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NFE2L3, also known as NFE2L3, is a nuclear transcription factor associated with the
pathogenesis and progression of human tumors. To systematically and comprehensively
investigate the role of NFE2L3 in tumors, a pan-cancer analysis was performed using multi-
omics data, including gene expression analysis, diagnostic and prognostic analysis,
epigenetic methylation analysis, gene alteration analysis, immune feature analysis,
functional enrichment analysis, and tumor cell functional status analysis. Furthermore,
the molecular mechanism of NFE2L3 in liver hepatocellular carcinoma (LIHC) was
explored. The relationship between NFE2L3 expression and survival prognosis of
patients with LIHC was analyzed and a nomogram prediction model was constructed.
Our study showed that NFE2L3 expression was upregulated in most cancers, suggesting
that NFE2L3 may play an important role in promoting cancer progression. NFE2L3
expression is closely related to DNA methylation, genetic alteration, immune signature,
and tumor cell functional status in pan-cancers. Furthermore, NFE2L3 was demonstrated
to be an independent risk factor for LIHC, and the nomogram model based on NFE2L3
expression had good prediction efficiency for the overall survival of patients with LIHC. In
summary, our study indicated that NFE2L3 may be an important molecular biomarker for
the diagnosis and prognosis of pan-cancer. NFE2L3 is expected to be a potential
molecular target for the treatment of tumors.

Keywords: NFE2L3, pan-cancer, multi-comics, tumor immunity, DNA methylation

INTRODUCTION

Globally, cancer is one of the most severe diseases threatening human health and poses a heavy health
and economic burden to society as a result of its high morbidity and mortality (Sung et al., 2021).
Most malignant tumors are in the intermediate and advanced stages when clinically diagnosed,
which is often too late to treat the patients effectively. Although significant progress has been made in
cancer therapy in recent years, the prognosis of most cancer patients remains poor due to several
contributing factors, including drug resistance, side effects of drugs, and chemosensitivity (Liu et al.,
2020a). Therefore, it is necessary to develop new biomarkers and therapeutic targets for early cancer
screening and treatment.

NFE2L3 is a member of the Cap“n”Collar (CNC) family, which belongs to the basic region-
leucine zipper (bZIP) transcription factor (Chevillard and Blank, 2011). The NFE2L3 gene is located
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on the human chromosomes 7pl5-pl4 and encodes a 694-
amino-acid protein (Kobayashi et al., 1999). Glycosylation is
an important modification form of NFE2L3 (Nouhi et al,
2007). Previous studies have demonstrated that NFE2L3 plays
an important role in inflammation and is identified as a stemness
marker gene as it is upregulated in the early stage of stem cell
differentiation (Witschi et al., 1989; Braun et al.,, 2002; Byrne
et al., 2007; Ben-Yehudah et al., 2010). Studies have also shown
that NFE2L3 is closely related to the development and
progression of tumors (Saliba et al, 2022). Knockdown of
NFE2L3 showed a tumor-suppressive effect in liver and gastric
cancer cells (Yu et al., 2019; Wang et al., 2021). NFE2L3 has also
been identified as a novel DNA methylation driver gene and
prognostic marker of kidney renal clear cell carcinoma (KIRC)
(Wang et al., 2019). Another study showed that the p-catenin/
Tcf4 complex promoted the proliferation of colon cancer cells
and upregulated GLUTI1 expression by upregulating the
expression of NFE2L3 mRNA (Aono et al., 2019). However,
there are limited studies on NFE2L3 in different cancer types,
thus it is necessary to comprehensively analyze NFE2L3
expression in pan-cancers. This will aid in exploring effective
prognostic biomarkers and provide future reference data for
further investigations.

Our study comprehensively analyzed NFE2L3 expression in
pan-cancers using different databases. The diagnostic and
prognostic value of NFE2L3 in pan-cancers was also evaluated.
The correlations between NFE2L3 expression and DNA
methylation, genetic alterations, immune features, and tumor
cell functional status in pan-cancers was also investigated. A gene
function enrichment analysis of NFE2L3 in pan-cancer was
performed and the molecular mechanism of NFE2L3 in LIHC
was evaluated. NFE2L3 was identified as an independent risk
factor for OS in LIHC. In conclusion, the study revealed the
essential biological function of NFE2L3 in pan-cancers and
showed that NFE2L3 has the potential to be used as an
effective therapeutic target and tumor diagnostic marker.

MATERIALS AND METHODS

Gene Expression Analysis in Pan-Cancer

Differential expression of NFE2L3 in normal human tissues was
analyzed using the Human Protein Atlas (HPA, v21.0) database
(https://www.proteinatlas.org/) (Thul et al., 2017). RNA-seq data
and relevant clinical information related to the differential
expression of NFE2L3 in various tumor cell lines were
obtained from the Cancer Cell Line Encyclopedia (CCLE)
database (https://sites.broadinstitute.org/ccle) (Barretina et al.,
2012). The differential expression of NFE2L3 between tumor
and normal tissues across The Cancer Genome Atlas (TCGA)
pan-cancer was analyzed using the TIMER2.0 database (http://
timer.comp-genomics.org/) (Li et al., 2020). Analytical data for
differential expression of NFE2L3 in paired pan-cancer samples
were accessed from TCGA data portal (https://www.cancer.gov/).
The subcellular localization of NFE2L3 was investigated using the
HPA database and the differential expression of NFE2L3 protein
in various tumor and normal tissues was analyzed. R software v3.
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6.3 and the ggplot2 package v3.3.3 were used for statistical
analysis and visualization. P-values were calculated with the
Wilcoxon signed rank test and Wilcoxon rank sum test, and
p < 0.05 was accepted as statistically significant (ns, p > 0.05; #p <
0.05; #xp < 0.01; #=kxp < 0.001; #=#:kp < 0.0001) (Stanley et al.,
2020).

Clinicopathological Correlation and Survival

Prognostic Analysis

The RNA-seq data (level3) and related clinical information were
obtained from TCGA cohort. The relationship between NFE2L3
expression and survival prognosis in patients with pan-cancer
was analyzed using univariate Cox regression and the results were
visualized using the “forest plot” R package. The differential
expression Wilcoxon signed rank analysis of NFE2L3 among
tumor pathological stages was performed on Gene Expression
Profiling Interactive Analysis v2.0 (GEPIA2) (http://gepia2.
cancer-pku.cn/#index) (Tang et al, 2019). P-values < 0.05
were considered statistically significant.

Diagnostic Value Analysis

Receiving operating characteristic (ROC) curves
constructed to evaluate the diagnostic value of NFE2L3 in
multiple tumors. The area under the ROC curve (AUC) was
rated as outstanding discrimination (AUC > 0.90), excellent
discrimination (0.8 < AUC < 0.9), acceptable discrimination
(0.7 < AUC < 0.8), and poor discrimination (AUC < 0.70).
The pROC package v1.17.0.1, and the ggplot2 package v3.3.3 were
used for analysis and visualization, respectively.

were

Epigenetic Methylation Analysis

Methylation data were obtained from the Illumina Infinium DNA
methylation platform arrays HumanMethylation450. DNA
methylation levels of NFE2L3 in TCGA pan-cancer were
analyzed using the SMART database (http://www.bioinfo-zs.
com/smartapp/) (Li et al, 2019). Comparison of DNA
methylation levels in 19 methylation CpG sites of NFE2L3 in
TCGA pan-cancer (PANCAN) cohort was performed using the
UCSC Xena database (http://xena.ucsc.edu/) (Goldman et al.,
2020). The correlation between DNA methylation levels of
NFE2L3 and mRNA expression of NFE2L3, tumor cell
dryness, immune subtypes, and survival analyses of differential
DNA methylation levels in TCGA pan-cancer (PANCAN) cohort
were investigated using UCSC Xena. Moreover, the analysis
results were visualized through GraphPad Prism v8.4.2 and
the survminer package v0.4.9 (ns, p > 0.05; #p < 0.05; *#p <
0.01; ##:#p < 0.001; ##xxp < 0.0001).

Analysis of Protein Topology Mutants and

Genetic Alterations

The Protter database (https://wlab.ethz.ch/protter/start/) is a
web-based application tool used for visualizing the sequences,
topologies, and annotations of individual proteins (Omasits et al.,
2014). The variation in NFE2L3 protein topology was evaluated
using the Protter database and a schematic representation of the
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secondary structure of the NFE2L3 protein was generated. In
addition, the genetic alterations of NFE2L3 in pan-cancers were
analyzed using cBioPortal (http://www.cbioportal.org/) (Cerami
et al., 2012; Gao et al., 2013).

Immune Feature Analysis

The correlation between NFE2L3 expression and immune cell
infiltration, immune checkpoints, immunosuppressive cell
infiltration, and immune cell markers in TCGA pan-cancer
was analyzed using the TIMER database. The results of the
analysis were visualized using heat maps of Spearman’s
correlations that were generated from the ggplot2 package
v3.3.3. Furthermore, the differential expression of NFE2L3 in
different molecular subtypes and immune subtypes in pan-cancer
were analyzed using the TISIDB database (http://cis.hku.hk/
TISIDB/) (Ru et al., 2019). Based on previous studies and on
RNA-seq data from TCGA pan-cancer, the correlation between
NFE2L3 expression and tumor mutational burden (TMB) and
microsatellite instability (MSI) was analyzed and visualized by R
software (version 3.6.3) (Bonneville et al., 2017). The potential of
NFE2L3 as a biomarker for predicting responses to tumor
immune checkpoint blockade therapy was evaluated using the
TIDE database (http://tide.dfci.harvard.edu/). In addition, the
correlation between NFE2L3 expression and immune
checkpoint blockade (ICB) overall survival outcome was
analyzed in the immunotherapy dataset and the ability of
NFE2L3 knockdown to regulate lymphocyte-mediated tumor
killing efficacy in the CRISPR Screen dataset was evaluated
(Jiang et al, 2018). All correlation analyses were performed
using Spearman’s correlation test. P-value < 0.05 was
considered to be statistically significant.

Functional Status Analysis of Tumor Cells
The correlation between NFE2L3 expression and functional
status of multiple tumor cells based on single-cell sequencing
data was analyzed using the CancerSEA database (http://biocc.
hrbmu.edu.cn/CancerSEA/) (Yuan et al., 2019).

Functional Enrichment Analysis

GeneMANIA was used to identify the top 20 genes related to
NFE2L3 (Warde-Farley et al, 2010). STRING was used to
conduct the protein-protein interaction (PPI) network by
setting the following main parameters: minimum required
interaction score (“0.300”) and maximum number of
interactors (“no more than 50 interactors”). Visualization of
the PPI network was constructed using Cytoscape. The top
100 genes with a similar expression pattern to NFE2L3 were
surveyed using the GEPIA2 database (Szklarczyk et al., 2019). In
addition, the intersection of genes related to NFE2L3 obtained
from the three databases were identified with results being
visualized with a Venn diagram. The correlation between the
expression of NFE2L3 and the intersection of the genes related to
NFE2L3 obtained from the above three databases was analyzed
using the GEPIA2 database. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes (KEGG) pathway enrichment analyses
was performed for NFE2L3-related genes. The ggplot2 package
v3.3.3 was used for visualization and the cluster Profiler package

Pan-Cancer Analysis of NFE2L3

v3.14.3 was used for statistical analysis. A p-value < 0.05 was
considered to be statistically significant. In addition, tumor
patients in TCGA cohort were divided into high and low
expression groups according to the median expression level of
NFE2L3 mRNA, including BRCA, CHOL, ESCA, HNSC, KIRC,
PRAD, UCEC, and THCA. The differentially expressed genes in
the high and low expression groups in the multiple tumors
described above were analyzed using the DESeq2 package
(version 1.26.0). GSEA analysis of the differentially expressed
genes was performed in these tumors using the clusterProfiler
package (version 3.14.3).

Co-Expression Genes and Differentially
Expressed Genes Analysis in Liver

Hepatocellular Carcinoma

The top five genes positively associated with NFE2L3
expression and the top five negatively associated genes in
LIHC were evaluated. The results were visualized using a heat
map with Spearman’s correlation. Furthermore, TCGA-LIHC
cohort was divided into a high and low expression group
according to the expression level of NFE2L3 mRNA, and the
differentially expressed genes (DEGs) between the high and
low expression group of NFE2L3 in LIHC were analyzed (Love
et al., 2014). The results were visualized using a volcano map
with the following threshold values: |log2 fold-change (FC)| >
2.0, and adjusted p-values < 0.05. GO and KEGG enrichment
analyses were performed for the DEGs that met the screening
requirements. In addition, all the differential genes between
the high and low expression groups of NFE2L3 were included
in the GSEA analysis. The top 10 signaling pathways from the
analysis were presented as merged plots of GSEA. R (version
3.6.3) was used for statistical analysis and visualization, and
the main R package that was used included the
ggplot2 package v3.3.3 and the cluster Profiler package
v3.14.3.

Prognostic Model Based on NFE2L3
Expression and Clinical Characteristics in

Liver Hepatocellular Carcinoma

The correlation between NFE2L3 expression and multiple
clinical characteristics of LIHC were analyzed using logistic
regression. The factors associated with the overall survival
(OS) of patients with LIHC were analyzed using univariate
and multifactorial Cox regression. In addition, a nomogram
integrating NFE2L3 expression and the prognostic factors of
the multivariable model for OS in LTHC from TCGA data was
created using the nomogram function from the RMS package
v6.2-0 and survival package v3.2-10. The accuracy of the
nomogram model for predicting overall survival of patients
with LIHC was evaluated using calibration curves. The related
RNA-seq and clinical data were accessed from TCGA
database, normalized as transcripts per million (TPM), and
then log2 transformed. The Wilcoxon signed rank test was
used to determine statistical significance (ns, p > 0.05; *p <
0.05; #%p < 0.01; ##%p < 0.001; **%%p < 0.0001).
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used to analyze the expression levels of NFE2L3 in tumor and normal tissues. (D) TCGA database was used to analyze the expression levels of NFE2L3 in tumor tissues

the HPA and GTEx databases. (B) The CCLE database was used to analyze the expression levels of NFE2L3 in different cancer cell lines. (C) The TIMER2 database was
and adjacent normal tissues. ns, p > 0.05; *, p < 0.05; **, p < 0.01; ##%, p < 0.001.

FIGURE 1 | Expression level of NFE2L3 in pan-cancer and normal human tissues. (A) The expression level of NFE2L3 in different normal tissues was analyzed by
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FIGURE 2 | Subcellular localization and immunohistochemical analysis of NFE2L3. (A) NFE2L3 was mainly located in the nucleoplasm and vesicles by
immunofluorescence (ICC-IF) and confocal microscopy. (B) The expression levels of NFE2L3 protein in four tumors and normal tissues were analyzed by

RESULTS
The Expression of NFE2L3 in Pan-Cancer

The expression level of NFE2L3 in normal human tissues
using the HPA database was evaluated. The results showed
that the expression level of NFE2L3 was low in most normal
tissues, however it was high in the retina, pancreas, and skin
(Figure 1A). NFE2L3 was expressed at high levels in a variety
of tumor cell lines, according to the CCLE database analysis

(Figure 1B). The TIMER?2.0 database analysis showed that the
expression of NFE2L3 in 18 cancer types was significantly
higher than that in normal tissues, including bladder
urothelial carcinoma (BLCA), breast invasive carcinoma
(BRCA), cervical squamous cell carcinoma endocervical
adenocarcinoma (CESC), cholangiocarcinoma (CHOL),
colon adenocarcinoma (COAD), esophageal carcinoma
(ESCA), glioblastoma multiforme (GBM), head and neck
squamous cell carcinoma (HNSC), KIRC, kidney renal
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FIGURE 3 | The relationship between NFE2L3 expression and prognosis and pathological stages in different tumors. (A) The association between NFE2L3

expression and the pathological stage was analyzed in ACC, CESC, KIRC, OV, PAAD, THCA, LIHC, and BRCA by the GEPIA2 database. (B) The correlation of NFE2L3

expression and Overall survival (OS) and progression-free survival (PFS) prognosis in pan-cancer.
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papillary cell carcinoma (KIRP), LIHC, lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), prostate
adenocarcinoma (PRAD), rectum adenocarcinoma (READ),
stomach adenocarcinoma (STAD), thyroid carcinoma
(THCA), and uterine corpus endometrial carcinoma
(UCEC) (Figure 1C). Furthermore, NFE2L3 expression was
significantly upregulated in paired cancer and adjacent
samples of 16 cancer types, including BLCA, BRCA,
CHOL, COAD, ESCA, HNSC, KIRC, KIRP, LIHC, LUAD,
LUSC, PRAD, READ, STAD, THCA, and UCEC (Figure 1D).
NFE2L3 was also demonstrated to be localized in the
nucleoplasm and vesicles (Figure 2A), and the protein
expression level of NFE2L3 was significantly higher in
ovarian serous cystadenocarcinoma (OV), TGCT, LUSC,
and CESC than in normal tissues (Figure 2B). The above
results demonstrated the upregulation of NFE2L3 expression
in a variety of tumors, suggesting that NFE2L3 expression may
promote tumor progression.

Clinicopathological Correlation and Survival

Prognostic Analysis
The  correlation NFE2L3  expression and
clinicopathological stage in pan-cancer was also investigated.
Our study showed that NFE2L3 expression correlated with the
clinicopathological stages (stages I, II, III, IV, and X) of eight
tumors, including ACC, CESC, KIRC, OV, PAAD, THCA, LIHC,
and BRCA (Figure 3A).

To further explore the relationship between NFE2L3
expression and prognosis, overall survival (OS), progression-
free survival (PFS), and disease-free survival (DSS) analyses
with median group cutoff by univariate Cox regression
analysis for pan-cancers were performed. This study showed
that higher expression of NFE2L3 had poorer prognosis for
OS in six tumor types, including KIRC, KIRP, brain lower
grade glioma (LGG), LIHC, mesothelioma (MESO), and
pancreatic adenocarcinoma (PAAD).

between

In contrast, higher
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FIGURE 5 | DNA methylation analysis of NFE2L3 in pan-cancer. (A)Analysis of DNA methylation levels of NFE2L3 in pan-cancer using the SMART database. (B)
The 19 CPG methylation sites of NFE2L3 in TCGA pan-cancer (PANCAN) cohort were analyzed by the UCSC Xena database for comparison of NFE2L3 DNA
methylation levels between tumor and normal groups. (C) The correlation between DNA methylation levels of NFE2L3 and NFE2L.3 mRNA expression levels in TCGA
PANCAN cohort. (D) The correlation between DNA methylation levels of NFE2L3 and tumor cell stemness in TCGA PANCAN cohort. (E) The DNA methylation
levels of NFE2L3 in different immune subtypes in TCGA PANCAN cohort. (F-I) The association between DNA methylation levels of NFE2L.3 and OS, disease-free survival
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expression of NFE2L3 was associated with a better prognosis for
OS in BLCA, skin cutaneous melanoma (SKCM), and STAD. For
PES, higher expression of NFE2L3 had a poor prognosis in seven
tumor types, including GBM, KIRC, LGG, LIHC, MESO, PAAD,
and THYM. However, higher NFE2L3 expression was associated
with a better prognosis for PFS in patients with STAD
(Figure 3B). Furthermore, for DSS, the higher expression of
NFE2L3 was associated with a worse prognosis in five tumor
types, including KIRC, LGG, LIHC, MESO, and PAAD. However,
higher NFE2L3 expression was associated with a better prognosis
for DSS in COAD, SKCM, and STAD (Supplementary Figure
S1). These results suggest that NFE2L3 expression is closely
related to tumor progression and patient prognosis, thus
NFE2L3 can be used as a prognostic marker for a variety of
cancers.

Diagnostic Value Analysis

The diagnostic value of NFE2L3 expression in pan-cancer was
evaluated by using the ROC curve. As shown in Figures 4A-P,
NFE2L3 had promising efficacy in the diagnosis of 11 tumors,
including BLCA (AUC = 0.818), BRCA (AUC = 0.732), ESCA
(AUC = 0.813), HNSC (AUC = 0.785), KIRP (AUC = 0.743),
LIHC (AUC = 0.786), LUAD (AUC = 0.820), LUSC (AUC =
0.856), OSCC (AUC = 0.804), PRAD (AUC = 0.754), and UCEC
(AUC = 0.775). Notably, NFE2L3 exhibited high accuracy in the
diagnosis of five tumors, including CHOL (AUC = 0.994), COAD
(AUC=0.997), KICH (AUC = 0.933), READ (AUC = 0.996), and
STAD (AUC = 0.984). This further demonstrated that NFE2L3
can be used as a diagnostic biomarker for a variety of tumors.

DNA Methylation Analysis

Tumorigenesis and epigenetic modifications of genes are closely
related, and DNA methylation is one of the most widely studied
types of epigenetic modification. Thus, DNA methylation levels
of NFE2L3 in normal and primary tumor tissues in pan-cancer
were assessed. The DNA methylation levels of NFE2L3 were
lower in BLCA, CESC, CHOL, COAD, ESCA, HNSC, KIRC,
KIRP, PRAD, LUSD, LUSC, PAAD, READ, THCA, and UCEC
than in normal tissues. However, the DNA methylation levels of
NFE2L3 were higher in BRCA, LIHC, and PRAD tissues than in
normal tissues (Figure 5A). In addition, we showed that the DNA
methylation levels of NFE2L3 were significantly lower in tumor
tissues than in normal tissues in most of the NFE2L3 methylation
CpG sites in TCGA pan-cancer (PANCAN) cohort, including
cg16882373, cg18844118, cg13118545, cg14534464, cg03886242,
g04995722, cg07986525, cgl4684457, cg21699330, cg10536999,
cg08822075, ¢gl12510708, ¢gl9310148, ¢g07945582, and
cgl3855897 (Figure 5B). There was a significant negative
correlation between the DNA methylation level of NFE2L3,
the mRNA expression level and tumor cell stemness score in
TCGA PANCAN cohort (Figures 5C,D). DNA methylation
levels of NFE2L3 significantly correlated with immune
subtypes in TCGA PANCAN cohort, with lower DNA
methylation levels of NFE2L3 in the immune subgroups of C1
and C2 types, however higher DNA methylation levels of NFE2L3
in the immune subgroup of C5 types were observed (Figure 5E).

Pan-Cancer Analysis of NFE2L3

This study demonstrated that lower NFE2L3 DNA methylation
levels were associated with worse OS, PES, DSS, and disease-free
survival (DFS) prognosis in TCGA PANCAN cohort
(Figures 5F-I).

Genetic Alteration Analysis

Accumulation of gene mutations is one of the causes of
tumorigenesis; therefore, the landscape of genetic alterations of
NFE2L3 in pan-cancer were analyzed. Transmembrane protein
topology of NFE2L3 revealed a natural missense variant of
Valine441 in membrane localization (Figure 6A). The genetic
alteration status of NFE2L3 in multiple tumor samples from the
TCGA PANCAN cohort were investigated using the cBioPortal.
As shown in Figure 6B, NFE2L3 mutations occurred in most
tumor types, with the top three tumors, UCEC, BLCA, and ESCA,
having high NFE2L3 mutations (>6%). The tumor, UCEC, had
the highest mutation of NFE2L3 (>6%). A total of 139 NFE2L3
mutations were identified, 108 (77.7%) were missense mutations,
25 (18.0%) were truncating mutations, 3 (2.2%) were fusion
mutations, 2 (1.4%) were in-frame mutations, and 1 (0.7%)
was a splice mutation (Figure 6C). All mutations were
dispersed in the full sequence and 3D protein structure of
NFE2L3 (Figures 6C,D). As shown in Figure 6E, genetic
alterations in NFE2L3 were associated with multiple clinical
characteristics. The overall alteration frequency of NFE2L3
was 2.2% (244/10,950) in TCGA pan-cancer cohort. In
addition, we performed a survival analysis of the genetic
alteration status of NFE2L3 was performed on the entire
TCGA pan-cancer cohort, however the results revealed no
significant correlation between the genetic alteration status of
NFE2L3 and patient prognosis. (Figure 6F).

Immune Feature and Immunotherapy
Response Analysis

The immune response of tumors is an important process in
tumor development, thus the role of NFE2L3 in tumor immune
regulation was investigated by analyzing the immune features and
immunotherapeutic responses. The correlations between the
expression of NFE2L3 and different immune signatures in
TCGA pan-cancer cohort were evaluated, including immune
cell infiltration, immune checkpoints, immunosuppressive cell
infiltration, and immune cell markers. A significant positive
correlation between the expression of NFE2L3 and the level of
immune cell infiltration in TCGA pan-cancer cohort was
demonstrated, except for COAD, OV, UCEC, and UCS
(Figure 7A). However, a significant positive correlation
between NFE2L3 expression and immune checkpoint
expression in TCGA pan-cancer cohort was demonstrated
except for READ, UCEC, and UCS (Figure 7B). A significant
positive correlation was also shown between NFE2L3 expression
and the levels of Tregs, MDSC, and CAF in TCGA pan-cancer
cohort, except for ACC, CESC, and UCS. However, NFE2L3
expression and the level of M2-TAM infiltration were
significantly negatively correlated in most tumors (Figure 7C).
Our study showed a significant positive correlation between
NFE2L3 expression and most immune cell markers in TCGA
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FIGURE 6 | NFE2L3 variant and the characteristics of NFE2L3 mutations in TCGA cohort. (A) A natural missense variant of Valine441 in transmembrane protein
topology of NFE2L3. (B) Genetic alteration frequencies of NFE2L3 in TCGA pan-cancer cohorts. (C) Type and site of mutations of NFE2L3. (D) Variant distribution of 3D
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FIGURE 7 | The correlation between NFE2L3 expression and immune feature in pan-cancer. (A) The correlation between NFE2L3 expression and immune
infiltration in pan-cancer. (B) The correlation between NFE2L3 expression and immune checkpoint in pan-cancer. (C) The correlation between NFE2L3 expression and
T cell exclusion filtration in pan-cancer. (D) The correlation between NFE2L3 expression and immune cell marker in pan-cancer. (E) The correlation between NFE2L3
expression and immune subtype in pan-cancer. (F) The correlation between NFE2L3 expression and molecular subtype in pan-cancer.
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FIGURE 8 | Immunotherapy response analysis in pan-cancer. (A) The correlation between NFE2L3 expression and MSI in pan-cancer. (B) The correlation between
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by its weighted average value across the association with ICB survival outcome and log-fold change (logFC) in CRISPR screens.
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FIGURE 9 | The correlation analysis of NFE2L3 expression and single cell functional status in multiple tumors. (A) Heat map of correlation between NFE2L3
expression and single cell function in multiple tumors. (B=M) T-SNE diagram of NFE2L3 expression levels in single cells of multiple tumors including acute myeloid
leukemia (AML), chronic myelogenous leukemia (CML), breast cancer (BRCA), astrocytoma (AST), glioblastoma (GBM), glioma, oligodendroglioma (ODG), head and
neck cancer (HNSCC), renal cell carcinoma (RCC), melanoma (MEL), retinoblastoma (RB), and uveal melanoma (UM).

pan-cancer cohort, except for UCS (Figure 7D). This study

showed that NFE2L3 expression was

also significantly

positively correlated with three immunomodulators, including
immunoinhibitory, immunostimulatory, and MHC molecules in
TCGA pan-cancer cohort (Supplementary Figure S2). The
correlations between NFE2L3 expression and immune or

molecular subtypes in TCGA pan-cancer cohort from the
TISIDB database were investigated. The results showed that
NFE2L3 was expressed differently in different immune
subtypes of 12 cancer types, including KIRC, COAD, BRCA,
UCEC, STAD, SKCM, PRAD, PAAD, MESO, LUSC, LIHC, and
LGG (Figure 7E). The differential expression of NFE2L3 was also
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found in various molecular subtypes of the nine cancer types,
including UCEC, STAD, PRAD, LUSC, LIHC, LGG, HNSC,
COAD, and BRCA (Figure 7F).

The effect of NFE2L3 expression on immunotherapy was
evaluated by analyzing the correlation between NFE2L3

expression and TMB or MSI. The results showed that NFE2L3
expression was significantly positively correlated with MSI in
STAD, KICH, and THYM, however NFE2L3 expression was
negatively correlated with DLBC and CHOL (Figure 8A).
NFE2L3 expression was significantly positively correlated with
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TMB in STAD, PAAD, LGG, BRCA, and KIRC however it was
negatively correlated with COAD and UVM (Figure 8B). The
potential of NFE213 as a biomarker to predict the response to
immune checkpoint blockade (ICB) was evaluated. The results
showed that NFE2L3 had a limited accuracy (AUC > 0.5) in
predicting the response to ICB in 12 of the 23 ICB sub-cohorts
and compared with TMB, T cell clonality, and B cell clonality,
NFE2L3 displayed a higher predictive power (Figure 8C). High
NFE2L3 expression was associated with poor survival prognosis
in the ICB_VanAllen2015_CTLA4, ICB_Hugo2016_PD1, and
ICB_Liu2019_PD1 Ipi_Prog cohorts. However, knockdown of
NFE2L3 enhanced the efficacy of lymphocyte-mediated tumor
killing in the Kearney 2018 NK_10, Pech 2019 NK_E/T =1, and
Shifrut 2018 average cohorts (Figure 8D). These results suggested
that NFE2L3 may promote tumor development by regulating
tumor immunity.

Single Cell Sequencing Analysis

The expression level and functional status of NFE2L3 in single
tumor cells using the CancerSEA database was determined.
NFE2L3 expression was shown to be closely related to the
cellular functional status of a variety of tumors, including
acute myeloid leukemia (AML), chronic myelogenous
leukemia (CML), breast cancer (BRCA), astrocytoma (AST),
glioblastoma (GBM), glioma, oligodendroglioma (ODG), head
and neck cancer (HNSCC), renal cell carcinoma (RCC),
melanoma (MEL), retinoblastoma (RB), and uveal melanoma
(UM). In most tumor cells, NFE2L3 expression was positively
correlated with  differentiation, angiogenesis, apoptosis,
inflammation, and tumor cell stemness however, NFE2L3
expression negatively correlated with DNA damage, DNA
repair, and invasion (Figure 9A). NFE2L3 was expressed at
higher levels in single cells of AML, CML, BRCA, AST, GBM,
glioma, ODG, RCC, and MEL monocyte samples however, it was
expressed at lower levels in single cells of HNSCC, RB, and UM
samples (Figures 9B-M).

Gene Function Enrichment Analysis

The molecular functions of NFE2L3 was evaluated in different
tumors by performing GO and KEGG pathway enrichment
analyses. The top 20 genes that interacted with NFE2L3 were
evaluated using the GeneMANIA database (Figure 10A).
Then the top 50 proteins interacting with NFE2L3 were
predicted and visualized using the STRING database using
Cytoscape, respectively (Figure 10B). The GEPIA2 database
was then used to explore the top 100 genes with a similar
expression pattern to NFE2L3 in the pan-cancer analysis. The
intersection of NFE2L3-related genes predicted by the above
three databases were used and the results were visualized
using a Venn diagram. Nine genes were predicted by at
least two databases, including NFE2L1, NFE2L2, BACH2,
NFE2, MAF, MAFF, MAFK, MAFG, and ARID3B.
Furthermore, the expression of NFE2L3 was shown to be
significantly correlated with the expression of six genes at
the intersection in TCGA pan-cancer cohort by the GEPIA2
database (Figure 10C). In addition, GO and KEGG pathway
enrichment analyses of NFE2L3-related genes using the three

Pan-Cancer Analysis of NFE2L3

databases were performed. GO enrichment analysis revealed
that the primary biological process (BP) was mainly related to
embryonic development and regulation of transcription from
the RNA polymerase II promoter in response to oxidative
stress and chromatin remodeling. The cellular component
(CC) contained chromosomal regions, chromosomes,
centromeric regions, and condensed chromosomes. The
molecular function (MF) was primarily enriched in DNA-
binding transcription activator activity, RNA polymerase II-
specific, RNA polymerase II distal enhancer sequence-specific
DNA binding, and enhancer sequence-specific DNA binding.
The KEGG pathway enrichment was involved in the cell cycle
(Figures 10D,E).

GSEA analysis in BRCA, CHOL, ESCA, HNSC, KIRC, PRAD,
UCEC, and THCA was performed. Supplementary Figure S3
showed the top 10 enriched signaling pathways in each tumor
according to the normalized enrichment score (NES). NFE2L3
was involved in CD22 mediated BCR regulation, FCGR
activation, and creation of C4 and C2 activators in most
tumors. NFE2L3 was also involved in the role of LAT2
calcium and the role of phospholipids in phagocytosis in
BRCA, CHOL, THCA, PRAD, and UCEC. NFE2L3 was
shown to be related to immunoregulatory interactions between
lymphoid and non-lymphoid cells in CHOL, KIRC, and THCA.
NFE2L3 was shown to be associated with FCGR3A mediated IL10
synthesis in KIRC, PRAD, and THCA. These results also
demonstrated that NFE2L3 played a key role in tumor
immunomodulatory regulation. In addition, NFE2L3 was
observed to be involved in vitamin B12 metabolism and in the
statin pathway in ESCA. NFE2L3 was related to the ribosome in
HNSC and involved in the scavenging of heme from plasma
in THCA.

Co-Expression Gene and Functional
Enrichment Analysis of NFE2L3 in Liver

Hepatocellular Carcinoma

The correlation between NFE2L3 expression and LIHC was
examined. The top five co-expression genes that were positively
correlated with NFE2L3 expression in LIHC, including ARNT?2,
OSBPL3, PKM, AMPD3, and NBEAL2, were evaluated. The top
five co-expression genes that negatively correlated with NFE2L3
expression in LIHC, including DCXR, RBP4, SLC27A5, ASPDH,
and TTC36, were also evaluated (Figure 11A). The DEGs were
analyzed between the NFE2L3 high and low expression groups in
LIHC with threshold values of [log2 FC| > 2.0, and adjusted p-value <
0.05. We identified 749 DEGs, including 668 upregulated and 81
downregulated genes (Figure 11B). Furthermore, GO and KEGG
pathway enrichment analyses were performed on the DEGs that met
the screening requirements. The results indicated that BP was related
to the classical complement activation pathway and humoral
immune response mediated by circulating immunoglobulin. The
CC consisted of immunoglobulin complexes and circulating
immunoglobulin complexes. The MF was primarily enriched in
antigen and immunoglobulin receptor binding. The KEGG
pathway enrichment was involved in gastric acid secretion and
the metabolism of xenobiotics by cytochrome P450 (Figure 11C).
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FIGURE 11 | Co-expression gene and functional enrichment analysis of NFE2L3 in LIHC. (A) The top five genes positively correlated with NFE2L3 expression, and
the top five genes negatively correlated with NFE2L3 expression in LIHC. (B) The volcano map of DEGs between NFE2L3 high expression group and low expression
groups in LIHC. (C) GO and KEGG pathway enrichment analyses of DEGs. (D) GSEA merged plots indicated the top 10 significant signaling pathways associated with
NFE2L3 expression according to Reactome analyses in LIHC.

In addition, GSEA analysis was performed in LIHC, and the top 10
significant terms of GSEA were mainly involved in immune-related
pathways, metabolic functions, and parasite infection (Figure 11D).

Prognostic Model Based on NFE2L3 and
Clinical Characteristics in Liver

Hepatocellular Carcinoma
The relationship between NFE2L3 and clinical characteristics
of patients with LIHC was evaluated. The baseline clinical

characteristics of the patients in TCGA-LIHC cohort based on
the expression levels of NFE2L3 were analyzed
(Supplementary Table S1). The correlation between
NFE2L3 expression levels and the clinical characteristics of
the patients were evaluated using logistic regression analysis.
The results indicated that high NFE2L3 expression was
significantly correlated with sex, age, T stage, pathologic
stage, histologic grade, and AFP (Figure 12A). Moreover,
univariate Cox regression analysis revealed that the OS of
patients with LIHC was significantly correlated with T stage,
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FIGURE 12 | Relationship between the expression level of NFE2L3 and clinical characteristics in LIHC. (A) Logistic regression analysis of expression level and
clinical characteristics of NFE2L3 in LIHC. (B,C) Forest plots of the univariate and multivariate Cox in LIHC. (D) A nomogram based on T stage, M stage, pathologic stage,
tumor status, and NFE2L3 for predicting the OS of patients with LIHC. (E) The calibration plot indicated the calibration of the nomogram model.

M stage, pathological stage, tumor status, and NFE2L3
expression (Figure 12B).

Multivariate Cox regression

analysis further demonstrated that NFE2L3 expression was
an independent prognostic factor for OS in LIHC patients

(HR =1.224,95% CI = 1.017-1.472, p = 0.032) (Figure 12C).

In addition, a nomogram model using T stage, M stage,

pathological stage, tumor status, and NFE2L3 expression
was constructed to predict the OS of patients in TCGA-
LIHC cohort at one, three, and 5 years (Figure 12D) The

DISCUSSION

calibration curve demonstrated that the model had good
calibration (Figure 12E).

Cancer is one of the greatest threats to human health worldwide,
with a high incidence and mortality rate (Sung et al., 2021). Early
diagnosis and treatment of cancer is crucial for patient prognosis.
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Pan-cancer analysis can reveal tumor-specific and common
molecular signatures, identify novel biomarkers, and provide
new insights into the development of effective prevention and
therapeutic strategies for human cancers (Chen et al, 2021).
NFE2L3 belongs to the Cap n” Collar basic-region leucine zipper
family of transcription factors. The NFE2L3 protein is a
membrane-bound glycoprotein that targets the endoplasmic
reticulum and the nuclear envelope. Recent studies have
confirmed that NFE2L3 is linked to certain cancers in
humans, including colon cancer, bladder cancer, breast cancer,
pancreatic cancer, and liver hepatocellular carcinoma (Wang
et al., 2018; Bury et al,, 2019; Ren et al., 2020; Dai et al., 2021;
Qian et al., 2022). NFE2L3 plays a role in transcription of many
biological processes, confers selective growth advantages to cells,
and promotes cancer progression, including proliferation,
invasiveness, metastasis, and angiogenesis (Kobayashi, 2020).

However, no studies to our knowledge have evaluated the
significance of NFE2L3 expression in pan-cancer analyses. The
molecular mechanisms of NFE2L3 in cancer was evaluated by
performing a comprehensive analysis of NFE2L3 in 33 types of
human tumors based on data from the TCGA, CCLE, and HPA
databases, including gene expression, epigenetic methylation,
genetic alteration, functional enrichment, immune features,
and survival prognosis. Our results showed that NFE2L3 was
significantly upregulated in most human tumors including
BLCA, BRCA, CESC, CHOL, COAD, ESCA, GBM, HNSC,
KIRC, KIRP, LIHC, LUAD, LUSC, PRAD, READ, STAD,
THCA, and UCEC. Furthermore, NFE2L3 protein was
shown to be upregulated in OV, TGCT, LUSC, and CESC.
NFE2L3 expression was significantly correlated with different
pathological stages in ACC, CESC, KIRC, OV, PAAD, THCA,
LIHC, and BRCA. In addition, upregulated expression of
NFE2L3 was significantly associated with poor OS, DFS,
and DSS in most tumors, including KIRC, KIRP, LGG,
LIHC, MESO, PAAD, GBM, and THYM. NFE2L3 also had
promising efficacy in tumor diagnosis, especially in the
diagnosis of CHOL, COAD, KICH, READ, and STAD.
Thus, our study demonstrated that NFE2L3 expression was
upregulated in a variety of cancers and was associated with
poor prognosis, consistent with previous reports (Wang et al.,
2018; Bury et al.,, 2019; Dai et al., 2021; Wang et al., 2021; Qian
etal., 2022). The above results suggest that NFE2L3 expression
was closely related to tumor development and that NFE2L3
can be used as a new biomarker for diagnosis and prognosis in
most tumors.

DNA methylation is a common epigenetic modification that
is closely related to tumorigenesis, regulating gene
transcription and expression, and has become the focus in
epigenetics (Mehrmohamadi et al., 2016). Hypermethylation
in the promoter region of tumor suppressor genes inhibits the
expression of tumor suppressor genes and causes them to lose
their tumor suppressor functionality, thus promoting the
occurrence of cancer. Hypomethylation of the whole
genome or of the proto-oncogene promoter, reduces the
stability of the chromosome structure or activates proto-
oncogenes, thus inducing cell carcinogenesis (Das and
Singal, 2004). Our study demonstrated that the DNA
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methylation levels of NFE2L3 were downregulated in most
tumors and negatively correlated with the expression levels of
NFE2L3 mRNA and the tumor cell stemness score. The
methylation level of NFE2L3 was significantly correlated
with different immune subtypes, suggesting that the
methylation epistasis regulation of NFE2L3 may be involved
in tumor immunity. Moreover, survival analysis showed that
hypermethylation of NFE2L3 was associated with good
prognosis in TCGA pan-cancer (PANCAN) cohort. Wang
et al. (2019) demonstrated that NFE2L3 was a novel DNA
methylation driver gene and prognostic marker in human clear
cell RCC. In contrast to the study by JW et al., our study was
not limited to individual tumors, but explored the expression
levels of NFE2L3 at each methylation site and the total
methylation levels in pan-cancers. In addition, the
correlation between NFE2L3 methylation levels and NE2L3
mRNA expression levels, tumor stemness, immune subtypes,
and pan-cancer prognosis was evaluated. NFE2L3 might
function as a proto-oncogene, and that downregulation of
DNA methylation of NFE2L3 promoted upregulation of
NFE2L3 expression in most tumors. The overexpression of
NFE2L3 may promote tumorigenesis and progression by
regulating tumor cell stemness and immune responses.

However, the relationship between NFE2L3 DNA
methylation and tumor progression requires further
verification.

Previous studies have shown that tumor development is
closely related to genetic alterations, especially mutations in
oncogenes and tumor suppressor genes (Cohen et al, 2017;
Liu et al, 2020b). Our results showed a natural missense
variant of Valine441 in membrane localization. The total
genetic alteration frequency of NFE2L3 was 2.2% (244/10,950)
in TCGA pan-cancer cohort, and the highest alteration frequency
of NFE2L3 was approximately 6.4% in patients with UCEC.
Mutations and amplifications were the most common types of
genetic alterations, with missense mutations being the main type,
accounting for 77.7% of the mutations. However, there was little
correlation between genetic alterations in NFE2L3 and patient
prognosis.

With the continuous development of biomedical
technology, tumor immunotherapy has become the fourth
most  effective  treatment method after surgery,
chemotherapy, and radiotherapy (Dou et al., 2022; Saliba
et al, 2022). The potential of NFE2L3 in tumor
immunotherapy was explored further by conducting a
correlation analysis between the expression of NFE2L3 and
immune characteristics. This study showed that NFE2L3
expression was significantly correlated with various immune
characteristics in TCGA pan-cancer, including immune cell
infiltration, immune checkpoints, immunosuppressive cell
infiltration, immune cell markers, immunomodulators,
immune subtypes, and molecular subtypes. In addition,
NFE2L3 expression levels were significantly positively
correlated with MSI and TBM in STAD. Our study also
demonstrated that NFE2L3 expression was associated with
patient survival in multiple ICB cohorts, and that knockdown
of NFE2L3 improved the effect of ICB treatment for colon
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cancer in the Kearney 2018 NK_10 cohort. In conclusion,
NFE2L3 shows potential in tumor immunotherapy and may be
a new target for tumor immunotherapy.

Recently, single-cell sequencing technology has developed
rapidly, and its most important feature is the ability to sequence
the genome at the individual cell level compared to traditional
sequencing technologies, thus enabling further exploration of
patterns of tumor heterogeneity (Suva and Tirosh, 2019).
CancerSEA is a database based on single-cell sequencing and is
used to analyze the different functional states of tumor cells at the
single-cell level, facilitating further investigation of the functional
heterogeneity of tumor cells (Yuan et al, 2019). NFE2L3 was
expressed at high levels in most tumor cells according to the
CancerSEA analysis and was closely associated with various
tumor cell functional states, such as apoptosis, differentiation,
inflammation, and stemness. This suggests that NFE2L3 may
play an essential role in tumor development.

The molecular function of NFE2L3 in pan-cancer was
investigated through gene function enrichment analysis. Our
study showed that NFE2L3 was mainly involved in cell cycle
regulation by KEGG pathway enrichment analysis, which was
consistent with the study performed by Bury et al. (2019).
NFE2L3 was observed to be involved in transcriptional regulation
and chromatin remodeling of the RNA polymerase II promoter in
response to oxidative stress by GO enrichment analysis. Moreover,
Saliba et al. (2022) found that knockdown of NFE2L3 could prevent
inflammation-induced colorectal cancer by regulating the tumor
microenvironment. NFE2L3 was identified to be involved in
multiple immune pathways in most tumors using GSEA analysis,
including: CD22 mediated BCR regulation, FCGR activation, and
the creation of C4 and C2 activators. YC et al. found that NFE2L3
was involved in metastasis and drug resistance in breast cancer. The
signaling pathways related to drug resistance and metastasis were
absent in our analysis, which may explain the differences in
databases and the different thresholds chosen for the analysis.

The function of NFE2L3 was investigated by analyzing the co-
expression of genes of NFE2L3 and DEGs between the NFE2L3 high
and low expression groups in LIHC. Subsequently, GO and KEGG
pathway enrichment analyses and GSEA on these DEGs were
conducted and it was shown that they were mainly enriched in
immune and metabolic processes. Our study also investigated the
relationship between the expression level of NFE2L3 and
clinicopathological features using logistic regression analysis and
the clinical characteristics related to OS of LIHC using univariate and
multivariate Cox regression analyses. NFE2L3 expression level
correlated with sex, age, T stage, pathologic stage, histologic
grade, and AFP in LIHC, and NFE2L3 expression was an
independent risk factor for OS in patients with LIHC, which was
consistent with previous studies (Yu et al., 2019; Ren et al,, 2020).
These results show that NFE2L3 may be a marker for identifying
early LIHC and advanced LIHC. Furthermore, a prognostic
nomogram using T stage, M stage, pathological stage, tumor
status, and NFE2L3 was constructed to predict the one-, three-,
and five-year OS in LIHC, which aids physicians in identifying
patients at high risk for LTHC.

There are some limitations to the present study. Only online
public databases were used for analysis, which may cause
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systematic bias. The study lacked actual clinical data and
further experimental validation using cells and animal models
to prove the results observed (Wei et al., 2019).

CONCLUSION

Recently, with the rapid development of bioinformatics, an
increasing number of computing methods have been developed
and used in tumor research to promote tumor diagnosis and
treatment technology (Anashkina et al., 2021; Rogers et al,,
2021). To investigate the molecular function of NFE2L3 in
pan-cancer, we performed a comprehensive and integrated
analysis of NFE2L3 by combining multiple bioinformatic
approaches. Our study revealed that NFE2L3 expression was
significantly upregulated in multiple tumors and strongly
associated with pathological stage and survival prognosis.
NFE2L3 expression level of NFE2L3 had high diagnostic
efficacy for the majority of tumors. Moreover, the
methylation level of NFE2L3 was downregulated in most
tumors and significantly associated with poor prognosis. We
also analyzed genomic alterations of NFE2L3 in pan-cancer
cells. NFE2L3 plays an essential role in immunomodulation in
most tumors. In addition, we constructed a nomogram
prognostic model for LIHC based on the expression of
NFE2L3 and related clinical features, and the results showed
that the model had high accuracy in predicting the OS of
patients with LIHC. In summary, our study demonstrated the
importance of NFE2L3 in the diagnosis and prognosis of pan-
cancer, which could be conducive to further exploring its
mechanism in tumorigenesis and development and provide
a comprehensive analysis basis for cancer treatment in the
future.
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