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Background: The ZFP36 Ring Finger Protein Like 2 (ZFP36L2) is an RNA-binding

protein that regulates gene expression at post-transcriptional level. However,

the clinical significance and prognostic value of ZFP36L2 in lower-grade glioma

(LGG) remain unclear.

Method: ZFP36L2 expression was investigated using public datasets and the

prognostic merit of ZFP36L2 with LGG patients was further evaluated. The

correlation between the genetic alteration of ZFP36L2 and its mRNA expression

was accessed via cBioPortal. Additionally, the prognostic value of the

ZFP36L2 methylation levels in LGG was evaluated by MethSurv. The

potential biological role of ZFP36L2 in LGG was identified by performing

functional analyses. We also examined the correlation between

ZFP36L2 expression and the immune infiltration. Finally, the predictive value

of ZFP36L2 to immunotherapy was assessed.

Result: ZFP36L2 was highly expressed in LGG patients and overexpressed

ZFP36L2 predicted poor clinical outcomes. We further identified ZFP36L2 as

an independent prognostic factor. The methylation level of ZFP36L2 negatively

correlated with the ZFP36L2 expression, and patients with low

ZFP36L2 methylation had worse overall survival. The results of functional

analysis indicated that ZFP36L2 was involved in multiple immune response-

related pathways in LGG. Furthermore, high expression of ZFP36L2 was

significantly and positively correlated with immune infiltration. Finally, we

found that ZFP36L2 expression was positively correlated with the immune

checkpoint PD-L1, and ZFP36L2 low expression cohort gained better benefit

from immunotherapy.

Conclusion:Our findings demonstrate that ZFP36L2 is a potential biomarker for

LGG, highlighting its potential as a therapeutic target in immunotherapy.
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1 Introduction

Glioma is one of the most common primary malignant brain

tumors, accounting for nearly 30% of all primary intracranial tumors,

and 80% of all malignant intracranial tumors (Weller et al., 2015).

Lower-grade gliomas (LGG) are classified as World Health

Organization (WHO) grades II and III types according to the

WHO system (Wesseling and Capper, 2018). Although there are a

variety of treatments either alone or in combination for LGG, effective

and reliable biomarkers that can guide specific treatment strategies are

rare. Therefore, additional biomarkers are required to provide a basis

for the diagnosis and treatment of LGG ((Wentworth et al., 2009;

Sottoriva et al., 2013; Cuddapah et al., 2014; Kwon et al., 2015)).

ZFP36L2 is part of the RNA binding protein family that regulates

cytoplasmic mRNA fate by directly binding to 3′-UTR AREs

(Carballo et al., 1998; Brooks and Blackshear, 2013; Molle et al.,

2013). Aberrant expressed ZFP36L2 has been found in most cancers.

Early studies have reported that ZFP36 possessed anti-tumor function

in ovarian, breast cancer and colorectal cancer (Jackson et al., 2006;

Carrick and Blackshear, 2007; Chou et al., 2013; Suk et al., 2017).

Conversely, Xing et al. showed that increased expressed ZFP36L2 due

to altered super-enhancer promoted the cell aggressiveness of gastric

cancer (Xing et al., 2019). Furthermore, Yonemori et al. revealed the

positive correlation between ZFP36L2 and pancreatic ductal

adenocarcinoma cells (Yonemori et al., 2017). But until now, the

precise function and prognostic value of ZFP36L2 in lower-grade

gliomas have not been elucidated.

In current study, we used integrated bioinformatic approaches to

explore the potential mechanisms of ZFP36L2 involvement in glioma

development and its potential as a prognostic biomarker for LGG.

Our results suggest that ZFP36L2 expression is significantly higher in

LGG and ZFP36L2 overexpression is a reliable independent

prognostic factor for LGG. We also determined the correlation

between ZFP36L2 expression and genetic changes. Further

functional analysis reveals that ZFP36L2 is involved in multiple

immune response-related pathways. Collectively, our study

suggests that ZFP36L2 plays an important role in the tumor

immune microenvironment and is predictive of

immunotherapeutic response.

2 Materials and methods

2.1 Datasets collection

Publicly attainable gene expression and corresponding clinical

annotations of LGG samples were collected from TCGA database,

CGGAdatabase andNCBIGEOdatabase, and a total of 1208 patients

were included for the further analysis, includingGSE16011 (N= 284),

TCGA-LGG (N = 530), CGGA-693 (N = 250) and CGGA-325 (N =

144). For pan-cancer dataset, TCGA TARGET GTEx (PANCAN,

N = 19,131, G = 60,499) was downloaded from the UCSC database

(Goldman et al., 2020), and further we extracted ZFP36L2 expression

data in each sample. The level 3HTSeq-FPKMdatawere transformed

to TPM (transcription per million reads) for the following analyses.

Patients with LGG were classified into low- and high-expression

groups according to their median expression value of ZFP36L2.

2.2 Examination of ZFP36L2 independent
prognostic value

To figure out whether ZFP36L2 is an independent biomarker

in LGG, we used univariate and multivariate analyses. Several

clinical factors were enrolled, including gender, age, grade,

location and pathology. p-value less than 0.05 was considered

as statistically significant.

2.3 Gene Set Enrichment Analysis

To reveal the underlying biological molecular changes related to

ZFP36L2 expression, we divided LGG samples into ZFP36L2-high

and -low group based on the expression of ZFP36L2. GSEA

(Subramanian et al., 2005) was performed by comparing

ZFP36L2-high cohort with -low cohort and ‘h.all.v7.4.symbols.gmt’

was selected as the background gene set. p-value <0.05 and False

Discovery Rate (FDR) < 0.25 were considered as statistically

significant.

2.4 Gene Set Variation Analysis

Gene Set Variation Analysis (GSVA) was utilized to reveal

the different biological processes between high and low

ZFP36L2 expression groups. The gene set

‘h.all.v7.4.symbols.gmt’, which was acquired from the MSigDB

database (Liberzon et al., 2015), was selected as the background

gene set.Gene Set Enrichment Analysis (GSEA).

2.5 ZFP36L2 genetic alteration and its
prognosis analysis

cBioPortal Database was used to analyze the association

between ZFP36L2 genetic alteration and its mRNA expression

(Cerami et al., 2012). MethSurv online tool was used to explore

the prognostic value of the ZFP36L2 methylation level in the

TCGA-LGG cohort (Modhukur et al., 2018).

2.6 Immune infiltration analysis

The ESTIMATE algorithm (Yoshihara et al., 2013) was used

to study the Immune Infiltration degree with distinct

ZFP36L2 expression pattern. Tumor Immune Estimation
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Resource (TIMER) (Li et al., 2017) was used to evaluate the

correlation between gene expression and the infiltration of

various types of immune cells. We analyzed the relationship

between ZFP36L2 expression and a variety of tumor-infiltrating

immune cells online, including B cells, CD8+ T cells, CD4+

T cells, macrophages, neutrophils and dendritic cells.

Furthermore, the CIBERSORT algorithm (Chen et al., 2018)

was utilized to evaluate the attribution of ZFP36L2 expression on

the immune cell infiltration of the tumor microenvironment.

2.7 Therapeutic response analyses

ImmuCellAI, a method that has the ability to predict the

response of ICI therapy through analyzing the distribution and

abundance of immune cells, especially T-cell subsets, was applied

to clarify the potential linkages between ZFP36L2 and the

therapeutic response of ICIs(Miao et al., 2020).

2.8 Western blot analysis

Total proteins were isolated using a protein extraction kit

(Beyotime, Nantong, China) according to standard protocols. The

antibodies usedwere: ZFP36L2 (1:500, 19005-1-AP, Proteintech), and

GAPDH (1:1000, 60004-1-Ig, Proteintech). Horseradish peroxidase

(HRP) -conjugated secondary antibodies (Proteintech) were used and

protein bands were visualized and detected using an enhanced

chemiluminescence system. GAPDH was used for normalization.

The experiments were performed in triplicate.

2.9 Statistical analyses

Unpaired t-test was used to compare the expression levels of

ZFP36L2 between different groups, and p < 0.05 was considered

significant. The median expression level of ZFP36L2 was used to

distinguish between the OS of patients with LGG. Survival curves

are plotted using the Kaplan-Meier method, and the OS

differences between the groups were evaluated using log-rank

test; here as well, p < 0.05 was considered significant. All

statistical analyses were performed using R (version 4.0.2),

SPSS (version 26.0) and GraphPad Prism 8.0.

3 Results

3.1 Expression levels of ZFP36L2 across
different types of tumor and normal
tissues

We initially evaluated ZFP36L2 mRNA expression levels in

different human tumor and normal tissues based on TCGA

TARGET GTEx cohort. The result showed that ZFP36L2 was

highly expressed in colorectal cancer, lower-grade gliomas,

leukemia, hepatic cancer, ovarian cancer, pancreatic cancer and

gastric cancer compared with normal tissues. However, in breast

cancer, lung cancer, melanoma and cervical cancer, the expression of

ZFP36L2 was low (Figure 1A). Interestingly, based on the Human

Protein Atlas (HPA) database (Sjöstedt et al., 2020), we found brain

tissue had the lowest ZFP36L2 expression across different types of

human tissues (Figure 1B). To further confirm the expression of

ZFP36L2 in LGG, we analyzed two credible cohorts, and found the

expression of ZFP36L2 was significant higher in LGG (Figures 1C,D).

Furtherly, increased levels of ZFP36L2 were detected by western blot

in a more malignant glioma cell line, U87, indicating ZFP36L2 might

be associated with glioma development at least in part. Overall, the

above findings indicated that ZFP36L2 was highly expressed in LGG,

and dysregulated expression of ZFP36L2 might predict poor

prognosis of LGG.

3.2 Increased ZFP36L2 expression is
correlated with poor survival

Given the sharp contrast of ZFP36L2 expression between tumor

and normal tissues, we further evaluated the prognostic role of

ZFP36L2 in LGG based on two independent cohorts, the TCGA

and CGGA databases. Kaplan-Meier survival analysis was performed

and the data showed that high expression of ZFP36L2 predicted

shorter overall survival (OS), progression-free survival and disease-

specific survival (Figures 2A–C). Consistently, the association between

ZFP36L2 and patient outcomes was also verified in CGGA cohort.

Then, we introduced Cox Regression Analysis to figure out whether

ZFP36L2 is an independent biomarker in LGG. Univariate analysis

indicated that age, grade and ZFP36L2 expression were significantly

correlated with overall survival. Furthermore, Multivariate Cox

Analysis, after adjusting additional clinical relevant factors, revealed

that ZFP36L2 expression was an independent predictor in LGG

patients (Figures 3A,B).

Hypomethylation is associated with ZFP36L2 upregulation

and predicts poorer prognosis in LGG.

In view of the significant association between

ZFP36L2 overexpression and the development of glioma, we

further explored the mechanism of ZFP36L2 upregulation in

glioma. Using cBioPortal, we found that ZFP36L2 was not

mutated in LGG and only a very small number of patients

were accompanied by the amplification of CNV of ZFP36L2

(Figures 4A,B). This suggests that genetic changes may not be the

main cause of ZFP36L2 upregulation in gliomas. We further

analyzed the relationship between ZFP36L2 methylation and its

mRNA expression, and these results showed that gene

methylation negatively related with ZFP36L2 gene expression

(R = −0.46, p < 0.001) (Figure 4C). Furthermore, the MethSurv

analyses indicated that patients with lower levels of

ZFP36L2 methylation have a poorer prognosis.
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3.3 Distinct ZFP36L2 expression pattern
characterized by biological enrichment
analysis

To explore the ZFP36L2-related biological

characteristics in LGG, Spearman’s Correlation Analysis

was used to identify ZFP36L2 co-expressed genes in four

independent datasets from all samples. Metascape (Zhou

et al., 2019) was further used to examine the biological

characteristics of ZFP36L2 co-expressed genes (Figures

5A,B). The results identified the statistically enriched

terms across all LGG datasets, including alpha-beta T cell

activation, positive regulation of immune response and

interferon gamma response. GSEA and GSVA analysis

were also performed to examine the underlying biological

molecular changes between ZFP36L2-high and -low

expression cohort. GSEA analysis shown that several

immune and tumor-related terms were enriched in

FIGURE 1
Expression levels of ZFP36L2 across different types of tumor and normal tissues. (A)The data from UCSC database showed the expression of
ZFP36L2 in different tumor tissues and corresponding normal tissues. (B) The expression of ZFP36L2 in various normal tissues. (C,D) ZFP36L2mRNA
is highly expressed in LGG tissues in TCGA dataset and CGGA dataset. (E,F) Protein level analysis of ZFP36L2 in U251 and U87 cell lines by western
blot; GAPDH was used as a loading control (n = 3).**p < 0.01, two-tailed unpaired Student’s t-test. BLCA, Bladder Urothelial Carcinoma; BRCA,
Breast invasive carcinoma; CHOL, Cholangiocarcinoma; COAD, Colon adenocarcinoma; ESCA, Esophageal carcinoma; GBM, Glioblastoma
multiforme; HNSC, Head and Neck squamous cell carcinoma; KICH, Kidney Chromophobe; KIRC, Kidney renal clear cell carcinoma; KIRP, Kidney
renal papillary cell carcinoma; LGG, Brain Lower Grade Glioma; LIHC, Liver hepatocellular carcinoma; LUAD, Lung adenocarcinoma; LUSC, Lung
squamous cell carcinoma; PAAD, Pancreatic adenocarcinoma; PRAD, Prostate adenocarcinoma; READ, Rectum adenocarcinoma; STAD, Stomach
adenocarcinoma; THCA, Thyroid carcinoma; UCEC, Uterine Corpus Endometrial Carcinoma.

Frontiers in Genetics frontiersin.org04

Zhou et al. 10.3389/fgene.2022.914219

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.914219


ZFP36L2-high expression cohort, including epithelial

mesenchymal transition, interferon alpha response and

interferon gamma response (Figures 5C–E). Furthermore,

GSVA analysis indicated that inflammatory response and

interferon gamma response were enriched in group with

ZFP36L2 high expression (Figure 5F).

3.4 Relationship between
ZFP36L2 expression and immune
infiltration in LGG

The tumor microenvironment plays an important role in

tumor outcome. Thus, we estimated the non-tumor cell

FIGURE 2
The prognostic values of ZFP36L2 expression in LGG. (A)Overall survival curve of ZFP36L2 in TCGA-LGG (n = 445). (B)Disease-specific survival
curve of ZFP36L2 in TCGA-LGG (n = 466). (C) Progression-free survival curve of ZFP36L2 in TCGA-LGG (n = 466). (D) Overall survival curve of
ZFP36L2 in CGGA-LGG.

FIGURE 3
Univariate and Multivariate Analysis. Univariate (A) and Multivariate (B) Analysis indicated that expression level of ZFP36L2 was significantly
associated with overall survival (p-value < 0.001).
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infiltration degree involved in tumor microenvironment of LGG

patients by using ESTIMATE algorithm. The results indicated

that ZFP36L2 expression was significantly positively associated

with Immune Score, Stromal Score and Estimate Score (Figures

6A–C). We further examined whether ZFP36L2 expression was

related with different types of immune cells based on the TIMER

database. The result showed that the expression of ZFP36L2 was

significantly positively correlated with the main immune cells

infiltration degree (Figure 6D). Finally, we visualized the

proportion of individual immune cells in each sample of

ZFP36L2 high- and low-group, respectively (Figure 6E).

3.5 The correlation between
ZFP36L2 expression and immunotherapy
response

Immunotherapy represented by anti-PD-L1 is widely used in

tumor treatment. We first assessed the correlation between

ZFP36L2 and PD-L1 expression, and the results showed that

ZFP36L2 was significantly positively correlated with PD-L1

(Figure 7A). The anti-PD-L1 cohort (IMvigor210) (Balar

et al., 2017) treated with atezolizumab was utilized to

investigate the relationship between ZFP36L2 and patients’

response to immunotherapy. The results showed that patients

with low ZFP36L2 expression had significantly prolonged

survival (Figure 7B). Furthermore, the proportion of patients

with better efficacy for immunotherapy in the ZFP36L2 low-

expression group was significantly higher compared to the high-

expression group (Figure 7C). Finally, we used “ImmuneCellAI”

analyses to evaluated the patient response to ICIs. The results

shown that the proportion of patients who responded to ICIs in

the ZFP36L2 low-expression group was higher than that in the

ZFP36L2 high-expression group in both TCGA and CGGA

cohort (Figures 7D,E).

4 Discussion

RNA-binding protein, a key player of post-transcriptional

regulation of gene expression, is becoming a major driving factor

of tumor initiation and progression. ZFP36L2 belongs to the zinc

finger protein family and plays an opposite role in different types

of cancer. However, the impact of ZFP36L2 on LGG clinical

prognosis remains unknown. Here, we performed a

comprehensive bioinformatic analysis to study the potential

relationship between ZFP36L2 and LGG.

In this study, we first confirmed that, compared with normal

brain tissue, ZFP36L2 expression was significantly higher in

LGG. Interestingly, the brain has the lowest expression across

different types of tissues. The strong contrast of

ZFP36L2 expression between LGG and normal brain tissue

suggests that it may play a non-negligible role in the

development of LGG. Thus, we further examined whether

FIGURE 4
Genetic alterations of ZFP36L2 expression in low-grade gliomas. (A)Mutation rate of ZFP36L2 in LGGs. (B) Putative copy number alterations of
ZFP36L2 in LGGs. (C) The correlation between ZFP36L2 methylation and its expression level. (D) The Kaplan-Meier survival of the methylation of
SEC61G in LGG.
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ZFP36L2 was an independent prognostic factor in LGG patients.

Various clinical factors were included to perform univariate and

multivariate regression analyses, such as age, gender, stage,

location and pathology, and the results showed that

ZFP36L2 was significantly associated with prognosis after

excluding these clinical factors, suggesting that ZFP36L2 was a

reliable biomarker of LGG prognosis.

Considering the strong prognostic value of

ZFP36L2 overexpression, we further explored the

mechanism of ZFP36L2 upregulation in glioma. DNA

methylation and CNVs are two widely known reasons

contributing to increased gene expression. Genetic

alteration is a hallmark of cancers. Xing et al. used whole-

exome sequencing to identify a novel hotspot involving a

super-enhancer of ZFP36L2, which drives

ZFP36L2 overexpression in gastric cancer (Xing et al.,

2019). Our results suggest that the ZFP36L2 expression in

DNA amplification group is elevated, but only a very small

number of patients exhibited this (Figure 4B). Genetic

alteration may not be a major driver of

FIGURE 5
Distinct ZPF36L2 expression pattern characterized by biological enrichment analysis. (A) Functional enrichment analysis of ZFP36L2 co-
expression genes based on different LGG datasets. (B) Network of enriched terms of ZFP36L2 co-expression genes. The enrichment networks
colored by cluster IDs. Each color represents a class of clusters, and each point represents a term. The immune-related terms are selected in the red
dashed box. (C–E) The GSEA method was used to explore the biological functions that were enriched in ZFP36L2 high expression patients.
(F) Heatmap shows the GSVA score of representative hallmark pathways in distinct ZFP36L2 expression patterns.
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ZFP36L2 upregulation. DNA methylation is an epigenetic

regulatory mechanism widely present in all types of tumors,

and methylation of promoters leads to gene silencing. Our

results demonstrated that ZFP36L2 overexpression

significantly associated with ZFP36L2 hypomethylation.

More importantly, ZFP36L2 hypomethylation had a worse

prognosis, consistent with the prognostic value of its mRNA

overexpression. Overall, hypomethylation might be the main

regulatory mechanism of ZFP36L2 overexpression.

To gain a deeper understanding of the biological

processes involved in the development of LGG related to

ZFP36L2 expression, we used ZFP36L2 co-expressed genes

to perform functional enrichment analysis. Our results

suggested that ZFP36L2-related genes were mainly

involved in immune response, immune cell activation and

cytokine production. Furthermore, GSEA and GSVA

enrichment analyses were performed to finger out the

biological changes between ZFP36L2 high-expression and

low-expression groups. The data revealed that

ZFP36L2 high-expression cohort was significantly

enriched in interferon gamma response, TGF-β, epithelial
mesenchymal transition, and allograft rejection. To our

knowledge, dysregulated immune response and cytokine

production play an important role in tumor invasion,

FIGURE 6
Relationship between ZFP36L2 expression and immune infiltration in LGG. (A–C) ZFP36L2 expression positively correlated with immune score,
stromal score and ESTIMATE score in LGG. (D) ZFP36L2 expression is significantly positively related to infiltrating levels of B cells, CD8+ T cells, CD4+

T cells, macrophages, neutrophils, and dendritic cells in LGG. (E) The heatmap visualized the percentage abundance of tumor-infiltrating immune
cells in each sample.
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recurrence and metastasis (Fridman et al., 2012; Gajewski

et al., 2013; Tanaka and Sakaguchi, 2016; Fang et al., 2019).

These findings indicated that ZFP36L2 might be involved in

the development of LGG by regulating the tumor immune

microenvironment.

The tumor microenvironment is composed of immune

cells, stromal cells and extracellular components, which play

an important role in the initiation, development and

metastasis of tumors (Hanahan and Coussens, 2012; Quail

and Joyce, 2013). Given that ZFP36L2 is involved in multiple

immune-related pathways, we further evaluated its role in

the tumor immune microenvironment. ESTIMATE

algorithm and TIMER database were utilized to evaluate

the correlation between ZFP36L2 expression and immune

infiltration level in the tumor microenvironment of LGG

samples. The results showed that ZFP36L2 was significantly

positively correlated with the three immune scores and

multiple types of immune cells, while immune cells had

been demonstrated being significantly related to the

progression of glioma in previous studies (Patel et al.,

2014; Wang et al., 2018). Collectively, our findings

provide new insights into the relationship between the

tumor immune microenvironment and glioma.

Immunotherapy, represented by targeting immune

checkpoints, has attracted great attention recently.

However, the efficacy of immunotherapy for some patients

with LGG did not meet expectations (Xu et al., 2020).

Considering the strong correlation between

ZFP36L2 expression and immune response and tumor

microenvironment, we further evaluated its relationship

with immunotherapy response. Interestingly, expression of

ZFP36L2 was significantly positively correlated with that of

PD-L1, and in an anti-PD-L1 cohort, patients with low

ZFP36L2 expression had better clinical outcomes.

Furthermore, “ImmuneCellAI” analyses were performed to

evaluated the patient response to ICIs, and the results

indicated that ZFP36L2 low-expression group benefited

more. These results suggest that ZFP36L2 could be

recognized as a predictive biomarker for response to

immunotherapy.

FIGURE 7
The correlation between ZFP36L2 expression and immunotherapy response. (A) The positively expressing correlation between ZFP36L2 and
PD-L1. (B)Overall survival curve of ZFP36L2 high- and low-expression groups in anti-PD-L1 cohort (IMvigor210) treated with atezolizumab. (C) The
proportion of patients with response to PD-L1 blockade immunotherapy in low or high ZFP36L2 expression groups. SD, stable disease; PD,
progressive disease; CR, complete response; PR, partial response. Responser/Nonresponser: 8.3%/91.7% in the ZFP36L2 high-expression
groups and 33%/67% in the ZFP36L2 low-expression groups. (D) The predictive results of “ImmuneCellAI” in TCGA cohort. Response/Nonresponse:
8/264 in the ZFP36L2 high-expression groups and 17/265 in the ZFP36L2 low-expression groups. (E) The predictive results of “ImmuneCellAI” in
CGGA_693 cohort. Response/Nonresponse: 5/141 in the ZFP36L2 high-expression groups and 11/141 in the ZFP36L2 low-expression groups.
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Although this study improved our understanding of

ZFP36L2 in LGG, there were some limitations. First, the

prognostic value of ZFP36L2 for different subtypes of LGG

patients is unknown. Based on WHO 2016 Classification of

gliomas, LGG was classified into three subtypes according to

IDH mutation and 1p/19q co-deletion status. The prognostic

value of ZFP36L2 overexpression in different subtypes of

LGG needs further evaluation. Second, the detailed

mechanisms of involved in glioma development is not

clear. While we found that ZFP36L2 is positively

correlated with immune cell infiltration and a better

response is presented in ZFP36L2 low-expression group,

the conclusion is based only on bioinformatics analysis. In

vivo and in vitro experiments are needed to verify this

conclusion. Thus, we will continue to explore the

mechanism of ZFP36L2 involved in glioma development

in a future study.

In this study, our finding indicated that ZFP36L2 was

significantly increased in LGG and patients with higher

ZFP36L2 expression had poorer overall survival. We also

determined the correlation between ZFP36L2 expression and

genetic changes. In addition, ZFP36L2 mediates multiple

immune response pathways and is involved in the

regulation of the tumor microenvironment. Taken

together, the comprehensive assessment of the role of

ZFP36L2 in LGG will help to enhance our understanding

of the development of LGG and provide guidance for

immunotherapy with LGG patients.
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