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Background: Ferroptosis is a potential target for cancer therapy, and lncRNAs can also
affect ferroptosis by regulating related genes. The pathogenesis of clear cell renal cell
carcinoma (ccRCC) regarding the regulation of ferroptosis by lncRNAs is still unknown.

Methods: We constructed a risk model based on data in ccRCC patients obtained from
the TCGA database and validated the diagnostic and prognostic value of the model. In
addition, immune function and immune checkpoint variability analysis validated the
association of ferroptosis with ccRCC tumor immunity.

Results: The characteristics of ferroptosis-related lncRNAs (FRLs) were significantly
correlated with the prognosis of ccRCC patients. The prognostic characteristics of
FRLs were independent prognostic factors in ccRCC patients. Gene function in the
high-risk group was associated with oxygen metabolic processes and immune
pathways. Immune checkpoint variability analysis showed that HAVCR2, NRP1, and
HHLA2 were upregulated in the low-risk group, while CD44, TNFRSF18, TNFSF14,
TNFRSF8, CD276, and TNFRSF25 were upregulated in the high-risk group.

Conclusions: The prognostic characteristics of FRLs can effectively predict the prognosis
of ccRCC patients and provide a new direction for clinical treatment.
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INTRODUCTION

Clear cell renal cell carcinoma (ccRCC) is a common tumor of the urinary tract with a high mortality
rate (Moch et al., 2016; Sung et al., 2021). Currently, immunotherapy is the latest treatment for
ccRCC, and immune checkpoint inhibitors (ICIs) such as anti-PD-1/PDL1 inhibitors have been
gradually used in clinical practice (Gonzalez et al., 2018; Postow et al., 2018; Chen et al., 2019; Khan et
al., 2019; Zhang et al., 2019; Buonerba et al., 2020). Unfortunately, some patients are not sensitive to
ICIs (Carosella et al., 2015; Tan et al., 2020). Therefore, it is critical to find biomarkers and potential
target drugs for the progression and prognosis of ccRCC.

Ferroptosis is a novel form of cell death caused by iron-dependent oxidative damage (Stockwell
et al., 2017). The pathological mechanism is the failure of glutathione peroxidase (GPX4), which
leads to the accumulation of reactive oxygen species (ROS) onmembrane (Dixon et al., 2012). Studies
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have shown that ferroptosis involved in tumors, degenerative
diseases, and ischemia-reperfusion injury (Guiney et al., 2017;
Hassannia et al., 2019; Li et al., 2019; Yan and Zhang, 2019).
Interestingly, lncRNAs play a pivotal role in ferroptosis. Silencing
lncRNA MEG8 can induce ferroptosis of hemangioma
endothelial cells and inhibit cell proliferation (Mao et al.,
2018). LncRNAOIP5-AS1 inhibited ferroptosis and promoted
cell proliferation in prostate cancer cells exposed to cadmium (Lv
et al., 2022). Ketamine can induce ferroptosis of hepatoma cells by
targeting lncRNAPVT1/miR-214-3p/GPX4 (Wang et al., 2019;
Bohosova et al., 2021). In glioma cells, upregulation of
lncrNATMEM161B-AS1 promotes ferroptosis by sponging
miR-27a-3p (Kapoor et al., 2021). In addition, lncRNARP11-
89 inhibited ferroptosis and promoted the development of
bladder cancer by sponging miR-129-5p (Yang et al., 2020).

The specific regulatory role of lncRNAs in ferroptosis remains
to be further investigated. Moreover, how to regulate the aberrant
expression of lncRNAs with ferroptosis is an urgent question to
be investigated. Thus, we attempted to discover the regulatory
role of lncRNAs in ferroptosis and provide the theoretical basis
for its application in ccRCC.

METHODS AND MATERIALS

Data Download and Study Design
The gene expression and clinical data were obtained from The
Cancer Genome Atlas (https://www.cancer.gov/tcga), the Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo),
and FerrDb (http://www.zhounan.org/ferrdb/) databases.
Immune-related clinical data were obtained from Timer
(http://timer.comp-genomics.org). OS and Disease-Free
Survival (DFS) data were obtained from the GEPIA database
(http://gepia.cancer-pku.cn/).

Identification of FRGs and FRLs
A correlation coefficient filter criterion of 0.6 and a p-value filter
criterion of 0.001 were used to screen for FRLs. Based on the
expression data of FRLs with the corresponding survival data,
prognosis-related FRLs were screened, and these FRLs would be
involved in the prognostic model. The “limma” (Ritchie et al.,
2015) packages were used to screen co-expression analysis of
FRGs and lncRNA with p < 0.05 and log2FC > 2. The “limma”
package was performed to identify FRGs (p < 0.05 and log2FC >
1) and identify expression level of FRG (Score Filter = 0.4,
p-Value Filter = 0.001). The “limma” package was performed
to identify FRLs (p < 0.05 and log2FC > 1).

Co-Expression Network Analysis and
Nomogram
COX models were constructed for lncRNAs related to survival
time, survival status, and prognosis of patients. Based on the
model equations, the risk scores of patients were calculated and
patients were divided into high-risk and low-risk groups
according to the median risk scores. The FRGs and FRLs were
inputted into the STRING online tool (https://string-db.org) to

construct the PPI network. Then, Cytoscape software (Shannon
et al., 2003) was used to analyze the PPI network. And Cytoscape
software drew the figure of FRGs and FRLs co-expression
network. The “regplot” and “survival” packages were utilized
to perform the nomogram.

Cox Regression Analysis and Construction
of a Proportional Hazards Model
The “limma” package was performed to identify the survival time.
The “survival” and “glmnet” and “survminer” packages
(Friedman et al., 2010) were utilized to perform univariate and
multivariate Cox regression analyses. Through integrated Cox
analysis, key FRLs were screened to construct the risk model. The
risk curve was finished by the “pheatmap” treatment. The
“survival”, “glmnet” and “survminer” packages were utilized to
perform independent prognostic analysis.

Survival Analysis and Decision Curve
Analysis
Based on the median gene expression/risk score, ccRCC patients
are classified into high and low-risk groups. Then, survival curves
of OS and DFS were drawn by the “survival” and “survminer”
packages in R (v.4.1.1) and GraphPad software (version 8.0). A
p < 0.05 was considered statistically significant. Moreover, the
“survival”, “survminer”, and “timeROC” packages were used to
generate a time-dependent ROC curve to evaluate the predictive
value of the risk model. The “survival” and “ggDCA” packages
drew the decision curve.

Gene Set Enrichment Analysis
All patients were divided into high and low-risk groups according
to the median gene expression/risk score. GSEA (Subramanian
et al., 2005) was performed to discover potential mechanisms and
downstream signaling pathways.

Kyoto Encyclopedia of Genes and Genomes
Pathway Enrichment Analysis and Gene
Ontology Analysis
The “colorspace”, “stringi”, “clusterProfiler” (Wu T. et al., 2021),
“DOSE”, “org.Hs.eg.db”, and “enrichplot” packages were used to
conduct KEGG enrichment analysis of FRGs and FRLs. The
“colorspace”, “stringi”, “clusterProfiler”, “DOSE”,
“org.Hs.eg.db”, and “enrichplot” packages were used to
conduct gene ontology analysis of FRGs and FRLs. The results
were visualized by the “ggplot2” package in the R program. A p <
0.05 was selected as the cut-off point.

Immunohistochemistry
IHC staining data are obtained from the Human Protein Atlas
website (HPA, https://www.proteinatlas.org), a database based on
proteomic, transcriptomic, and systems biology data that can
map tissues, cells, and organs. IHC staining of NRP1, HAVCR2,
HHLA2CD44, TNFRSF18, TNFSF14, TNFRSF8, and CD276 in
tumor tissues and normal tissues were obtained from HPA.
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Statistics
All data analyses were performed using the R platform or
GraphPad Prism 8.0. The FRLs of different groups were
measured using Kaplan-Meier log-rank test method. The FRLs
between high and low-risk groups were determined using the
“limma” R package. p < 0.05 was considered statistically
significant.

RESULTS

Differential Expression Analysis and
Functional Enrichment Analysis
We downloaded the transcriptomic data, along with the
corresponding clinical data from the TCGA database.

Meanwhile, we found all the genes related to ferroptosis from
the FerrDb database. By taking intersections, we screened 230
FRGs differentially expressed in ccRCC. We screened out 230
differentially expressed genes (137 upregulated, 93
downregulated). Next, we screened out 76 ferroptosis-related
genes (FRGs) (42 upregulated and 34 downregulated) and
1502 ccRCC-related lncRNAs (1265 upregulated and 237
downregulated), respectively.

Then, we performed GO and KEGG pathway enrichment
analysis on FRGs. In biological processes (BP), FRGs are involved
in chemical stress cell response, reactive oxygen species
metabolism response, low oxygen response, oxygen level
response, and oxidative stress cell response. Interestingly, in
molecular function (MF), they are involved in ion binding,
pyridoxal phosphate binding, and vitamin B6 binding

FIGURE 1 | Functional Enrichment Analysis of FRGs in ccRCC patients. (A) The bar plot of GO functional enrichment analysis of FRGs in ccRCC patients. (B) The
bubble diagram of GO functional enrichment analysis of FRGs in ccRCC patients. (C) The bar plot of KEGG pathway enrichment analysis of FRGs in ccRCC patients. (D)
The bubble diagram of KEGG pathway enrichment analysis of FRGs in ccRCC patients (p < 0.05).
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FIGURE 2 | Construction and validation of FRLs Prognostic Signature in ccRCC patients. (A) Univariate Cox regression analysis showed that FRLs were related to
the OS of ccRCC patients. (B) The distribution of risk scores for the high-risk and low-risk groups in ccRCC patients. (C) The Scatter plots of the OS in lower-risk ccRCC
patients and high-risk groups. (D) Survival curve of the high- and low-risk groups in the training set (n = 268). (E) Kaplan-Meier survival curve of validation set (n = 269)
comparing the high- and low-risk groups. (F) Kaplan-Meier survival curve analysis in the independent test set GSE163001 (n = 150) comparing two risk groups. (G)
Heatmap of clinical correlation of FRLs in ccRCC. All the K-M survival analyses use log-rank tests to determine significant differences between two groups, p < 0.05.
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processes (Figures 1A,B). The KEGG pathway analysis also
revealed that FRGs were associated with multiple signaling
pathways (such as HIF1 signaling, adipocytokine signaling,
and PPAR signaling) and metabolic pathways (arachidonic
acid metabolism, 2-oxocarboxylic acid metabolism, cysteine,
and methionine metabolism) (Figures 1C,D).

Prognostic Signature
From the pre-acquired data, we screened ferroptosis-related
lncRNAs (FRLs) with a correlation coefficient filter criterion of
0.6 and a p-value filter criterion of 0.001. We then analyzed the
expression data of the screened FRLs with the corresponding
survival data to select prognostically relevant FRLs, which will be
involved in the prognostic model. We found that 67 FRLs were
involved in the OS of ccRCC (Figure 2A). We took the obtained
data of FRLs and performed COX model construction on
patients’ survival time, survival status, and prognosis-related
lncRNAs. We calculated the risk scores of the patients and
divided them into high and low-risk groups with median
value: risk score = (1.546 × LINC00894 expression level) +
(2.5111 × AL139123.1 expression level) + (0.0119 ×
ASMTL−AS1 expression level) + (0.026 × AL157392.4
expression level) + (0.9667 × AL031714.1 expression level) +
(−0.32554 × AC135050.3 expression level) + 0.644 × AP006621.2
expression level) + (3.271 × NARF−IT1 expression level) + (0.142
× YEATS2−AS1 expression level) + (0.375 × LINC02804
expression level) + (0.536 × AC024361.3 expression level) +
(0.15983 × KIF1C−AS1 expression level) + (−0.5863 ×
PCED1B−AS1 expression level) + (1.2393 × UBE2Q1−AS1
expression level) + (−2.1882 × AL031705.1 expression level) +
(1.4877 × AC005306.1 expression level) + (0.12394 ×

PTOV1−AS2 expression level) + (-0.0795 × AC114730.3
expression level) + (1.68734 × AC073487.1 expression level) +
(−0.693 × AC104564.3 expression level) + (1.1236 × AC020907.4
expression level) + (1.81 × AC005387.2 expression level) +
(−0.798 × AL513218.1 expression level) + (1.4485 ×
AC025766.1 expression level).

We randomly assign all samples in a 1:1 ratio and divided them
into training and testing datasets to construct risk features. The
clinical characteristics of all patients showed inTable 1. Subsequently,
we developed risk curves for both groups based on the prognostic
characteristics of the FRLs, and the risk curves showed the survival
status and risk scores for each ccRCC sample (Figure 2B). The scatter
plot and Kaplan-Meier survival curves showed significantly higher
survival rates in the low-risk group than in the high-risk group
(Figures 2C,D). These results show the excellent predictive
performance of the risk score model in the training set. Similarly,
the prognostic value of the risk signature is verified in both the
validation set and the external independent test set (Figures 2E,F).
Based on the risk score, we ranked the samples and extracted the
expression data of FRLs with relevant clinical information to draw a
clinical relevance heat map to show the expression levels of FRLs in
high- and low-risk patients. The heat map showed that 23 of the 67
FRLs were the best candidates (Figure 2G).

Evaluation of Independent Prognostic
Factors
Univariate analysis revealed that age (p < 0.001), stage (p < 0.001),
and FRLs risk score (p < 0.001) were all independent prognostic
factors for ccRCC patients, except gender (p = 0.748) (Figure 3A).
Similarly, multivariate analysis showed a significant correlation
between risk scores for FRLs and OS as well as other
clinicopathological and prognostic characteristics except for
gender (p = 0.694) (Figure 3B). In the training dataset, the
ROC curves for years 1, 2, and 3 demonstrated that the FRLs
risk score was strongly predictive: 1-year AUC (0.900), 2-year
AUC (0.897), and 3-year AUC (0.912). Multivariate ROC curves
showed that the FRLs risk score had better predictive
performance than those clinicopathologic features, suggesting
that the FRLs risk score is an independent predictor of
survival in ccRCC patients (Figures 3C,D). The results of
decision curve analysis (DCA) showed that the risk score of
FRLs had better predictive power than other indicators
(Figure 3E). In addition, In addition, similar results are also
demonstrated in the validation set (Figures 3F–H).

Construction of Nomograph
We integrated the prognostic features and clinicopathologic
factors (age, gender, grade, and stage) of FRLs to construct
nomograms to accurately estimate the survival probability in
ccRCC patients (Figure 3I). Then, we constructed a co-
expression network using Cytoscape software (blue
nodes represent FRLs and green nodes represent FRGs)
(Figure 3J).

We also plotted a heat map on the clinical relevance of
FRLs (horizontal coordinates indicate samples and vertical
coordinates indicate FRLs). Among the different clinical

TABLE 1 | The association between risk score and patients’ clinical features in the
training set.

Variables Training Set Validation Set p-Value

(n = 268) (n = 269)

No. % No. %

Age 0.812
≤65 174 64.9 178 66.2
>65 94 35.1 91 33.8

Stage 0.875
I 134 50.0 135 50.2
II 29 10.8 28 10.4
III 68 25.4 57 21.2
IV 37 13.8 49 18.2

T stage 0.926
T1 138 51.5 137 50.9
T2 30 11.2 39 14.5
T3 95 35.4 87 32.3
T4 5 1.9 6 2.3

N stage 0.578
N0 134 50.0 146 54.3
N1 34 12.7 55 20.4
N2 20 7.5 45 16.7
N3 10 3.7 23 8.6

M stage 0.688
M0 221 82.5 205 76.2
M1 47 17.5 64 23.8
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FIGURE 3 | Evaluation of Independent Prognostic Factors and Construction of Nomograph (A) Univariate Cox regression analysis showed the correlation between
overall survival rate and various clinicopathological parameters (Age, Gender, Grade, Stage, T and M stage). (B) Multivariate Cox regression analysis showed that age,
grade, stage, and risk score were independent prognostic indicators for the overall survival of ccRCC patients. (C) The year 1, 2, and 3 ROC curves testified that the risk
score is well predictive in the training dataset. (D) ROC curve analysis showed the prognostic accuracy of risk score and clinicopathological parameters in the
training dataset. (E) The DCA showed that it was better predictive than other indicators in the training dataset. (F) The year 1, 2, and 3 ROC curves testified that the risk
score is well predictive in the testing dataset. (G) ROC curve analysis showed the prognostic accuracy of risk score and clinicopathological parameters in the testing
dataset. (H) The DCA showed that it was better predictive than other indicators in the testing dataset. (I) The prognostic nomogram constructed based on the risk score
of FRLs and clinicopathological parameters predicted the survival rate of ccRCC patients at 1, 3, and 5 years. (J) A co-expression network of FRGs and FRLs.
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FIGURE 4 |GSEA and heatmap of the clinical relevance of FRLs. (A)GSEA analyzed the potential downstream signaling pathways for FRLs. (B, C) The heatmap of
the clinical relevance of FRLs.
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FIGURE 5 | Immune-cell Correlation and Immune Function Analysis. (A) Heatmap showed the expression of these immune cells in high and low-risk groups. (B)
The analysis of immune function variability of ccRCC. (C) The immune checkpoint differential analysis of ccRCC. (D) The expression level of CD44, CD276, HAVCR2,
HHLA2, and NRP1 from the GEPIA database (p < 0.05).
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FIGURE 6 | Immunological checkpoint variability. (A) Expression levels of TNFSF14, TNFRSF18, NRP1, HAVCR2, and HHLA2 were significantly associated with
prognosis in ccRCC patients and were statistically significant on both OS and DFS. (B) Verify the translational expression of the immune checkpoints genes in ccRCC
and normal kidney tissues.
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characteristics of the high and low-risk groups, several
clinical characteristics of grade, T, and M stage varied
significantly in both groups (Figure 4A). We identified
potential downstream signaling pathways of FRLs and
found that it was associated with metabolism-related
pathways by GSEA (Figures 4B,C).

Immune-Cell Correlation and Immune
Function Analysis
We obtained immune-related clinical data from the Timer
database and plotted the associated heat map (horizontal
coordinates represent samples, vertical coordinates
represent immune cells, and different colors represent
predicted outcomes). The heat map showed that M1
macrophages, regulatory T cells, follicular helper T cells,
and B cells, which are immune cells, had elevated
expression in the high-risk group, while activated mast
cells, neutrophils, and hematopoietic stem cells (HSC) had
elevated expression in the low-risk group (Figure 5A). We
then analyzed immune function variability and found that
four immune functions in inflammation promotion, T cell co-
inhibition, T cell co-stimulation, and type II IFN Response
were actively involved in the high-risk group. These data
suggest that ferroptosis is involved in ccRCC through the
immune process pathway (Figure 5B).

Immunological Checkpoint Variability
Analysis
We performed an immune checkpoint differential analysis
and found that three genes, HAVCR2, NRP1, and HHLA2,
were highly expressed in the low-risk group, and six genes,
CD44, TNFRSF18, TNFSF14, TNFRSF8, CF276, and
TNFRSF25, had increased expression in the high-risk group
(Figure 5C). Then, we verified that the expression levels of
CD44, CD276, HAVCR2, HHLA2, and NRP1 were
statistically significant in ccRCC from the GEPIA database
(Figure 5D). The expression levels of TNFSF14, TNFRSF18,
NRP1, HAVCR2, and HHLA2 were significantly associated
with the prognosis of ccRCC patients, and their OS and DFS
were statistically significant (p < 0.05, Figure 6A). Meanwhile,
we show the IHC staining of NRP1, HAVCR2, HHLA2CD44,
TNFRSF18, TNFSF14, TNFRSF8, and CD276 in tumor tissues
and normal tissues (Figure 6B).

DISCUSSION

Ferroptosis is involved in the occurrence, development, and
progression of tumors, which aroused our interest in studying
its mechanism in ccRCC (Hambright et al., 2017; Stockwell et al.,
2020; Ye et al., 2020). Tumor immunology, as an emerging
research field, greatly complements and improves the research
system of oncology (Galon and Bruni, 2020). After tumor cells
escape the surveillance of the body’s immune system under the
action of various factors, they can rapidly divide and proliferate in

the body, accelerating tumor deterioration, which is immune
escape (Dunn et al., 2002). Immune checkpoint blockade therapy
based on programmed death receptors and their ligands enhances
the aggressiveness of the host immune system against tumor cells
by inhibiting the binding of them (Dunn et al., 2004; La-Beck
et al., 2015; Postow et al., 2018; Khan et al., 2019). Non-specificity
and drug resistance are the main problems faced by conventional
treatments for ccRCC (Gai et al., 2020; Zou et al., 2021). And the
role of lncRNA in cancer is receiving increasing attention from
researchers (Inthagard et al., 2019; Resch et al., 2021).

We highlighted the lncRNAs associated with ferroptosis
and ccRCC, which may yield promising results in cancer
treatment. We validated the accuracy of the FRLs risk score
in predicting the prognosis of ccRCC. Next, we tested the
model with ROC curves and found that it applies to different
situations. The prognostic characteristics of FRLs are an
independent predictor of survival in patients with ccRCC
and that they can be used as multiple indicators to
diagnose or predict the onset or progression of ccRCC. We
integrated the prognostic characteristics of FRLs with
clinicopathological factors such as age, gender, grade, and
stage and constructed a nomogram to predict the probability
of survival in ccRCC patients.

LncRNAs regulate abnormal tumor lipid metabolism,
thereby exerting oncogenic effects in tumorigenesis,
affecting tumor cell proliferation, apoptosis, migration,
invasion, and ferroptosis. LncRNA can also enable
ferroptosis to produce an apoptosis-independent form of
cell killing. Recent studies have found that the lncRNA
SNHG12/SP1/CDCA3 axis promotes progression and
sunitinib resistance in RCC, which provides a new
therapeutic target for sunitinib-resistant RCC (Liu et al.,
2020). In addition, lncRNA 00312 inhibits RCC
proliferation and invasion and promotes apoptosis in RCC
by inhibiting miR-34a-5p and overexpressing ASS1 (Zeng
et al., 2020). SNHG17/miR-328-3p/H2AXaxis may be
involved in RCC progression, providing a potential
therapeutic target for RCC (Wu J. et al., 2021). Thus, we
believe that targeting lncRNAs and combining both immune
checkpoints and FRLs prognostic signature may create new
opportunities for the treatment of ccRCC.

However, we still have several issues to resolve. First,
identifying the most significant lncRNAs associated with
ccRCC remains challenging. Our study lacks the necessary
experimental validation related to lncRNA expression and
other relevant experimental validation. In addition, lncRNAs
are generally poorly conserved across species compared to
protein-coding genes. Therapeutic strategies developed based
on cellular and animal models are still a long way from clinical
application and may require further research.

CONCLUSION

In conclusion, future research should reveal the relationship
between each lncRNAs and ferroptosis and develop
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appropriate model systems to help the diagnosis, treatment,
and prognosis of ccRCC. As the research continues, lncRNA-
based therapeutic strategies will hopefully improve the
prognosis of ccRCC patients.
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