary Table S1.

Construction and Validation of a
CAF-Related Prognostic Signature Model
for Colon Cancer
The 825 highly expressed DEGs in CAFs were used to construct a
prognostic signature model. The univariate Cox regression analysis
was performed in the training dataset to identify OS-related genes
with p < 0.05. Then, LASSO regression analysis was used to optimize
themodel to avoid overfitting. According to the calculated coefficients
from the LASSO analysis, risk score was assigned to each colon cancer
patient. Finally, all these colon cancer patients were divided into high-
and low-risk groups based on their risk scores, with the median risk
score as the cutoff. Kaplan-Meier survival curves and scatter plots
were used to visualize OS in the high- and low-risk groups. AUC was
used to evaluate the time-dependent predictive accuracy of our model
in the training, internal and external testing datasets.

Independence and Accuracy Test of the
Prognostic Signature Model
Multiple cox regression analyses of related clinical factors and risk
scores of our prognostic model were based on the “survival” R
package. Survival time and survival status, combined with other
clinical factors, were used to predict the prognosis by drawing a
nomogram established using the “rms” R package, which was
then used to illustrate the calibration curve and evaluate the
prediction accuracy of the model.

Immune Infiltration Analysis
The immune score for each sample was calculated using the
ESTIMATE package (Steen et al., 2020b). The proportion of
different cell types within each tumor sample was calculated using
the xCell package with default parameters (Aran et al., 2017). The
pathway enrichment score for each sample was estimated using the
GSVA package (Hnzelmann et al., 2013). Based on the 50 hallmark
pathway feature gene set fromMsigDB (H collection) (Liberzon et al.,
2015), GO enrichment analysis was carried out by applying the
gseGO function of the GSVA package and the clusterProfiler package
with “c5. all.v7.1. symbols.gmt” geneset used. For analyses using
clusterProfiler, specific parameters were set as follows: ont = “BP”,
nPerm = 1,000, minGSSize = 100, MaxGSSize = 1,000, p-value
cutoff = 0.05. All the significant pathways were shown in the
bubble chart, while only the top five significant pathways were
shown in the enrichment curve.

Prediction of Drug Sensitivity
We selected candidate drugs from the CGP database and then
applied the pRRophetic package (Paul et al., 2014) to the
expression profile of TCGA-COAD samples to predict the drug
sensitivity of these candidate drugs. The drug sensitivity of these
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candidate drugs was further tested in colon cancer cells from the
GDSC database (Geeleher et al., 2014). The drug sensitivity is
indicated by an IC50 value, which represents the drug
concentration when half of the tumor cells die. Low IC50 values
indicate better drug sensitivity for colon cancer in our study. It
should be noted that the IC50 here is a relative estimate of drug
sensitivity. Its value may be less than 0 and does not correspond
exactly to the drug concentration.

Data Visualization and Correlation Analysis
The processing of single-cell data was performed using the Linux
platform. Transcriptome data such as those from the TCGA and
GEO databases were processed using the Windows10 platform. All
the rest analyses were performed using the R 4.0.1 platform. Data
cleaning, deformation, and integration were performed using the
mgsub, reshape and dplyr packages. Factors such as the cell
proportion, risk score, immune infiltration ratio were visualized
using the ggpubr and ggplot2 packages (Wickham et al., 2016). The
color matching was carried out using the RColorBrewer package
(Neuwirth and Neuwirth, 2014). Correlation analysis was
implemented using the cor_test and stat_compare_means
modules in the R package with default parameters.

DISCUSSION

Characterization of CAF Subtypes and
Potential Mechanisms in Colon Cancer at
the Cellular and Molecular Levels
High-dimensional single-cell RNA-seq data are valuable resources for
study at single-cell level. The abundance of fibroblasts is very different
between normal and tumor tissues, indicating their importance in
tumor development. Traditional bulk RNA-seq is unable to
distinguish different CAF subtypes at single-cell level. However, by
combining sc-RNA-seq data and bulk RNA-seq data, we were able to
identify different CAF subtypes from tumor tissues, such as those
from the TCGA database. Using this approach, we successfully
identified six CAF subtypes in CRC, which we named enCAF,
adCAF vaCAF, meCAF, erCAF, and cyCAF, respectively. We
further explored the prognostic significance of these CAF subtypes
and discover that two of them, adCAF and cyCAF, were significantly
associated with prognosis of colon cancer patients, with the adCAF
subtype as a protective factor while the cyCAF subtype as a risk factor.
Another two CAFs (enCAF and erCAF) were functioning
synergistically and showed an indirect link with prognosis in colon
cancer patients. Enrichment analysis revealed that the prognostic
significance of enCAF and erCAF related to macrophages. These two
subtypes were negatively correlated with theM1 andM2macrophage
infiltration, respectively. M1 macrophages can secrete pro-
inflammatory cytokines and chemokines, and present antigens,
thus enhancing immune response and surveillance. On the
contrary, M2 macrophages can secrete inhibitory cytokines, thus
reducing the immune response (Jiawei et al., 2021). Expression
levels of these modulating factors were confirmed by qRT-PCR
and the key genes in the enCAF and erCAF subtypes were
differentially expressed in tumor and paracanceroush tissues.

Representative gene GREM1 was highly expressed in the enCAFs
of tumor tissues, which was a risk factor; Representative genes IFG1
were highly expressed in erCAF of paracanceroush tissues.

To analyze the intercellular communications among the CAF
subgroups, we applied the iTALK R package to the scRNA-seq data.
Regarding immune checkpoint-related genes, the TNF superfamily
member 14 (TNFSF14)-lymphotoxin beta receptor (LTBR) gene pair
was most significantly differentially expressed between the erCAF
and other CAF subtypes. TNFSF14 could contribute to vascular and
tertiary lymphoid structure formation (Skeate et al., 2020).
TNFSF14-LTBR pathway plays a vital role in immune responses
in the TME of many types of cancer, but this pathway has not been
reported in TME of colon cancer, suggesting it might be an
important immunotherapeutic target for CRC treatment.
Regarding cytokine-related genes, the IL6-F3 and IL6-IL6ST gene
pairs were themost widespread (Figure 3). In several types of cancer,
such as breast cancer and hepatocellular carcinoma, CAFs can secret
IL6 to promote tumor progression (Dittmer and Dittmer, 2020; Jia
et al., 2020). IL6 belongs to a class of polypeptides that can bind to
specific, high-affinity cell membrane receptors, regulating multiple
cellular functions. The CTGF-ITGA5 gene pair, both encoding
growth factors, was differentially expressed between different
CAF subgroups. Interestingly, CTGF is a known multifunctional
regulator in TME that can activate CAFs, promote angiogenesis and
inflammation, thus acting as an oncogene in various types of cancer
(Shen et al., 2021). ITGA5 is expressed inCAFs and is responsible for
the tumor-promoting effect of CAFs in colon cancer (Lu et al., 2019).
Therefore, targeting the CTGF-ITGA5 pathway is promising for
colon cancer treatment in patients with a erCAF. Therefore, we have
characterized the prognostic significance and potential mechanisms
of CAFs in colon cancer at the cellular andmolecular levels. Through
the detailed description of specific CAF subgroups, the underlying
mechanism of CAFs function was indicated, which could be
potential therapeutic targets.

In short, we performed deeper bioinformatics analyses,
redefined the CAF subtypes, explored the prognostic
significance of different CAF subtypes, and carried out
experimental validation of key genes in CAFs, to study the
role of CAFs in colon cancer development. Other than indices
such as tumor size and immune cell infiltration ratio, fibroblast
types and ratios may be important prognostic markers for CRC.
Understanding the specific roles of different CAF subtypes would
be critical for the assessment of prognosis and tumor treatment.

A Prognostic Signature Model at the
Genetic Level
Although we have proven that our CAF-related prognostic signature
model is accurate for prognosis assessment and promising for
providing treatment recommendations, bulk RNA-seq data were
impossible to be applied to this model directly. To further investigate
the prognostic value of CAF-related genes, we constructed a CAF-
related signature model based on the TCGA-COAD cohort and
validated this model using the GSE39582 cohort. With univariate
regression analysis, we identified 825 DEGs using scRNA-seq data.
Among these DEGs, 16 genes were differentially expressed in colon
tumor and paracancerous tissues, which showed excellent prognostic
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significance in TCGA-COAD patients. Moreover, through lasso
regression analysis, we further removed 5 genes that were
redundant and thus 10 genes were used as prognostic genes,
namely, CACNA1C, COL4A5, ADRA2B, EGFR, LMBR1L, FZD7,
PKM, IL20RB, PMCH, and EPHB2. A previous study represent that
EGFR is over expressed in activated CAFs, contributing to colon
cancer development (Shin et al., 2019). In addition, some types of
CAF from tumors with epithelial-to-mesenchymal transition can
escape tyrosine kinase inhibitors (TKIs) mediated EGFR inhibition,
suggesting that these types of CAF might relate to EGFR-TKI drug
resistance (Mink et al., 2010). In breast cancer, the CAF-derived
exosome was able to regulate the expression of PKM in cancer cells
(Li et al., 2020). However, the associated autocrine signaling in CAFs
has not been elucidated. Autocrine signaling-related genes, such as
CACNA1C,COL4A5,ADRA2B, FZD7, IL20RB, PMCH, and EPHB2,
were implicated in some types of cancer (Ikeda et al., 2006; Merlos-
Suárez et al., 2011; Kiaii et al., 2013; Phan et al., 2017; Zhang et al.,
2018; Cui et al., 2019; Ye et al., 2019).

Next, we validated the established prognostic signature model
from the aspects of model effect, test set deviation, and clinical
feature comparison. Significant differences were observed
regarding the K-M survival curve between high- and low-risk
groups in the internal and external testing datasets (p≤0.0025). In
machine learning on test and training sets, model bias is very
limited. In the multiple cox regression analysis, risk factors were
significantly correlated with all clinical features (p < 5e-8) except for
the MSI mutation feature. Moreover, the model in the multivariate
regression analysis was the substitute for all factors except age, with
better prediction range in the nomogram.

In short, comprehensive correlation analyses between multiple
prognostic factors and risk scores from our model were performed,
and the molecular mechanisms of our model were elucidated. Instead
of directly acting onT cells, our prognosticmodel indicated that CAFs
were significantly correlated with CLPs, DCs, and MSCs. CLPs are
lymphatic stem cells that can differentiate into T cells, B cells, and NK
cells. As a dominant cell type in the intestinal tract, the high ratio of
MSCs could explain tumor cells’ low proportion and low activity. DCs
are professional antigen-presenting cells (APCs) in the body, where
immature DCs can efficiently ingest, process, and present antigens to
effectively activate naive T cells, a process important for immune
response. MSCs have the tendency to promote tumor development.
For example, cytokines secreted by MSCs can inhibit the function of
T cells. Probably due to the complex intercellular associations, the risk
scores are negatively correlated with the immune scores inferred from
multiple scoring algorithms. In addition, as revealed by ourmodel, the
prognostic effects relate to 10 classical pathways, including the
HEDGEHOG, APICAL, NOTCH, MYCV1, E2F pathways and
the translational initiation, protein-DNA subunit assembly, and
G2/M-related cell cycle pathways.

In summary, this study established a prognostic model for colon
cancer based on CAF-related signature genes, which shows excellent
performance compared with models using traditional clinical
features. The model is based on the development pathway of
cancer and the interaction with various tumor microecological
cells to achieve a unified mechanism with key test indicators
such as immune score and tumor purity. The model could be a
powerful tool for predicting the prognosis of colon cancer patients.

CAFs on Tumor Development and
Treatment
TME is a complex local ecosystem that connects tumors and
other parts of the body (Qian et al., 2020). Different from T cells
or macrophages that kill tumor cells directly, CAFs play roles in
tumor development in an indirect way. Despite the fact that
clinical treatment of colon cancer involves many complicated
factors, our model could provide potential treatment
recommendations based on the transcriptome profile of colon
cancer patients. High expressed checkpoint-related genes indicate
high activity of immunosuppressive pathways in patients of the
high-risk group, who might benefit from treatment of antagonistic
antibodies. Importantly, three drugs out of the 10 potential drugs in
the GCP database, camptothecin, docetaxel, and bortezomib, may be
potential candidates for colon cancer treatment in the low-risk group
inferred from our model and may have a better therapeutic effect. In
conclusion, starting from the identification of the subgroups of CAFs
in colon cancer, by constructing a predictionmodel for the prognosis
of colon cancer patients and prediction of drug sensitivity based on
genomics data, the current research was expected to provide new
directions and ideas for the CAF-related targeted therapy for colon
cancer.
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