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Long-term live-cell imaging technology has emerged in the study of cell culture and
development, and it is expected to elucidate the differentiation or reprogramming
morphology of cells and the dynamic process of interaction between cells. There are
some advantages to this technique: it is noninvasive, high-throughput, low-cost, and it can
help researchers explore phenomena that are otherwise difficult to observe. Many
challenges arise in the real-time process, for example, low-quality micrographs are
often obtained due to unavoidable human factors or technical factors in the long-term
experimental period. Moreover, some core dynamics in the developmental process are
rare and fleeting in imaging observation and difficult to recapture again. Therefore, this
study proposes a deep learning method for microscope cell image enhancement to
reconstruct sharp images. We combine generative adversarial nets and various loss
functions to make blurry images sharp again, which is much more convenient for
researchers to carry out further analysis. This technology can not only make up the
blurry images of critical moments of the development process through image
enhancement but also allows long-term live-cell imaging to find a balance between
imaging speed and image quality. Furthermore, the scalability of this technology makes
the methods perform well in fluorescence image enhancement. Finally, the method is
tested in long-term live-cell imaging of human-induced pluripotent stem cell-derived
cardiomyocyte differentiation experiments, and it can greatly improve the image space
resolution ratio.
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INTRODUCTION

Microscopic imaging and fluorescence imaging technology have brought great convenience to
biological research, and allow researchers to visually observe subcellular structures and the
interaction between cells. The emergence of long-term live-cell imaging technology has made it
possible to observe the cultivation and growth process of cells, which is expected to explain more
biological phenomena over time. In particular, the dynamics of changes in cellular and subcellular
structures and protein subcellular localization, and the dynamic process of cell differentiation and
reprogramming were studied. It is crucial to decipher the mechanism behind the dynamic
heterogeneous cellular responses.

Many studies require long-term imaging of living cells, so brightfield imaging should be carried
out for further analysis to keep cells alive. The brightfield imaging process is simple without a
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fluorescent staining operation and the noise introduced into the
experimental system is quite low. The non-intrusive experimental
method shows great advantages: 1) no complex experimental
operations, 2) does not introduce noise into the experimental
system, and 3) does not interfere and destroy the cells themselves,
while the phototoxicity can be reduced to a minimum. Since long-
term live-cell imaging has such advantages, there have been many
studies.

Smith et al. (2010) used high-resolution time-lapse imaging to
track the reprogramming process from single mouse embryonic
fibroblasts (MEFs) to induced pluripotent stem (iPS) cell colonies
over 2 weeks. Schroeder (2011) conducted continuous long-term
single-cell tracking observations of mammalian stem cells and
found a set of technical solutions for long-term imaging and
tracking. McQuate et al. (2017) established a pipeline for long-
term live-cell imaging of infected cells and subsequent image
analysis methods for Salmonella effector proteins SseG and SteA.
Chen et al. (2010) developed a machine learning-based
classification, segmentation, and statistical modeling system
based on a time-lapse brightfield imaging analysis system to
guide iPSC colony selection, counting, and classification
automatically. In their research, AlexNet and hidden Markov
model (HMM) technology were used. Buggenthin et al. (2017)
used long-term time-lapse microscopy data and single-cell
tracking annotation to prospectively predict differentiation
outcomes in differentiating primary hematopoietic progenitors.
They propose a convolutional neural network (CNN) combined
with a recurrent neural network (RNN) architecture to process
images from brightfield microscopy and cell motion. They
predicted primary murine hematopoietic stem and progenitor
cells (HSPCs) differentiating into either the granulocytic/
monocytic (GM) or the megakaryocytic/erythroid (MegE)
lineage. Wang et al. (2020) developed a live-cell imaging
platform that tracks cell state changes by incorporating
endogenous fluorescent labels. It can minimize the
perturbation to cell physiology when processing live-cell
imaging. In the field of cell differentiation and
reprogramming, continuous long-term single-cell observation
provides an insight into the mechanisms of cell fate. Even in

the field of education, the low-cost long-term live-cell imaging
platform also has high application prospects (Walzik et al., 2015).

A summary of the general processing pipeline of long-term
live-cell imaging research is shown in Figure 1. Once the research
question has been set up, appropriate microscopy strategies must
be tailored according to the experimental system to be used at the
beginning of the study. In addition, it is necessary to balance the
trade-offs between the image space resolution ratio, experimental
throughput, and imaging speed (Weigert et al., 2018), limited by
imaging technology and cost.

However, many difficulties and challenges arise in actual long-
term imaging experiments. This is the congenital deficiency of
long-term live-cell imaging. It takes considerable effort to
maintain regular cell culture conditions while performing
long-term high-resolution imaging (Skylaki et al., 2016). For
example, the obtained photos may not be as sharp and
distinguishable as traditional fluorescent label imaging because
the noninvasive label-free observation method has no
conspicuous calibrations. At the same time, it is necessary to
reduce the phototoxicity to a range that can be tolerated in an
experimental system while exposing the live cells to the
transmitted light in long-term incubation. Thus, it reduces the
signal-to-noise ratio of image acquisition because the light
intensity is limited. Moreover, a large number of cells will
aggregate into clusters as a result of cell growth and culture in
long-term live-cell culturing. The sudden growth of cells in a mass
can cause loss of the focal surface. Dead cells will become
pollutants, float up and block the view. Furthermore, artificial
placement errors will be introduced in the long-term
experimental system. For example, the medium was changed
every certain period of time to maintain regular cell survival or
differentiation. Nevertheless, thermal expansion and contraction
of the culture chamber are caused by temperature changes during
the movement of the culture chamber in and out of the
thermostatic incubator. The quality and clarity of the medium
will lead to a decrease in the quality of the acquired images. Some
of the conditions that cause blurring in long-term live-cell
imaging are shown in Figure 2. Most importantly, it does not
leave enough time for the researcher to take another image

FIGURE 1 | General processing pipeline for long-term live-cell research. The image preprocessing stage (blue part in this figure) is very important in the entire
research pipeline and directly determines the accuracy and results of the further analysis.
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because many cellular dynamic response processes are rare and
occur quickly. On the other hand, it always takes several days or
weeks to reproduce the entire biological experiment again, which
wastes considerable time. Therefore, the industry urgently needs a
tool that can efficiently improve the quality of once-taken bad
images and reconstruct high-quality microscopic images of cells.

Image processing methods such as image inpainting or image
completion can be used to restore imperfect cell images. The
rapid progress of deep learning technology (Hinton et al., 2006;
Hinton and Salakhutdinov, 2006) and deep convolutional neural
networks (CNNs) has led to many new applications in computer
vision and image processes. The emergence of generative
adversarial networks (GANs) (Goodfellow et al., 2014) has
brought almost a leap in image generation, inpainting, repair,
and completion. A conditional generative adversarial net
(CGAN) (Mirza and Osindero, 2014) can generate custom
outputs by adding class information to the model. The best of
these methods in image processing is deep convolutional
generative adversarial networks (DCGANs) proposed by
Radford et al. (2016), which replace fully connected layers in
the original GANs with the convolutional layers in both the
generator and the discriminator. Recently, many excellent image
repair methods based on DCGAN structures have been proposed

for real-world photo restoration, such as those by Pathak et al.
(2016), Iizuka et al. (2017), and Yu et al. (2018). These methods
work very well on landscape, architecture, or portrait retouching.

Recently, image-to-image translation tasks have been
proposed to address image style transfer, which aims to
translate an input image from a source domain to a target
domain. The “pix2pix” proposed by Isola et al. (2017) is an
image translation method based on conditional adversarial
networks, which has shown the super ability of street scene
restoration in the real world. “Pix2pix” uses input–output
image pairs as training data, and pixel-wise reconstruction loss
coupled with adversarial loss is used to optimize the model
building process.

On the other hand, the single-image super-resolution (SISR)
method has emerged to recover a high-resolution (HR) image
from a single low-resolution (LR) image. Wei et al. proposed the
“artificial neural network accelerated-photoactivated localization
microscopy” (ANNA-PALM) method for reconstructing high-
quality cell super-resolution views from sparse, rapidly acquired,
single-molecule localization data and widefield images (Ouyang
et al., 2018). Based on the “pix2pix” architecture, this method
greatly facilitates studies of rare events, cellular heterogeneity, or
stochastic structures. The super-resolution generative adversarial

FIGURE 2 | Challenges in long-term live-cell imaging. Changes in individual steps or components may influence the next series of steps and cause a reduction in
image quality. Trade-offs must be made between time and image quality in almost every long-term experiment.
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network (SRGAN) proposed by Ledig et al. (2017) is one of the
milestones in single image super-resolution, and it significantly
improves the overall visual quality of reconstruction over
traditional methods. The SRGAN innovatively uses content
loss coupled with adversarial loss instead of PSNR-oriented
loss as the objective function. There are many variants of
SRGAN methods, such as the enhanced SRGAN (ESRGAN)
proposed by Wang et al. (2018) and the practical restoration
application ESRGAN (Real-ESRGAN) proposed by Wang et al.
(2021b). In an ESRGAN, a residual-in-residual dense block
(RRDB) was introduced to the model as the basic network
building unit, which combines a multilevel residual network
and dense connections. The RRDB can further improve the
recovered textures by adopting a deeper and more complex
structure than the original residual block in the SRGAN. The
Real-ESRGAN uses the U-net discriminator with spectral
normalization as a modification to the ESRGAN to increase
the discriminator capability and stabilize the training
dynamics. Therefore, it is better at restoring most real-world
images than previous works, especially low-quality web images or
videos with compression degradations.

While the aforementioned methods perform well on
macroscopic photographs such as street views, these methods
do not perform well enough in the reconstruction of biological
images, which require very precise fine structure recovery.
Therefore, inspired by the methods in the field of image
completion and image super-resolution (Wang et al., 2018,
2021a, 2021b; Rad et al., 2019; Qiao et al., 2021), we propose a
cell image-enhanced generative adversarial network (referred to
as CIEGAN) for image enhancement to address the challenges
mentioned previously. In addition to using adversarial loss, the
CIEGAN introduced perceptual losses comprising feature
reconstruction loss and style reconstruction loss (Gatys et al.,
2015; Johnson et al., 2016), which greatly improves the image
restoration efficiency of the model. Coupled with image
reconstruction loss and the total variation regulator, our
method can solve various blurry problems of biological cell
images. This method is very convenient and especially
optimized for long-term live-cell imaging. Moreover, it can
increase the imaging speed because there is no need to take
more Z-axes layers for focus finding. Researchers can have more
time to scan more conditions or increase the frequency of image
acquisition. Furthermore, it can handle the force majeure during
cell culture: cell clumping, cell bulging or blurring caused by
floating dead cells, etc., even if the blur was caused by the beating
of the differentiated mature cardiomyocytes. Nevertheless, the
processing is fast, of low cost, and can easily be extended to other
photos. It is convenient for researchers to obtain the
differentiation or development trajectories of cell lines from
the image stream and conduct research such as differentiation
trajectory tracking, subtype search, or protein subcellular
localizations (Aggarwal et al., 2021).

We applied the CIEGAN to long-term live-cell imaging of a
human-induced pluripotent stem cell (hiPSC)-derived
cardiomyocyte (hiPSC-CM) differentiation system, which
greatly enhanced the quality of brightfield cell images.
Through the comparison of results, it is found that the

CIEGAN based on generative adversarial networks is better
than the traditional image enhancement algorithm and can
use the original blurred images to reconstruct sharper images.
The information entropy of the enhanced image is increased and
its resolution ratio is also significantly improved. At the same
time, we also found that it is quite suitable for the enhancement of
fluorescence images.

MATERIALS AND METHODS

This section describes the experimental steps and methods of the
hiPSC-CM differentiation system. In addition, microscopy
techniques and strategies have been used in the image data
acquisition of live cells in a long-term culture. Notably, there
are many challenges in the acquisition of microscopic images in
long-term live-cell culture systems, and in some cases, image
quality is sacrificed to balance the pros and cons. Here, the main
technology and workflow of a cell image enhancement GAN are
shown in detail and explained how a CIEGAN improves the
sharpness of microscopic cell images. Finally, the deployment and
training process of the model are also described.

Human-Induced Pluripotent Stem Cell
Culture and Differentiation
Our experimental system is the differentiation induction process
of human pluripotent stem cells into cardiomyocytes. The main
differentiation process is shown in Figure 3, and images were
captured and saved throughout the process.

First, the iPSC-18 cell line was chosen for induction
experiments. iPSC-18 cells (Y00300, Takara) were routinely
cultured in a PGM1 medium (CELLAPY) on growth
factor–reduced Matrigel (corning)-coated 6-well plates. iPSC-
18 cells were passaged every 4 days using EDTA (Gibco).
hiPSCs were split into a CDM medium (Cauliscell Inc.) at a
ratio of 1:10 before differentiation in 24-well or 96-well plates.
When they attained ~80–90% confluence, the medium was
changed to a RPMI 1640 medium (RPMI, Gibco), 1x B27
without insulin (Gibco), and 100 U penicillin (Gibco), or
RPMI+B27 minus, for shorting. During the first 48 h, hiPSCs
were treated with CHIR99021 (CHIR, aWNT activator). From 48
to 72 h (day 3), the medium was changed to RPMI+B27 minus.
During days 4–5, RPMI+B27 minus medium was supplemented
with IWR1 (a WNT inhibitor). On day 6, IWR1 was withdrawn
instead of the RPMI+B27 minus medium. After day 7 through to
the end of the differentiation process (up to 14 days), the RPMI
1640 medium (RPMI, Gibco), 1 x B27 (Gibco), and 100 U
penicillin (Gibco) were used and refreshed every 3 days.

Immunofluorescence Staining
After the final stage of induction (stage III: day 8–day 12), the cells
were fixed in 4% paraformaldehyde (DING GUO) for 20 min at
room temperature, permeabilized, and blocked in 3% normal
donkey serum (Jackson) and 0.1% Triton X-100 for 45 min at
room temperature. Then, the cells were incubated with a cTnT
antibody (Thermo, MA5-12960, use 1:300) overnight at 4°C in
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PBS plus 0.1% Triton X-100 and 3% normal donkey serum
(Jackson). The cells were washed with PBS and then incubated
with secondary antibodies for 1 h at 37°C in a dark environment
in PBS and 1% bovine serum albumin (BSA). Nuclei were stained
with Hoechst 33342 (Yeasen) for 5 min at room temperature.

Microscopic Image Acquisition
The irresistible degradation of image quality introduced in long-
term live-cell experiments has been described previously. Errors
are introduced during the culture medium changing operation on
average every 24–48 h according to the experimental steps of the
iPSC-CM differentiation system. An elaborate microscopy
strategy must be carefully designed to reduce these errors as
much as possible. A good microscopy strategy can maximize the
image quality and speed up photographing so that higher
throughput experimental image data can be obtained within
one culture cycle. It is essential to find a balance between the
imaging resolution ratio, experimental throughput, and imaging
speed (Figure 2).

Because the imaging field of view of the microscope is limited
to the optical device itself and light path design, multiple scanning
imaging is required to expand the field of observation view, and
the whole picture is stitched after the image acquisition.
Therefore, the larger the observation field to be photographed,
the more time-consuming it will be. It will cost more time to scan
more culture chambers in a parallel multi-condition comparison
observation of cell differentiation or reprogramming studies. On
the other hand, it will further reduce the imaging speed of the
system to perform the Z-axis layer imaging if the three-
dimensional structure needs to be observed. Therefore, it is
necessary to accelerate the imaging speed of each imaging
experimental cycle to ensure the acceptable frequency of
observation. If a higher imaging speed is required, a narrower
imaging breadth is to be obtained, and vice versa. You cannot
have your cake and eat it, too.

In addition, there are many options for different focusing
strategies in an experiment. If the fixed focus or the one-time
autofocus has been chosen, the out-of-focus caused by various
emergencies in the long-term live-cell imaging process cannot be
handled. For example, culture chamber expansion and
contraction are caused by temperature or dead cell
contamination. In particular, cells are raised into multiple
layers because of cell growth. At this time, each layer of cells

has its own focus surface due to the overlapping of multiple cell
layers. Only multiple Z-axis microscopic imaging can obtain each
sharp view of the overlapping cells. Notably, different cell types
have different clonal heights, and the optimal focus surface may
span more than 50–60 μM or even 100 μM in our iPSC-CM
differentiation system.

On the other hand, if the autofocus every-time mode has been
chosen, it is almost impossible to carry on the experiment because
the focusing process will take plenty of time. Each well requires a
5 × 5 pattern mosaic tile stitching to obtain a square field of view
of approximately 6.3 mm*6.3 mm according to the 96-well plates
in this research. If only the center of each well is used as the focus
reference point, then it will take approximately 48 min for 96
focus points to perform high-speed hardware autofocus.
Moreover, if autofocus needs to be performed on each tile, the
total time spent focusing will be 25 times larger, which is overtime
to an incredible 20 h. Unfortunately, more focal points per well
are required for the 24-well plates because of the larger culture
area of each well. There is a way to combine a one-time autofocus
strategy and multiple Z-axis imaging, then select the sharpest
layer for use after imaging experiments (more images are shown
in Supplementary Materials), but it also comes at the expense of
time. These limits necessitate trade-offs between the imaging
resolution ratio, experimental throughput, and imaging speed
(Figure 2).

Here, the “Celldiscoverer 7,” a long-term live-cell culture
instrument manufactured by Carl Zeiss, is used. It has an
internal incubator to ensure regular cell growth, and the cell
culture environment is kept stable at 37 °C with 5% CO2. The
ORCA-Flash 4.0 V3 digital CMOS camera is used as HD picture
acquisition equipment. The effective resolution of the camera is
2,048*2,048 pixels. The objective is a ZEISS Plan-Apochromat ×5
objective. The objective can easily handle thin and thick vessel
bottoms made of glass or plastic, which is essential to the hiPSC-
CM differentiation system because our cells can only grow on
plastic. With a ×2 tube lens, it achieves 10x/0.35 magnification
and spatial resolution. Finally, the resolution ratio of all the
photos is 0.65 μM per pixel.

For culture chambers, 96-well and 24-well plates produced by
Falcon are used. A 2,048*2,048-pixel photo can cover a square of
approximately 1.33*1.33 mm because of the resolution ratio of
0.65 μM per pixel. Therefore, the scanning imaging method was
adopted for image acquisition, and the whole images were

FIGURE 3 | HiPSC-CM experimental system. Stage 0 is the hiPSC seeding and growth stage, and the differentiation process starts from day 0. After stage III, the
cells were fixed and stained for readout and further analysis.
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stitched after the imaging experiments. The larger the observation
field is, the more mosaic tiles will be needed.

Multiple Z-axis layers are photographed to study the multiple
Z-axis layer aggregation of the cells in the iPSC-CM
differentiation process and to find the cause of blurring, and
more importantly, to obtain the training data for the model.
Eleven, seven, and five layers at 1.5 μM, 6 μM, and 18 μm intervals
with total vertical distances of 15 μM, 36 μM, and 72 μM,
respectively, were obtained for study (the images are shown in
the Supplementary Materials).

Finally, the microscopic images were acquired by Carl Zeiss
ZEN software version V2.5, and the images were saved in the CZI
format or PNG format. A real-timemicroscopic image processing
framework has been compiled for the long-term live-cell imaging
system. It can automatically acquire and perform image
preprocessing correspondingly, including image stitching and
image segmentation. The segmented images will be sent to the
CIEGAN for image enhancement for further analysis.

Cell Image Enhancement Generative
Adversarial Networks
The deep convolutional generative adversarial network structure
(Goodfellow et al., 2014; Radford et al., 2016) is adopted as the
main body of the model to reconstruct high-quality and high-
resolution images from low-quality microscopic cell images.

The GAN architecture in our model comprises a pair of
generators and discriminators. Typically, the generator is
trained to generate fake samples from random noise vector z.
However, in our model, we take the blurred original image as the
input z to enhance it. The input image flows through a pair of our
carefully designed encoder-decoder-like structures in the
generator. The latent implicit representation of the input
image is obtained from the encoder module. The output image
is precisely reconstructed using the information provided by the
latent representation. On the other hand, the discriminator is
trained to distinguish between the real cell images and the
generated fake images. This framework can be represented as
a two-player min-max game between generator G and
discriminator D with value function V(D,G):
min
G

max
D

V(D,G) � Εx~pdata(x)[log(D(x))] + Εz~pz(z)[log(1
−D(G(z)))]. (1)

In Eq. 1, x represents the real-world high-resolution cell image
examples. Discriminator D was trained to maximize the
probability of assigning the correct label to both generated
enhanced samples from G and the real-world cell image
examples. At the same time, the generator G was trained to
minimize log(1 −D(G(z))) simultaneously, that is, let the
generated fake samples deceive the discriminator D to the
maximum extent.

In the GAN structure, only the strongest generator survives in
the game, which is very suitable for image restoration tasks. The
adversarial loss ensures a high degree of realism of the image,
making the image more natural and realistic. The following
description will use x̂ to represent x̂ � G(z), the generated

image samples for brevity. The adversarial loss of the
discriminator is formulated as Eq. 2:

LadvD � log(D(x)) + log(1 −D(x̂)). (2)
The two parts are the true labels for the ground truth samples

and the false labels for the generated samples. The optimization
objective of the adversarial loss of the discriminator is formulated
as Eq. 3:

max
D

LadvD � Εx~pdata[log(D(x)) + log(1 −D(x̂))]. (3)

Similarly, the adversarial loss of the generator and its
optimization objective are formulated as Eqs. 4, 5:

LadvG � log(D(x̂)), (4)
min
G

LadvG � Εx~pdata[log(D(x̂))]. (5)

In the GAN structure, the latent representation can capture
valuable information in the input images, and the rest of the
details and textures are handed over to network parameters for
completion and reconstruction. However, it is not enough to
determine the network parameters precisely in the generator only
by the adversarial loss of the GAN, and more penalties are
required to generate more accurate images and perform more
refined image restoration.

Inspired by image style transfer (Isola et al., 2017), single-image
super-resolution (SISR) methods (Yang et al., 2019; Ooi and
Ibrahim, 2021), and high photorealistic image synthesis (Wang
et al., 2018; 2021b), a series of image reconstruction losses are
introduced to the model, such as pixel-wise loss and perceptual loss.

Specifically, using only reconstruction loss can reconstruct sharp
images, but the generalization abilities are poor because of its pixel-
wise properties. Therefore, images generated by reconstruction loss
only may have excellent results superficially but suffer overfitting
problems: just a single pixel translation may lead to model failure.
Therefore, combining with the perceptual loss is a wise choice. The
perceptual loss enables the contents and styles of the image
reappearance. The reconstruction loss, also known as pixel-wise
loss, is denoted as Eq. 6:

Lrec � 1
BCHW

‖x − x̂‖22. (6)

In Eq. 6, B, C, H, and W represent the training batch size, the
number of channels of the image or feature map, and the height
and width of the feature map, respectively.

The perceptual loss comprises two parts: the feature loss part
and the style loss part. The feature perceptual loss is formulated as
Eq. 7 (Gatys et al., 2015; Johnson et al., 2016):

Lfeat � ∑N

i�1
1

BCHW
‖Φi(x) − Φi(x̂)‖22. (7)

In Eq. 7, Φi is the i-th layer of a pre-trained VGG-16 or VGG-19
network (Simonyan and Zisserman, 2015), and Φi(x) is the
feature map of input image x. In the actual data flow, the
shape of the feature map is the same as mentioned previously:
B × C × H × W. N is the total number of VGG network layers.
Here, we use the VGG-19 network, which is pre-trained on the
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ImageNet dataset (Deng et al., 2009). The style perceptual loss is
formulated as Eq. 8:

Lstyle � ∑N

i�1
1

BCHW
‖Grami(x) − Garmi(x̂)‖2F. (8)

In Eq. 8, the Gram matrix can be calculated using the following
formula: Gram � AAT, where A represents a matrix. Here, the
use of the squared Frobenius norm instead of the squared
Euclidean distance was used before.

Nevertheless, a total variation regularization is imported to the
model to remove noise and mosaics from images and further
reduce the spikey artifacts of the generated images. The total
variation regulator is formulated as Eq. 9:

Ltv � ∑H,W

i,j

1
BCHW

(����x̂i+1,j − x̂ij

����22 + ����x̂i,j+1 − x̂ij

����22). (9)

In Eq. 9, x̂ij represents a pixel from the generated enhanced
image. Here, the rows and columns are calculated separately by
the difference between adjacent pixels.

Finally, the loss of the CIEGAN is divided into two parts: the
discriminator loss LD and the generator loss LG, shown as Eqs. 10,
11, respectively:

LD � LadvD, (10)
LG � λrecLrec + λfeatLfeat + λstyleLstyle + λtvLtv + λadvGLadvG. (11)

The corresponding coefficients λ are added in front of different
losses in the generator loss LG to balance the weights of different
losses.

These losses and regularizations are merged together to
reconstruct high-quality images and are referred to as the
combined loss shown in Figure 4. The main structure of the
CIEGAN model and the training and testing processes are
depicted.

Model Building and Training
CIEGAN model coding mainly uses the TensorFlow deep
learning framework (Abadi et al., 2016) and TF-slim library to
build our generative adversarial nets. A cloud computing

FIGURE 4 | Network architecture and the main pipeline of the CIEGAN. The training process of the model is shown in the blue box, and the testing process of the
model is shown in the green box in the lower-left corner, where the generator is shared. Once the model is trained, it can predict a sharp image from the original imperfect
cell image.
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environment is used for model training and testing. The main
hardware configuration list is an Intel Xeon Cascade Lake
(2.5 GHz) 8-core processor, 32 GB of memory, and the CUDA
computational acceleration unit is an NVIDIA T4 (with 15 GB of
video memory).

Then, 128*128-pixel images, 256*256-pixel images, and
512*512-pixel images are successively tested on the CIEGAN
model. According to the memory size of the CUDA unit, the
network was trained using a batch size of 32, 20, and 4 images for
the 128*128-pixel, 256*256-pixel, and 512*512-pixel inputs,
respectively. Finally, the combination of 256*256-pixel image
size and a batch size of 20 is chosen for the final training
process according to the results.

The datasets used in training and testing come from two
sources: 1) the original data are obtained from multiple Z-axis
layers with an out-of-focus and sharp focus for each field of view.
2) Additional data were generated with a Gaussian blur from the
original high-definition image to simulate the out-of-focus effect.
In this way, more samples can be generated. Finally, a pair of
blurry and high-resolution images of the same field of view are
input into the model for training.

To ensure a stable and efficient training process and make the
generator and discriminator converge, a multistep training
strategy is adopted. 1) First, the generator is trained so that it
can output primary-quality images. 2) Then, the discriminator is
trained to identify fake images generated by the generator. 3)
Finally, fire up the game and start the game process between the
generator and the discriminator.

Initially, approximately 4,200 brightfield live-cell images
(256*256 pixels) of the iPSC-CM differentiation process were
used in the model test. The CIEGAN model only takes a few
hours to achieve decent results on an NVIDIA T4. The time spent
on training varies depending on the size of the training set in
other applications. However, the use of the CIEGAN model is
very fast; it can run 128 images (256*256 pixels) at a time of only a
few minutes on VIDIA T4. Most of this is the load time of the
model checkpoints. Once the model is loaded, its prediction
timeliness is comparable to real-time processing. Nevertheless,
our program provides automatic segmentation and assembly to
handle larger input images. Finally, the performance of the
CIEGAN should be similar to the same level of the CUDA
computational acceleration unit. For example, it should have
approximately the same time cost as this article on an NVIDIA
1080Ti GPU (12 GB).

RESULTS

In this section, the CIEGAN is applied to long-term live-cell
imaging of iPSC-CM differentiation. It significantly facilitates
the research works by enhancing time-lapse microscopy
images and carrying out the next analysis work. The
CIEGAN successively enhanced the brightfield image of
induced cardiomyocytes and obtained many good results.
Then, the method is extended to the enhancement of
fluorescence images, and the results are promising. Finally,
several other similar methods are compared and public

databases are used to explore the practicality and scalability
of these methods.

Brightfield Image Enhancement
First, the brightfield images in the hiPSC-CM differentiation
process are enhanced for qualitative testing and the results are
shown in Figure 5. A variety of cell morphologies are selected
to test the robustness of this method. The thickness of the
observed cells varies from flat monolayer to three-dimensional
structures.

In the results, the traditional enhancement method (TE) is
used to enhance the blurred input images for comparison. The
TE method adopts the combination of the unsharp masking
(Polesel et al., 2000; Deng, 2010) and contrast limited adaptive
histogram equalization (CLAHE) (Pisano et al., 1998; Reza,
2004). Unsharp masking and CLAHE are classical tools for
sharpness enhancement that can adaptively adjust and
enhance the sharpness and contrast of the image,
respectively. Here, the TE columns in Figure 5 show the
results of the enhancement of the input cell images.
Although the brightness and contrast of the images have
been significantly improved through the enhancement of
the traditional method, the blurring problem of the image
has not been fundamentally solved. However, our CIEGAN
method outperforms the traditional methods and benefit from
the adversarial process and perceptual loss. The results of the
CIEGAN are very close to the ground truth (GT), especially on
the reconstruction of the fine structure of cells.

On the other hand, inspired by the Real-ESRGAN (Real
Enhanced Super-Resolution Generative Adversarial Network)
(Wang et al., 2021b), an improved CIEGAN was trained by
using an enhanced version of the training sets, which we call
CIEGAN plus (CIEGANP). The difference between them is the
training inputs; the CIEGANP model is trained with enhanced
ground truth images. Here, enhanced ground truth (EGT) is the
result of image enhancement using unsharpmasking and CLAHE
methods for the GT. Interestingly, the image enhanced by the
EGT method highlights the dead cells in the image (black dots)
because the size of the dead cells or impurities is much smaller
than the cells. Figure 5 (A–D) shows that the result of the
CIEGANP is better than that of the CIEGAN in brightness
and sharpness. Moreover, the results of the CIEGANP have
less pepper noise or spikey artifacts than the enhanced ground
truth (EGT) due to the introduced variation regulator.

To further evaluate the method, we performed a package of
quantitative evaluations between traditional methods. The
normalized root mean square error (NRMSE), peak signal-to-
noise ratio (PSNR), and multi-scale structural similarity index
(MS-SSIM) (Wang et al., 2003) are used in the image similarity
assessment between the generated image and ground truth. The
NRMSE reflects the pixel difference between the two images, and
the smaller the value is, the better. The PSNR is the ratio of the
maximum possible power of a signal to the power of corrupting
noise that affects representation fidelity, which can objectively
measure the image quality; the larger the value is, the better. The
MS-SSIM is an improved version of the SSIM that is also used to
measure image quality; the closer the value is to 1, the better. In
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FIGURE 5 | Brightfield cell image enhancement results of iPSC-CM differentiation experiments. The results for different cell morphologies are shown in subfigures
(A), (B), (C), and (D). TE stands for the traditional enhancement method, CIEGAN, CIEGAN plus (CIEGANP) is our method, GT is the ground truth, and EGT is the
enhanced ground truth. (E) Boxplot comparison results of resolution, MS-SSIM, mutual information (MI) entropy, PSNR, and NRMSE (n = 1128).
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addition, mutual information (MI) is used to measure the
similarity of two images. The mutual information I between
two pictures is formulated as Eq. 12:

I(X;Y) � ∑
y∈Y

∑
x∈X

p(x, y)log( p(x, y)
p(x)p(y)). (12)

Mutual information in Eq. 12 describes the reciprocity
between objects in two images, and the larger the value is, the
higher the similarity between the two images will be.

We also used some no-reference methods for a single image
quality evaluation in addition to the full reference method. The
information gain and the estimation of the resolution ratio are
used for evaluation after image enhancement. The information
entropy H can be expressed as Eq. 13:

H(x) � E(I(x)) � − ∑
x∈X

p(x)log(p(x)). (13)

In Eq. 13, x represents the gray value of a pixel in the image, and
p(x) is the probability of occurrence of its pixel gray value. For a
normal 8-bit depth grayscale image, X contains the grayscale
from 0–255 in this image. The information entropy is a
nonnegative value, that is, it is used to describe the
uncertainty of the pixels in the picture. The larger the
information entropy is, the greater will be the amount of
information contained in the picture.

On the other hand, resolution ratio estimation is widely used
in biological image evaluation because it can indicate the actual
resolution per pixel (Qiao et al., 2021). The resolution ratio
calculation is performed by a decorrelation analysis, where the
cross-correlation coefficient is expressed as Eq. 14 (Descloux
et al., 2019):

d(r) � ∫Re{I(k)In(k)M(k, r)}dkxdky































∫|I(k)|2dkxdky∫|In(k)M(k, r)|2dkxdky
√ . (14)

In Eq. 14, k is the Fourier space coordinates, and I is the Fourier
transform function. I(k) represents the Fourier transform of the
input image, and In(k) represents the normalization of I(k).
M(k, r) is the circular mask of the radius r (Descloux et al., 2019).
The input image is passed through a series of high-pass filters and
found the local maximum of the highest frequency; the
normalized frequencies were denoted as kc. The resolution
ratio is resolution � 2p

kc
, where p is the pixel size in photo

acquisition.
The resolution ratio can measure the recognizability of

structures in biological images; the smaller the resolution ratio
value is, the greater the accuracy will be. The physical resolution
in the iPSC-CM experiments is 0.65 μMper pixel, while the actual
resolution of the ground truth images obtained may be poorer:
1.465 μM on average. The input images have a resolution of
4.305 μM on average due to out-of-focus, and our method can
enhance this to 2.488 μM by the CIEGAN on average and
1.416 μM by the CIEGANP on average. Here, the traditional
enhancement (TE) method only has a resolution of 3.546 μM on
average. The results of the boxplot comparison are shown in
Figure 5E.

An expert questionnaire is conducted to investigate whether
the resulting pictures generated by this model are suitable for
scientific research purposes. The results also show that the
CIEGANP generally performs better than the other methods
and has appropriate contrast and brightness.

DAPI Image Enhancement
The assessment of cardiomyocyte quality is required after the
third stage of differentiation (Figure 3) in the iPSC-CM
differentiation process. Therefore, fluorescent staining
experiments were performed. Here, we stained two types of
cell markers: cardiomyocyte-specific cTnT antibody and the
nucleus-specific Hoechst 33342, which are used to assess the
differentiation ratio and the cardiomyocyte quality. The
enhancement results of the cell image stained with Hoechst
33342 are shown in Figure 6.

The CIEGAN algorithm has significantly enhanced the
sharpness and contrast of the blurred cell staining images. It
even obtained a higher signal-to-noise ratio than the ground
truth. However, the performance in brightness is not perfect,
which is a common problem of this model. The reason for this is
that there are many black images with nothing in the training set.
For this reason, the model trained with sharped ground-truth
images as the CIEGAN plus has been introduced, and it
significantly improves the sharpness and brightness of
generating biological images while increasing the signal-to-
noise ratio.

CTnT Image Enhancement
The enhanced cTnT fluorescent stained images are shown in
Figure 7. The CIEGANmodel achieves excellent generalization
performance for different types of fluorescent images. The
phototoxicity can be ignored in this experiment because the
fluorescent staining method kills cells. Longer and stronger
exposures can be used for imaging. However, photobleaching
cannot be ignored because of the poor stability of dyes under
strong light irradiation. It is not possible to use a strong
intensity of light for a long time during the exposure
process. Therefore, the balance between exposure time, light
intensity, and image clarity also needs to be considered when
taking photographs of fluorescence microscopy images.
Nevertheless, it is sometimes impossible to obtain
fluorescent photographs again because of severe
photobleaching. In this case, the CIEGANP can not only
deal with various out-of-focus images but can also enhance
images with a low signal-to-noise ratio due to photobleaching.

Comparison With Other Methods
The comparison with other methods is also carried out here. The
“pix2pix” proposed by Isola et al. (2017) and the Real-ESRGAN
proposed by Wang et al. (2021b) are used for comparison. The
comparison results are shown in Figure 8.

First, the “pix2pix” model is trained on the dataset of
brightfield images in the hiPSC-CM experiments and then
achieves convergence. The results of “pix2pix” show its
excellent performance, but there are a small number of
artifacts and compression blur. On the other hand, the Real-
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ESRGAN shows its remarkable performance in real-world
photos. Here, the Real-ESRGAN can increase the input
biological image from 256*256 pixels to 1,024*1,024 pixels,
which is 16 times the quantity of pixels. Because it was
designed to perform super-resolution enhancement instead of
dealing with blur degradations in biological micrographs, the
high-definition pictures generated by the Real-ESRGAN are
biologically distorted.

DISCUSSION

To overcome challenges in long-term live-cell imaging, this
study proposes a cell image-enhanced generative adversarial
network (CIEGAN). This method can resolve various blurred
degradations in biological brightfield cell images and
significantly improve the image space resolution ratio. It
can maximize the effectiveness of the information mining of

FIGURE 6 | Enhancement results of Hoechst 33342 fluorescence microscopy images of the iPSC-CM differentiation experiment. TE stands for the traditional
enhancement method, CIEGAN and CIEGAN plus (CIEGANP) are our methods, GT is the ground truth, and EGT is the enhanced ground truth.
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the biological image. Needless to say, it is very convenient to
make the blurred images sharp again with a few steps.
Moreover, it accelerated the imaging speed because there is
no need to take multiple Z-axis layers to prevent out-of-focus
problems. It creates more time for experimental throughput,
so researchers can investigate more conditions or increase the
frequency of image acquisition. Most importantly, many

cellular dynamic response processes are rare and quick and
do not give us a second chance to recapture the study of cell
differentiation and reprogramming. Here, the CIEGAN can
give researchers a second chance to reproduce sharp biological
images in a short time. Furthermore, it can handle imaging
mishaps during cell culture: cell clumping bulging, blurring
caused by floating dead cells or the poor clarity of the medium,

FIGURE 7 | Results of cTnT fluorescence microscopy images of the iPSC-CM differentiation experiment. TE stands for the traditional enhancement method,
CIEGAN, CIEGAN plus (CIEGANP) is our method, GT is the ground truth, and EGT is the enhanced ground truth.
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out-of-focus problems caused by thermal expansion and
contraction of the culture chamber, and even the blur
caused by the beating of differentiated mature
cardiomyocytes, etc. Nevertheless, the image enhancement
process is fast, of low cost, and can easily be extended to
other applications. It is convenient for researchers to
reproduce the developmental trajectories of cell lines from
long-term time-lapse unstable image streams.

On the other hand, the blurred cTnT staining results of
myocardial cells could be enhanced by the aforementioned
method. It is necessary to photograph Z-stacks to ensure
full-field vision, as monolayer cardiomyocytes are still
stereoscopic (Christiansen et al., 2018). The CIEGAN can
obtain clear cTnT staining images from single-layer imaging
and reduce the requirements and complexity of microscopic
photography. In addition, sharp images have more cell features,
such as the sarcomere structure of cardiomyocytes, which can

indicate the state of maturity of the cardiomyocytes (Veerman
et al., 2015). This method can not only be applied to
cardiomyocytes but also to enhance the image of other cells,
such as neurons, hepatocytes, adipocytes, etc., which will obtain
more valuable information for biological-image study for
further application.

Notably, once the deep learning model was trained, the
model performed well on the same cell type of microscopic
images. It is best to retrain the model to generalize other types of
cells. The performance of the model is positively correlated with
the sharpness of the input training examples. Therefore,
researchers cannot expect this model to perform well on
poor training data sets. This model also has some common
limitations similar to other deep learning models. Because
image transformation with deep learning models is not
perfect in any way, real-world situations tend to be more
complex (Cai et al., 2019; Yang et al., 2019; Qiao et al.,

FIGURE 8 | Comparison results of brightfield image enhancement of the iPSC-CM differentiation experiment. TE stands for the traditional enhancement method,
CIEGAN, CIEGAN plus (CIEGANP) is our method, GT is the ground truth, and EGT is the enhanced ground truth. “pix2pix” is the method proposed by Isola et al. (2017)
and RESRGAN is the real-ESRGAN method proposed by Wang et al. (2021b).
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2021). The deep learning model cannot predict new or unseen
fine structures limited by the image morphology and granularity
of the training set, which is also a great challenge faced by the
industry. Therefore, improving the quality of the first-hand
images obtained by the microscope is a fundamental and
indispensable part of biological studies. On the other hand,
the method proposed in this study can improve the image
quality in long-term living cell images to its best. It is very
helpful in saving time, especially in long-term live-cell imaging
with long experimental periods. Because it is impossible to
repeat photograph processing due to the rare phenomenon of
photobleaching, another time-consuming biological experiment
must be restarted.

In further research, the CIEGAN will be improved by
introducing more advanced generator structures or more
penalty functions. U-net is becoming widely used in deep
learning processing schemes for biological image processing
(Ounkomol et al., 2018; Weigert et al., 2018; Kandel et al.,
2020; Dance, 2021; Wieslander et al., 2021). It is widely
implemented in image segmentation and classification thanks
to its structure of directly copying the feature maps of
convolutional layers to deconvolutional layers (Ronneberger
et al., 2015). We can try to introduce this network mechanism
into our model and in addition, the concept of the network
structure of GoogLeNet (Szegedy et al., 2015, 2016, 2017). The
method in this study mainly uses multiple image difference losses
as the training criteria for the GAN generator, and more losses
could be tried in the next step.

The CIEGAN method has high scalability and broad
application prospects in image enhancement scenarios, which
can help biologists observe and investigate image phenomena in
the process of cell differentiation and reprogramming more
intuitively and deeply. In turn, more efficient experimental
models can be designed, and even effective potential
treatments for related diseases can be found. We will continue
to refine the application of the CIEGAN method to more image
enhancement scenarios.
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