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Dysregulation of signaling pathways plays an essential role in cancer. However,

there is not a comprehensive understanding on how oncogenic signaling

pathways affect the occurrence and development with a common

molecular mechanism of pan-cancer. Here, we investigated the oncogenic

signaling pathway dysregulation by using multi-omics data on patients from

TCGA from a pan-cancer perspective to identify commonalities across different

cancer types. First, the pathway dysregulation profile was constructed by

integrating typical oncogenic signaling pathways and the gene expression of

TCGA samples, and four molecular subtypes with significant phenotypic and

clinical differences induced by different oncogenic signaling pathways were

identified: TGF-β+ subtype; cell cycle, MYC, and NF2− subtype; cell cycle and

TP53+ subtype; and TGF-β and TP53− subtype. Patients in the TGF-β+ subtype

have the best prognosis; meanwhile, the TGF-β+ subtype is associated with

hypomethylation. Moreover, there is a higher level of immune cell infiltration

but a slightly worse survival prognosis in the cell cycle, MYC, and NF2− subtype

patients due to the effect of T-cell dysfunction. Then, the prognosis and

subtype classifiers constructed by differential genes on a multi-omics level

show great performance, indicating that these genes can be considered as

biomarkers with potential therapeutic and prognostic significance for cancers.

In summary, our study identified four oncogenic signaling pathway–driven

patterns presented as molecular subtypes and their related potential

prognostic biomarkers by integrating multiple omics data. Our discovery

provides a perspective for understanding the role of oncogenic signaling

pathways in pan-cancer.
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Introduction

A large number of studies have shown that the oncogenic

signaling pathways play important roles in cancers, and multi-

omics changes that occurred in these signaling pathways are

identified as the common biomarkers in cancers. Therefore, the

identification of oncogenic signaling pathways has become a key

step in cancer drug screening and cancer treatment. Although the

roles of individual pathways in the development of single cancer

have been successively discovered and demonstrated, it is

interesting to study how these signaling pathways affect

cancer development and progression from a pan-cancer

perspective.

There are many studies on oncogenic signaling pathways and

the genes involved (Joerger and Fersht, 2016; Taciak et al., 2018;

Calses et al., 2019). It has been reported that the RTK-RAS

pathway, PI3K/Akt signaling pathway, TP53 signaling pathway,

APC, and other signaling pathways often undergo genetic

changes in cancer. Then, the molecular mechanism of these

pathways and the role of each gene in these pathways and the

relationship between these pathways and the occurrence and

development of cancer were integrated (Vogelstein and Kinzler,

2004). Francisco used multi-omics data to analyze the

mechanisms and patterns of 10 pathways, including cell cycle,

Hippo, MYC, NOTCH, Nrf2, PI3Ki-Akt, RTK-RAS, TGF-β, p53,
and β-catenin/WNT, and identified the interaction of pathways

(Sanchez-Vega et al., 2018). The study has proven that the main

functions of the Hippo pathway include restriction of tissue

growth and regulation of cell proliferation, differentiation, and

migration in developing organs. In addition, the dysregulation of

the Hippo pathway can also lead to abnormal cell growth and the

occurrence of tumors (Meng et al., 2016). Giachino et al. (2015)

explored the role of the NOTCH signaling pathway in promoting

and suppressing cancer and analyzed the molecular mechanisms

of the NOTCH signaling pathway in hematological cancers and

solid tumors, which have also been linked to therapeutic

strategies targeting the NOTCH pathway in human cancer

treatment.

In recent years, the research on subtype analysis of single

cancer based on pathways has been continuously developed (Bild

et al., 2006; Liu et al., 2015; Kaunitz et al., 2017; Thanki et al.,

2017). Bidkhori et al. (2018) classified hepatocellular carcinoma

(HCC) patients into three subtypes with significant differences

based on graph and control theory concepts to the topology of

genome-scale metabolic networks and identified drug targets for

effective treatment of HCC patients.

Gong et al. (2021) discovered three subtypes of triple-

negative breast cancer (TNBC) with significant prognosis,

molecular subtype distribution, and genomic alterations by

investigating metabolic pathways, which demonstrated the

metabolic heterogeneity of TNBC and made it possible to

develop personalized treatments for unique tumor metabolism

characteristics. Park et al. (2019) identified glioblastoma

multiforme (GBM) subtypes with prognostic core genes,

prognostic chromosomal aberrations, and mutations. The aim

was to verify that the failure of targeted therapy in patients with

glioblastoma is associated with high heterogeneity and activation

of multiple oncogenic pathways. It is believed that subtype-

specific alterations can be used as new prognostic biomarkers

and therapeutic targets for GBM. Moreover, although the pan-

cancer analysis can open the doors to identification of the

commonalities in cancer and offer insights that could expand

further discoveries and cancer treatments, there are few studies

focused on the dysregulated patterns of multiple signaling

pathways systematically in pan-cancer, and the cooperative

mode of oncogenic signaling pathways is not clear.

Here, we proposed a method to identify different roles of

oncogenic signaling pathways from the perspective of pan-

cancer. The four molecular subtypes named by different

signaling pathways were identified based on the gene

expression of TCGA data, which shows distinct phenotypic

and clinical features. In addition, combining multi-omics data,

we studied the differences in differentially expressed genes, copy

number variations, chromatin accessibility, DNA methylation

levels, and tumor microenvironment of the four subtypes, and

identified differential genes of each omics which were used to

construct the prognostic models with significant results, such as

WNT7A, CNTN6, and CDR1. These differential signatures were

characterized as biomarkers with potential therapeutic and

prognostic significance for cancer. In conclusion, the research

helps to further understand the role of oncogenic signaling

pathways in pan-cancer.

Results

Four pathway-driven subtypes were
identified based on oncogenic signaling
pathways

In order to investigate the mechanism of 10 pathways in

cancers (Ciriello et al., 2013; Imperial et al., 2019; Paczkowska

et al., 2020), we collected 333 genes of 10 canonical oncogenic

signaling pathways confirmed in the previous research. Based on

those gene expression levels for 7,518 patients (TCGA training

set, Supplementary Table S1), we first characterized the

oncogenic signaling pathway dysregulation landscape by

calculating the enrichment scores of 10 pathways for each

patient with the GSVA package in R (Supplementary Figure

S1D) (Hanzelmann et al., 2013), and then using the consensus

cluster analysis (Wilkerson and Hayes, 2010; Gan et al., 2018), we

identified distinct clusters with the oncogenic signaling pathway

dysregulation landscape. To get the more robust clustering

results, the consistency of the clustering results was evaluated

between different cluster methods and measurements. There

were about 81% of the clustering results whose consistency
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rate reached 0.7 in all the cluster results. It showed that the

clustering results were consistent under different clustering

methods and measurements, which suggests that there are

significant different subtype patient groups in pan-cancer

(Figure 1A). Then, the consensus clustering results when k =

2–8 were discussed (Supplementary Figure S1). The variation

trend of the area under cumulative density function curve (CDF)

is shown in Supplementary Figure S1B, and the result at k = 4 was

the inflection point in all outcomes. Under k = 4, we observed the

clarity of classification of clustering results among 112 clustering

results, and then, the result with the measurement of the kmdist-

Spearman method was considered as the final result of clustering

(Figure 1B), which indicates that four robust consensus

molecular subtypes driven by specific oncogenic signaling

pathways were identified. The heat map shows the enrichment

score profile of 10 pathways for four molecular subtypes in

Figure 1C; it exhibits that the TGF-β pathway is upregulated

in subtype 1, then cell cycle, MYC and NF2 pathways are

downregulated in subtype 2, while subtype 3 is basically

opposite to subtype 2, and the TGF-β and TP53 pathways are

downregulated in subtype 4. Therefore, we named the four

molecular subtypes based on the characteristics of being

driven by the pathways as the TGF-β+ subtype (subtype 1);

cell cycle, MYC, and NF2− subtype (subtype 2); cell cycle and

TP53 + subtype (subtype 3); and TGF-β and TP53− subtype

(subtype 4), respectively.

Four subtypes based on oncogenic
signaling pathways show phenotypic and
clinical heterogeneity

To explore if there is the phenotypic and clinical

heterogeneity among those oncogenic signaling

pathway–driven molecular subtypes, we first continued to

compare the survival differences among patients in various

molecular subtypes using the Kaplan–Meier curve and the

log-rank test (Xie and Liu, 2005). It represents significant

differences in overall survival and disease-free survival time

among the patients of the four subtypes. The TGF-β+ subtype

had significantly better overall survival (OS) and disease-free

survival (DFS) (OS: Log rank, p < 0.0001, Figure 2A; DFS: Log

FIGURE 1
(A) Coincidence rate of the clustering results under different clustering methods and measures. (B) Consistent clustering result by the kmdist-
Spearman method to cluster the TCGA training set into four classes. (C) Dot plot of the enrichment scores for 10 pathways in four subtypes.
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rank, p < 0.0001, Figure 2B) than other subtypes. To investigate

whether these results hold for a specific cancer type or were only

valid to “pan-cancer”, we ran an analysis of the differences in

survival curves across the four subtypes within each cancer type.

It showed that the results of the survival curves remained similar

when compiling everything into pan-cancer; there were

differences only in CHOL, COAD, and THCA, but it was

considered due to the small sample size of the subtype

(Supplementary Figure S3).

A Cox hazard regression analysis was used to compare the

hazard ratio of OS and DFS among the four subtypes. Using the

TGF-β+ subtype as the reference group, we found that the other

three subtypes were significantly at a high risk for both OS and

DFS, suggesting that there was a relationship between poor

prognosis and the molecular subtypes driven by oncogenic

signaling pathways (Figures 2C,D). The results showed that

the hazard ratio of the TGF-β+ subtype was different from

the other three subtypes, indicating that the subtype

characteristics were independent predictors of patient survival.

The multiple Cox regression analysis also revealed that the

pathological stage was a risk factor for poor prognosis

(Supplementary Figures S2A,C). Then, we investigated if age

and sex contributed to the different hazard ratios among these

subtypes and found out that age > 60 was an important high risk

FIGURE 2
(A,B) Kaplan–Meier curves of the overall survival (OS) and disease-free survival (DFS) among the four subtypes in TCGA training cohort. (C,D)
Forest plot of single Cox regression analysis on subtypes for OS and DFS. The hazard ratios are shown with 95% confidence intervals. (E) Percentage
heat map shows the distribution of 32 cancers in four subtypes (left), and the dotted heat map and histogram show the distribution of 32 cancers in
the recurrence andmetastasis state (right). (F)Distribution of the four subtypes in the pathological stage. (G)Distribution of the four subtypes in
the recurrence and metastasis state. (H) Sensitivity to drugs of four subtypes’ patients. (None: sensitive; relapse, transfer, both: insensitive).
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factor for survival both in OS and DFS, but the sex information

contributed to the hazard ratio only in OS (Supplementary

Figures S2B,D).

Next, we analyzed the distribution of cancer types among

patients to find out whether a cancer type is specifically enriched

in these subtypes. Cancers in the kidney with relatively better

prognosis are mainly enriched in the TGF-β+ subtype, intestinal

cancers are predominant in cell cycle and TP53 + subtype-

specific, and head and neck cancers are enriched in TGF-β
and TP53− subtype. This demonstrated that the distribution

of cancer types in the molecular subtypes may be tendentious, so

we categorized cancer types by molecular subtypes to understand

whether cancer type specific to the same subtype tend to be

driven by the same pathways, leading to similar mechanisms of

cancer pathogenesis. The TGF-β+ subtype was significantly

enriched in CHOL, PCPG, KICH, THCA, KIRC, and KIRP;

THE cell cycle, MYC, and NF2− subtype was significantly

enriched in ESCA, TGCT, LUAD, PAAD and PRAD, and the

cell cycle the TP53 + subtype was significantly enriched in READ,

CESC, COAD, LIHC, SKCM, DLBC, THYM, ACC, and UVM;

the TGF-β and TP53− subtype was significantly enriched in

HNSC, LGG, and OV. Nonetheless, the other nine mixed cancer

types of BLCA, BRCA, GBM, LUSC, MESO, SARC, STAD,

UCEC, and UCS were classified as mixed carcinomas, and

there was no significant difference enrichment among those

subtypes (Figure 2E). Furthermore, we continued to check if

the patients of cancer types enriched in the subtypes with poor

prognosis tend to metastasis or recurrence. The proportion of

recurrence and metastasis of the patients in CHOL, PCPG,

KICH, THCA, KIRC, and KIRP enriched in the TGF-β+
subtype were significantly lower than those of other cancers,

and the recurrence rate of the cell cycle, MYC and NF2 subtype-

specific patients was significantly higher than that of metastasis.

Most patients with cell cycle and TP53+ subtype-specific cancers

were more likely to develop metastases than local recurrence.

There was no significant difference in recurrence and metastasis

of mixed carcinomas. In other words, four oncogenic

pathway–related subtypes have tissue specificity and are

closely related to the recurrence and metastasis.

We further explored the reasons for differences in patient

survival and analyzed the pathological stage distribution of

patients among the four subtypes. From the TGF-β+ subtype

to TGF-β and TP53− subtype, the proportion of patients in the

early stage gradually decreased and the proportion in the late

stage gradually increased, which was consistent with the survival

analysis, indicating that the four subtypes’ patients have

significant differences in pathological stages (Figure 2F). At

the same time, the patients of the four subtypes also showed

differences in recurrence and metastasis rates. The patients of the

TGF-β+ subtype with the best prognosis owned the lowest rate of

recurrence and metastasis, while the patients of the TGF-β and

TP53− subtype with the worst prognosis owned a lower

metastasis rate than the patients of the cell cycle, MYC, and

NF2− subtype and cell cycle and TP53 + subtype, but it had a

significantly higher recurrence rate (Figure 2G), indicating that

those subtypes’ patients owned specific pathogenic molecular

mechanisms which determined the postoperative pathological

stage of the patient. Then, we used Fisher’s test to analyze the

status of recurrence and metastasis of patients after drug

treatment in four subtypes. First, we screened out the drugs

which were used by more than 50 patients for analysis

(Supplementary Figure S4A). The patients of the TGF-β+
subtype showed the smallest proportion of recurrence or

metastasis after drug treatment. Temozolomide was

significantly less sensitive in cell cycle and TP53 + subtype

patients (p < 0.05), and paclitaxel was significantly less

responsive in TGF-β and TP53− subtype patients (Figure 2H;

Supplementary Figure S4B). It means that temozolomide may be

related to the upregulation of the activity of the cell cycle and the

TP53 pathway and is also effective for the diseases caused by the

dysregulation of these two pathways.

Collectively, the patients of four subtypes based on oncogenic

signaling pathways had significant differences in clinical

phenotypes, such as survival time, tissue specificity, tumor

stage, recurrence and metastasis rates, and drug response. The

patients with the upregulated TGF-β pathway had the best

prognosis, while patients with downregulated TGF-β and

TP53 pathways had the worst prognosis. These data imply

that the pathogenesis of cancer is strongly correlated with the

molecular mechanisms of oncogenic signaling pathways, and the

dysregulation of pathways might be the driving factor for cancer

development.

Novel subtype and prognostic classifiers
were constructed based on the genes
related to prognosis among subtypes

To figure out whether transcriptional changes among

subtypes are related to the dysregulation of specific signaling

pathways, we estimated the gene expression difference in these

pathways in TCGA training cohort. According to 333 cancer-

related pathway gene expressions, 65 differentially expressed

genes between each subtype and other subtypes were

identified (p < 0.05 and fold change | log2FC | > 1,

Supplementary Table S2) (Robinson et al., 2010). Most genes

showed high expression in the cell cycle and TP53 + subtype and

the TGF-β and TP53− subtype, and just a few genes showed high

expression in the TGF-β+ subtype and the cell cycle, MYC, and

NF2− subtype (Figure 3A). Thereafter, by mapping differentially

expressed genes into these oncogenic signaling pathways, some

subtype-specific key sub-pathways with consistent

transcriptional change were identified (Figure 3B;

Supplementary Figures S5–S7). For example, NF2 and

WWC1 were highly expressed in the TGF-β+ subtype, which

promotes the high expressions of LATS1, SAV1, and other genes
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in the TGF-β+ subtype, whereas CRB1 and CRB2 were highly

expressed in the TGF-β and TP53− subtype, inhibiting the YAP1

gene, making it lowly expressed in the TGF-β and TP53− subtype

in the HIPPO pathway. This result showed that the different

driver genes might lead to the different pathway changes in the

TGF-β+ subtype and the TGF-β and TP53− subtype, which

suggests that the oncogenic signaling pathways own subtype-

specific driving sub-pathways, resulting in different states of

dysregulation of downstream pathways.

Furthermore, we explored whether these 65 differentially

expressed genes would predict a worse prognosis in pan-cancer.

A total of 56 prognostic-related genes were identified by using a

single Cox regression analysis, andmultivariate Cox proportional

hazard models revealed 30 genes which can predict worse

prognosis (Figure 3C). These 30 genes were enriched into

WNT, RTK-RAS, NOTCH, HIPPO, and cell cycle pathways

(Figure 3D). In particular, there are 10 differentially expressed

genes associated with prognosis enriched in the WNT pathway,

which might be part of the reason for the upregulation of the

WNT pathway activity in the cell cycle, MYC, and NF2− subtype

and TGF-β and TP53− subtype. Collectively, our results

demonstrate that there are strong relationships between

pathway dysregulation and the subtypes. We further explored

to construct a subtype and prognostic classifiers, based on the

expression profiles of these 30 genes, by using the support vector

machine (SVM) method. Then, TCGA test cohort was used to

verify these 30 genes as biomarkers for predicting subtype and

prognosis, and the classifiers’ results in survival were also very

significant (Figures 3E,F, p < 0.0001). At the same time,

GSE40967 and GSE37642 data on the GPL570 platform from

the Gene Expression Omnibus (GEO) database were downloaded

as validating (external verification) data sets. Then, SVM was

used to build the classifiers, and the classification result had

significant survival differences between our prognostic

FIGURE 3
(A)Heat map of the log2FC value of differentially expressed genes in four subtypes. (FC, fold change, the ratio of the average mRNA expression
for each cancer pathway–related subtype to the average mRNA expression for samples not of the aforementione subtype. Red, upregulated; blue,
downregulated.). (B) Interaction of genes in the HIPPO pathway and the FC value of the four subtypes of the gene. (C) Forest plot of multivariate Cox
regression analysis for 30 genes related to prognosis. The hazard ratios are shown with 95% confidence intervals (***p < 0.001; **p < 0.01; *p <
0.05; and p < 0.1). (D) Pathways in which 30 differentially expressed genes are enriched. (E) KM survival curves of the subtype classifier constructed
using samples from TCGA test cohort by the SVM method. (F) KM survival curves of the prognosis classifier constructed using samples from TCGA
test cohort by the SVM method. (G) KM survival curves of the subtype classifier constructed using GSE40967 by the SVM method. (H) KM survival
curves of the prognosis classifier constructed using GSE37642 by the SVM method.
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subgroups (Figure 3H). The Kaplan–Meier curve of

GSE40967 data also revealed distinct prognostic outcomes

among the predicted subtypes, although the difference was not

statistically significant (p = 0.08, Figure 3G), possibly due to the

single cancer type included in the data.

These results suggest that these 30 differentially expressed

genes associated with prognosis among subtypes could be

recognized as key genes in oncogenic signaling pathways and

biomarkers for identifying molecular subtypes and risk groups,

and their expression changes can also affect the expression of

upstream and downstream genes through the relationship of

promotion or inhibition between genes, leading to dysregulation

of oncogenic signaling pathways.

Oncogenic signaling pathway–based
subtypes show distinct genomic alteration
features

Genomic alterations can drive oncogenic signaling pathway

reprogramming in cancers. We further explored to compare

genomic alterations among the four subtypes with the copy

number variation data on 22,445 genes obtained from UCSC

Xena for TCGA pan-cancer patients. Genome-wide copy

number variation revealed that the TGF-β and TP53− subtype

had a significantly higher copy number variation, especially on

chromosomes 3, 4, and 19, as shown in Figure 4A. We further

examined the detailed characterization of copy number variation

FIGURE 4
(A) Somatic CNA frequency of individual genes in each subtype plotted along the chromosomes. (B) Comparisons of somatic CNA between
subtypes with −log10 FDR plotted along the chromosomes (Fisher’s exact test). (C) Interaction of the enriched pathways. The size represents the
number of genes, and the color represents the p-value. (D) Differences in copy number variation across the four subtypes of the four copy number
variation states of the seven genes and their relationship with the prognosis. (E) Changes in the number of amplified and deleted samples of
WNT7A in the four subtypes; the expression of WNT7A in the four subtypes (left) and the difference in survival between the two categories (right).
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across the subtypes. Between any two subtypes, the differences of

all genes in copy number amplification and deletion (−log10 FDR

value) were calculated using Fisher’s exact test (Figure 4B). There

were significant difference peaks on chromosomes 3, 5, and

6 between the TGF-β+ subtype and the cell cycle and TP53+

subtype; on chromosomes 3, 5, 7, and 19 chromosomes between

the TGF-β+ subtype and the TGF-β and TP53− subtype; and on

chromosomes 12 and 19 between the cell cycle and TP53 +

subtype and the TGF-β and TP53− subtype. Combined with

pathway-related genes, especially in chromosome 3, we found

that there were seven genes, namely, FAT2, CDK2, CDKN2A,

WNT7A, TCF7, FGFR4, and ROS1(−log10 FDR>2), which had

significant differences in the copy number between subtypes.

To further explore the biological functions of these seven

genes, we performed a pathway enrichment analysis for these

genes. In addition to affecting oncogenic pathways, we further

examined the biological functions of these genes to see if they

affect cancer development from other perspectives. The results

showed that the seven genes were also enriched in the pathways,

including Cushing syndrome, and the pathways of cancer and

kinase activity (Figure 4C). These genes were indeed involved in

cancer development as a multifunctional model, and this result

suggests that the genomic alterations of these genes may drive the

dysregulation of oncogenic signaling pathways. Then, the copy

number variation states of the seven genes which had different

copy number changes between subtypes were disassembled to

analyze. We found that FAT2-amp, FGFR4-amp, TCF7-amp,

and WNT7A-delete showed upregulation in the TGF-β+
subtype, and most other genes showed upregulation in the

other three subtypes. Multivariate Cox proportional hazard

models also revealed the prognosis-related states in non-

diploid normal copy states of the seven genes (Figure 4D).

The amplification frequency of WNT7A gradually increased

from the TGF-β+ subtype to the TGF-β and TP53− subtype,

and the frequency of WNT7A deletion gradually decreased from

the TGF-β+ subtype to the TGF-β and TP53− subtype. The most

deleted changes and the least amplification changes of WNT7A

in copy number variation were observed in the TGF-β+ subtype,

which was similar to the WNT7A gene expression trend among

the four subtypes. It shows that the copy number variation

change of WNT7A affects its expression on the transcriptome

and thereby affects the function of the WNT pathway, and this

FIGURE 5
(A) Five enhancers visualized using IGV. (B) ATAC accessibility (upper triangle) and expression (lower triangle) heat map of five enhancer-related
genes in four subtypes. (C) Pathways in which five enhancers are enriched. (D) Multi-Cox risk regression model of five enhancers. (E) KM survival
curve for classifying the high and low risks of TCGA validation set samples was constructed by five enhancers as features. (F) KM survival curve of
TCGA validation set samples divided into four subtypes by the classifier was constructed with five enhancers as features.
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result suggests that the copy number variation of WNT7A could

be a driver factor for WNT pathway dysregulation. Then, we

continued to select the four copy number variation states of

WNT7A as biomarkers for diagnosis. Notably, the survival of

patients with homozygous deletion of WNT7A was significantly

better than that of patients with normal diploid copies of

WNT7A (p = 0.0083, Figure 4E), which validates the efficacy

of WNT7A as a prognostic marker.

Five subtype-specific enhancers were
identified by a chromatin accessibility
analysis

The integration of transcriptome data and ATAC-seq could

determine a great deal of putative distal enhancers (Corces et al.,

2018). We continued to identify subtype-specific transcriptional

regulators that influence patterns of oncogenic pathway

dysregulation at the level of chromatin accessibility by

integrating ATAC-seq data with RNA-seq data for pan-cancer

cases in TCGA. A total of 2,579 differential ATAC peaks between

any subtypes were identified, and we found that there were five

enhancers showing subtype-specific activity in the oncogenic

signaling pathways such as CNTN6 in the NOTCH pathway and

MLXIPL in the MYC pathway. Furthermore, a location analysis

of these peaks showed that these subtype-specific enhancers’

chromosome locations were distinct. For example,

FZD1_m4 and CNTN6_m2 were located in the distal

upstream of the related genes, FHL1_p3 and NF2_p2 were

located in the inner gene, and MLXIPL_m4 was located in the

distal downstream of related genes (Figure 5A). We further

investigated whether these enhancers located in different

chromosomal regions could lead to its expression change.

Subsequently, expression of these subtype-specific enhancer-

related genes was analyzed, and it was found that the changes

in chromosome accessibility and gene expression showed a

consistent trend (Figure 5B). For example, MLXIPL displayed

high chromatin accessibility and gene expression level in the cell

cycle and TP53 + subtype, whereas it showed the opposite trend

in the cell cycle, MYC, and NF2− subtype. This result suggests

that these subtypes own their specific transcriptional regulators,

which drive oncogenic signaling pathway dysregulation by

distinct molecular mechanisms.

To understand the molecular function of the enhancers, we

performed the functional enrichment analysis and found that the

five genes were enriched in several other pathways, including cell

junction and anchoring junction pathways (Figure 5C). The

junctions of these pathways might affect cancer cell adhesion

and further affect the possibility of metastasis. We further

explored whether these subtype-specific enhancers could be

used to predict a worse OS and construct subtype classifiers.

NF2, CNTN6, and FZD1 presented very low risk. It suggests that

the genes ofNF2, CNTN6, and FZD1might be low risk factors for

poor prognosis (Figure 5D). Using these five genes as features, we

constructed subtype and prognostic classifiers using the random

forest method. The patients were divided into high- and low-risk

groups with significant survival differences according to the

prognostic model risk score (p < 0.0001, Figure 5E). Also, the

survival differences were also significant for subtype classifiers

(p = 0.009, Figure 5F). Overall, our analysis revealed that these

five genes can serve as key biomarkers for identifying patient

prognostic risk and subtypes based on oncogenic signaling

pathways.

Pathway-driven subtype-associated
methylation sites were identified

In tumor cells, proto-oncogenes are in a state of

hypomethylation and activated, while tumor suppressor genes

are in a state of hypermethylation and inhibited (Kulis and

Esteller, 2010; Gyorffy et al., 2016; Chen et al., 2021). Next,

we explored whether some methylated CPG sites had DNA

methylation abnormalities due to subtypes driven by the

oncogenic signaling pathway. We further performed a

methylated CPG site analysis, and 11,122 differential

methylated sites were identified. According to the methylation

sites’ position on the gene, the differential methylation site of

each subtype was classified (Figures 6A,B). There were the least

differential methylated sites in 3′UTR, and most of the

differential methylated sites were located on CpG islands.

There were a few differential methylated sites in the TGF-β+
subtype, but much more in the cell cycle and TP53 + subtype and

the TGF-β and TP53− subtype.

To compare methylation sites’ difference across subtypes, we

further used the weighted gene co-expression network

(WGCNA) (Langfelder and Horvath, 2008) to explore the

subtype-specific driving methylation sites from the

11,122 methylation sites. After screening, the soft thresholding

power of the WGCNA was 12 (Figure 6C). The network was

constructed to classify all methylation sites into four modules

(gray, brown, turquoise, and blue, Figure 6D). The correlations

between the four modules and the subtype characteristics were

obtained by using the phenotypic data on the patients

(Figure 6E). It can be seen that methylation sites in the

turquoise module are not only related to the turquoise

module but also to its corresponding traits (Figure 6F), which

further indicates that these sites are worthy of in-depth

exploration.

We continued to identify subtypes related to the methylation

sites, whose correlation with the turquoise module was greater

than 0.8 and the subtype with a correlation greater than 0.25, and

it revealed the strong correlations among these methylation sites.

A total of 15 genes mapped by the DMSs (differentially

methylated sites with a degree greater than 300) were

identified (Supplementary Table S3). Furthermore, we
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estimated the methylation level of genes across subtypes. The

methylation level of patients from the TGF-β+ subtype was

significantly lower than that of patients from other subtypes,

and the patients from the TGF-β+ subtype also had better

prognosis than patients from other subtypes (Figure 6G).

Then, these genes were mainly enriched in WNT, NOTCH,

and RTK-RAS pathways. The results indicate that oncogenic

signaling pathway–based subtypes are closely related to the

methylation status, and the genes annotated at these 15 CpG

sites are closely related to the dysregulation of oncogenic

signaling pathways; also, hypomethylation is associated with a

better prognosis for patients.

Identification of tumor
microenvironment–associated immune
biomarkers across subtypes

The tumor microenvironment (TME), the environment for

tumor cells to survive, could facilitate tumor cell growth,

metastasis, and immune escape. We estimated whether these

oncogenic signaling pathway–based subtypes would show

distinct tumor microenvironment characteristics. We first

analyzed the infiltration level of immune cells estimated by

TIMER and MCP of the four subtypes’ patients and found

these subtype patients with specific tumor microenvironments.

FIGURE 6
(A) Location of methylation sites on genes. (B) Location of methylation sites on CPG islands. (C) Analysis of network topology for different soft
thresholding powers. (D) Module colors and gene dendrogram. (E) Correlations between the four modules and the subtype characteristics of
samples. (F) Weighted interaction gene network of the CpG sites in the turquoise module. (G) Methylation profiles of the 15 CpG sites.
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It was mainly reflected in the fact that the infiltration of most

immune cells in the cell cycle, MYC, and NF2− subtype was

significantly higher than that of other subtypes (Figure 7A,

Supplementary Figure S8), especially neutrophils (Figure 7B)

and B cells (Figure 7C), whereas we found that patients of the cell

cycle, MYC, and NF2− subtype had a higher level of immune cell

infiltration but a poor prognosis. Therefore, we continued to

analyze this issue from the perspective of immune cell function

such as T-cell dysfunction (Jiang et al., 2018; Zhao et al., 2020)

and immune checkpoints. A total of 10 differentially expressed

T-cell dysfunction–related genes were identified across subtypes,

and these genes all showed significantly high expression in the

cell cycle, MYC, and NF2− subtype (Figures 7D–F), which

suggested that most patients in the cell cycle, MYC, and NF2−

subtype exhibited a state of T-cell dysfunction. We continued to

check the immune checkpoint genes’ expression level across

subtypes and found that immune checkpoint genes also

tended to be highly expressed in the cell cycle, MYC, and

NF2− subtype (Figure 7G). Immune checkpoint genes were

overexpressed, which can lead to suppressed immune function

and cause low body immune capacity. In general, our analysis

suggests that high gene expression of T-cell dysfunction and

immune checkpoint genes might be responsible for the patients

owning a higher level of immune cell infiltration but a lower

prognosis in the cell cycle, MYC, and NF2− subtype. Next, we

analyzed 14 cell states of the four subtypes’ patients based on the

gene set variation analysis (GSVA) (Yuan et al., 2019). Most cell

states except the cell cycle showed upregulation in the TGF-β+
subtype and the cell cycle, MYC, and NF2− subtype, and cell

cycle, DNA damage, and DNA repair showed upregulation in the

cell cycle and TP53 + subtype (Figure 7H). Overall, the

aforementioned results reveal significant differences in

immune cell infiltration, T-cell function, and cell state across

subtypes.

Next, we continued to analyze whether the aforementioned

10 T-cell dysfunction gene expression models could predict

patient prognosis and subtype. There were five genes with

significantly high risk, and only one gene showed significantly

FIGURE 7
(A) Normalized infiltration of immune cells from TIMER and MCP in the four subtypes. (B,C) Violin chart of TIMER neutrophils and B-cell
infiltration. (D)Gene expression heatmap of subtype-specific T-cell dysfunction genes. (E,F) Boxplot of TIMERCD4 T-cell and CD8 T-cell infiltration.
(G) Immune checkpoint tumor cells (left) and immune checkpoint T cells’ (right) corresponding gene normalized expression in the four subtypes. (H)
Cell state enrichment scores’ heat map. (I)HR values of 10 subtype-specific T-cell dysfunction genes. (J,K) KM survival curves of the prognostic
classifier (left) and subtype classifier (right) constructed with 10 subtype-specific T-cell dysfunction genes as features.
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low risk (Figure 7I). These genes were identified as key prognostic

factors and then used as features to construct prognosis and

subtype classifiers; both classifiers showed great performance

(KM survival curve, log rank: p < 0.0001, Figures 7J,K).

Materials and methods

TCGA data sets

The gene expression data on 32 cancers including

9,398 samples were downloaded from UCSC Xena (https://

xenabrowser.net/), and the data types were mRNA count-UQ

and mRNA FPKM-UQ. We divided all TCGA patients into the

training data set (80%) and the test data set (20%).

Then, the copy number variation data on 22,445 genes were

obtained from UCSC Xena. The copy number variation data on

TCGA samples included the four non-diploid normal copy states

of homozygous deletion (−2), single copy deletion (−1), low copy

number amplification (1), and high copy number

amplification (2).

The clinical data on TCGA samples including gender, age,

tumor weight, TNM stage, and survival time were downloaded by

the GDC tool (https://portal.gdc.cancer.gov/).

Gene expression omnibus data sets

We downloaded GSE40967 and GSE37642 data on the

GPL570 platform from the Gene Expression Omnibus (GEO)

database as an external validation data set. (https://www.ncbi.

nlm.nih.gov/geo/). GSE40967 contained two sets of data,

GSE39582 had 585 tumor samples including 566 CC samples

and 19 non-tumor samples. GSE40966 had 566 tumor samples.

The data contained clinical information including sex, age, TNM

stage, treatment strategy, survival time, and mutation

information. GSE37642 contained the expression data on

562 samples of adult acute myeloid leukemia (AML) patients.

The clinical information included age and survival status.

ATAC-seq data set

The genome-wide chromatin accessibility profiles (Corces

et al., 2018) of 410 tumor samples spanning 23 cancer types from

TCGA were downloaded by the GDC tool (https://portal.gdc.

cancer.gov/).

Immune cells

The tumor purity of the six immune cells, namely, B cells,

CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and

dendritic cells of TCGA cancer patients, were available from

TIMER (version 1.0) (Li et al., 2017) (http://cistrome.dfci.

harvard.edu/TIMER/).

DNA methylation data

The DNA methylation 450 k data on 31 cancers were

downloaded from UCSC Xena. The data recorded the DNA

methylation value (β value) of each array probe in each sample.

The DNA methylation value is a continuous variable between

0 and 1, which represents the degree of methylation. A higher β
value represents hypermethylation, and a lower β value

represents hypomethylation.

We used the Xena probeMap derived from GEO

GPL13534 to map the microarray probes to the coordinates of

the human genome, displaying the annotation information of all

methylation sites, including base changes, chromosomes, CPGs,

and gene positions.

Gene set variation analysis to calculate the
enrichment score of each pathway

Gene set variation analysis (GSVA) (Hanzelmann et al.,

2013) is a non-parametric, unsupervised method that

estimates the enrichment score of each gene set based on the

gene expression level. We used the R package “GSVA” (version

1.38.2) to calculate the enrichment scores of 10 oncogenic

signaling pathways for each sample and built a pathway

dysregulation profile. In the profile, the enrichment score

greater than 0 means that the pathway activity is upregulated,

while an enrichment score less than 0 indicates that the pathway

activity is downregulated. The enrichment score is close to 0,

which means that there is little difference in the pathway activity

(http://www.bioconductor.org/packages/release/bioc/html/

GSVA.html).

Consensus cluster on training samples

We used the ConsensusClusterPlus package (version 1.54.0)

in R (Wilkerson and Hayes, 2010) to perform consistent

clustering on the pathway dysregulation profile obtained by

the GSVA method. The optimal number of clusters is

determined by the cumulative density function (CDF), which

plots the corresponding empirical cumulative distribution

defined in the range between 0 and 1, and the optimal cluster

is determined by calculating the proportional increase in the area

under the CDF curve number. When any further increase in the

number of clusters (K) does not result in a corresponding

significant increase in the area of the CDF, the number of

clusters is determined.
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Our consistent clustering methods included pam, kmdist,

and hc, and clustering measures included Pearson, Spearman,

maximum, Minkowski, Manhattan, binary, Canberra, and

Euclidean methods. Using each method and each

measurement to cluster cancer samples, the number of

categories ranged from 2 to 8, reps = 50, pItem = 0.8, and

pFeature = 1, and a total of 112 clustering results were

obtained.

Then, under the same clustering number, we compared the

overlapping rate among these clustering results using the

Wilcoxon rank-sum test.

Kaplan–Meier and log-rank tests

We used the R packages “survival” (version 3.2–7) and

“survminer” (version 0.4.9) to calculate the survival difference

among subtypes; log rank p < 0.05 represents a significant

difference.

Identification of differentially expressed
genes

Subtype-specific differentially expressed genes were

identified (Wilcoxon text p < 0.05; |log2FC| > 1) by using the

R packages “edgeR” (version 3.32.1) (Robinson et al., 2010) and

“limma” (3.46.0).

Cox proportional hazards regression
model

We performed a univariate Cox regression analysis on

65 differentially expressed genes among subtypes (p < 0.01),

and then, 56 genes that correlated with the prognosis were

identified (p < 0.01). Then, the multivariate Cox proportional

analysis was performed, and 30 genes were regarded as

candidate prognostic genes. To identify independent

predictors that significantly contributed to OS or RFS, we

constructed a risk model based on these 30 genes and

calculated the risk score of each patient using the predict()

function in the survival package.

RiskScore � ∑ βi × Xi,

where βi represents the risk regression coefficient of the multiple

Cox analysis corresponding to each gene, and Xi represents the

gene expression value. The samples were divided into high- and

low-risk groups based on the median value of the risk score for

subsequent analysis.

Random forest and support vector
machine to construct the subtype and
prognosis classifiers

We used random forest and support vector machine (SVM)

methods to construct the subtype and prognostic classifiers by

using the R packages “randomForest” (version 4.6–14) and

“e1071” (version 1.7–6) in the training data set and then used

the test data set to test the performance of the classifiers. In the

random forest method, we set the cutoff to 0.5 so that every tree

“votes”. Next, we used the importance function to calculate the

accuracy of the model variables and the gini coefficient to judge

the importance of the variables. The mean value of the gini index

change was used as a measure of the importance of the variables,

and all features were sorted according to their importance.

Fisher’s exact test

We used Fisher’s exact test (Blevins and McDonald, 1985) to

calculate the difference in copy number amplification and

deletion between each two subtypes (p < 0.01; FDR > 2).

Integrative genomics viewer to visualize
ATAC-seq data

IGV (Integrative Genomics Viewer) (Thorvaldsdottir et al.,

2013) is a tool that can visualize sequencing data on a local

computer. For the ATAC-seq bw file of each sample, IGV

(version 2.7.0) was used to visualize the chromatin

accessibility at the genome position of each subtype.

Weighted gene co-expression network to
identify the methylation sites

The R package WGCNA (version 1.70–3) (Langfelder and

Horvath, 2008) was used to build a weighted gene co-expression

network. First, the soft threshold β was screened to ensure that

the constructed network was more in line with the characteristics

of the scale-free network. Next, the one-step method was used to

construct the network, and gene clustering was performed based

on TOM. Then, we used the hierarchical clustering tree to display

each module and obtained the correlation between the modules.

The correlations between characteristic methylation sites and

clinical phenotypes were assessed by Pearson’s correlation

analysis, and the correlation coefficients between modules and

clinical phenotypes were used to select modules for a

downstream analysis.
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MCP to calculate the cell infiltration
fraction

We used the R package MCPcounter (version 1.2.0) (https://

github.com/ebecht/MCPcounter) to calculate the infiltration

fraction of T cells, CD8 T cells, cytotoxic lymphocytes, NK

cells, B cells, monocytes, bone marrow dendrites, neutrophils,

endothelial cells, and fibroblasts based on gene expression data

in GDC.

Discussion

Cancer subtypes have broad prospects in understanding

cancer and personalized treatment (Cao et al., 2018; Guo

et al., 2019). However, many studies so far have been based

on single cancer. Analyzing from a pan-cancer perspective can

identify the differences and commonalities across different

cancer types. Signaling pathways change in different

combinations among cancers, and there are complex

interactions between pathways (Jackstadt et al., 2019; Li et al.,

2020). But the extent, mechanism, and co-occurrence of these

pathway changes varied across tumors and tumor types.

We divided patients of TCGA 32 cancer types into four

molecular subtypes; although our project covered most tissues

and organ systems, some tumor types including most

hematologic cancers were not included. Also, we did not

combine the known molecular subtypes of certain cancer

types for our analysis. Then, the biomarkers among subtypes

were identified at the multi-omics levels. A multi-omics analysis

is of great significance for revealing cancer development,

treatment resistance, and recurrence risk, and it is the key to

advancing precision medicine in clinical practice. However, we

did not conduct further and deeper mining of multi-omics

biomarkers we found. In addition, drug sensitivity requires

clinical evaluation; then well-designed clinical trials are

expected to test the possibility of translating our results to

clinical practice in the future.

In conclusion, our study provided a new perspective to

understand the relationship of the dysregulation of oncogenic

signaling pathways and cancers and identified potential

prognostic biomarkers from multiple omics data, and it

further might have implications for clinical applications in the

future.

Conclusion

Here, based on gene set variation analysis (GSVA), we

constructed a pathway dysregulation landscape and identified

four subtypes based on oncogenic signaling pathways in pan-

caner, which may provide an increased understanding of the

common molecular mechanisms driven by oncogenic signaling

pathways underlying the pathogenesis of the malignancy. These

four subtypes showed distinct patient prognosis, cancer type

distributions, transcriptional changes, chromatin accessibility,

genomic alterations, methylation degree, and tumor

microenvironment characteristics. Several signature sets were

identified by integrating multi-omics profiles, which were used

to construct a subtype classifier and a prognosis prediction

model. Overall, our analysis demonstrates that the molecular

heterogeneity of oncogenic signaling pathways, improves the

understanding of the mechanisms of oncogenic signaling

pathways driving tumor progression, and enables the

development of personalized therapies targeting unique tumor

oncogenic signaling pathway dysregulation profiles.
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SUPPLEMENTARY FIGURE S1
(A) CDF curve with k = 2–8 using the kmdist–Spearman method. (B) Area
under the CDF curve for the kmdist–Spearmanmethod, k = 2–8. (C) Sample
cluster distribution using the kmdist–Spearman method, k = 2–8. (D)
Signaling pathway–based clustering results of TCGA training cohort (n=7518).
The heat map shows normalized enrichment scores of the four subtypes.

SUPPLEMENTARY FIGURE S2
(A,C) Forest plot of the multiple Cox regression analysis on the
pathological stage for OS (A) andDFS(C). (B,D) Forest plot of themultiple
Cox regression analysis on age and sex for OS (B) and DFS (D). The
hazard ratios are shown with 95% confidence intervals.

SUPPLEMENTARY FIGURE S3
Kaplan–Meier survival curves among the four subtypes of 22 cancers.

SUPPLEMENTARY FIGURE S4
(A) Drugs used by more than 50 patients (red). (B) Sensitivity of four
subtypes of patients to different situations with treatment. (None:
sensitive; relapse, transfer, both: insensitive).

SUPPLEMENTARY FIGURE S5
(A) Interactions of genes in the cell cycle pathway and fold change values
of four subtypes of genes. (B) Interaction of genes in the MYC pathway
and the fold change values of the four subtypes of the genes. (C)
Interactions of genes in the NOTCH pathway and fold change values of
four subtypes of genes.

SUPPLEMENTARY FIGURE S6
Interactions of genes in the RTK/RAS pathway and fold change values of
four subtypes of genes.

SUPPLEMENTARY FIGURE S7
Interactions of genes in the WNT pathway and fold change values of four
subtypes of genes.

SUPPLEMENTARY FIGURE S8
Infiltration of immune cells in MCP and TIMER in four subtypes.

SUPPLEMENTARY TABLE S1
TCGA dataset.

SUPPLEMENTARY TABLE S2
Differentially expressed genes across the four subtypes.

SUPPLEMENTARY TABLE S3
Differentially methylated sites.
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