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Amyotrophic lateral sclerosis (ALS) is a fatal progressive multisystem disorder with limited
therapeutic options. Although genome-wide association studies (GWASs) have revealed
multiple ALS susceptibility loci, the exact identities of causal variants, genes, cell types,
tissues, and their functional roles in the development of ALS remain largely unknown. Here,
we reported a comprehensive post-GWAS analysis of the recent large ALS GWAS (n =
80,610), including functional mapping and annotation (FUMA), transcriptome-wide
association study (TWAS), colocalization (COLOC), and summary data-based
Mendelian randomization analyses (SMR) in extensive multi-omics datasets. Gene
property analysis highlighted inhibitory neuron 6, oligodendrocytes, and GABAergic
neurons (Gad1/Gad2) as functional cell types of ALS and confirmed cerebellum and
cerebellar hemisphere as functional tissues of ALS. Functional annotation detected the
presence of multiple deleterious variants at three loci (9p21.2, 12q13.3, and 12q14.2) and
highlighted a list of SNPs that are potentially functional. TWAS, COLOC, and SMR
identified 43 genes at 24 loci, including 23 novel genes and 10 novel loci, showing
significant evidence of causality. Integrating multiple lines of evidence, we further proposed
that rs2453555 at 9p21.2 and rs229243 at 14q12 functionally contribute to the
development of ALS by regulating the expression of C9orf72 in pituitary and SCFD1 in
skeletal muscle, respectively. Together, these results advance our understanding of the
biological etiology of ALS, feed into new therapies, and provide a guide for subsequent
functional experiments.

Keywords: amyotrophic lateral sclerosis, causal variants, causal genes, cell type, transcriptome-wide association
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS, OMIM#105400) is a progressive neurological degenerative
disorder without effective treatment affecting 1 in 400 individuals worldwide (van Rheenen et al.,
2016). With the fast pace of global aging, ALS is anticipated to reach 380,000 cases globally by 2040
(Logroscino and Piccininni, 2019). The heritability of ALS has been estimated at around 0.61 (95%
CI: 0.38–0.78) in a twin study (Al-Chalabi et al., 2010). Genome-wide association studies (GWASs,
Supplementary Table S1) have identified more than 35 genetic loci associated with risk of ALS (van
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Es et al., 2009; van Rheenen et al., 2016; Nicolas et al., 2018;
Project MinE ALS Sequencing Consortium, 2018; Zhou et al.,
2018; Iacoangeli et al., 2020; Xiao et al., 2020), with 16 loci being
identified in at least two GWASs, representing the most robust
genetic associations. Identifying causal genetic variants, causal
genes, and cell or tissue site of action remains a challenging task as
over 90% of the ALS-associated variants fall in noncoding regions
with largely unknown functions (Farh et al., 2015). Recently,
three post-GWASs (Du et al., 2018; Xiao et al., 2020; Park et al.,
2021) proposed lists of genes with high probabilities of causality,
providing a better understanding of the genetic basis of the
pathogenesis of ALS. However, the exact identities of causal
variants, genes, cell types, and tissues remain largely unknown,
leaving alone the complex causal relationships between them.

Here, we report a comprehensive functional characterization
of the susceptibility loci identified in the large ALS GWAS (n =
80,610) (Nicolas et al., 2018) using functional mapping and
annotation (FUMA). Furthermore, we systematically applied
transcriptome-wide association analysis (TWAS),
colocalization (COLOC), and summary data-based Mendelian
randomization analysis (SMR) to prioritize putative causal genes
using 18 publicly available eQTL datasets.

MATERIALS AND METHODS

ALS GWAS summary data reported by Nicolas et al. (2018) were
downloaded from ALS Variant Server (http://als.umassmed.edu).
This dataset incorporated several previous cohorts of ALS for
meta-analysis, mainly including previous 20,806 cases and 59,804
controls of European ancestry. We harmonized GWAS summary
statistics to the 1,000 reference genomes. After removing SNPs
with low MAF (<0.01), our post-GWAS analysis included a total
of 9,657,890 SNPs.

Gene-Based Analysis, Tissue Specificity,
and Cell Type
We performed a gene-level enrichment analysis using the
MAGMA in FUMA platform v1.3.6a (Watanabe et al., 2017).
MAGMA gene-property analysis was performed to assess
relationships between tissue-specific or cell-specific gene
expression profiles and ALS–gene associations (Watanabe
et al., 2019). In cell-specific analysis, a 3-step workflow was
performed with scRNA-seq datasets, 1) cell type analysis for
each dataset was carried out, and significant cell types were
retained for the next step; 2) step-wise conditional analyses to
identify independent cell types within each dataset; and 3) cross-
datasets conditional analysis was performed to examine the
extent of similar association signals from significant cell types
retained from the second step. For scRNA-seq datasets,
PsychENCODE and DropViz were available for analysis.

Functional Mapping and Annotation
The bioinformatic functional analysis was performed to
investigate the functional relevance for ALS through FUMA
(Watanabe et al., 2017), using the following toolsets or

datasets, including ANNOVAR, CADD, RegulomeDB,
eQTLGen, GTEx v8, and Hi-C data. Independent significant
SNPs, lead SNPs, and genomic risk loci were defined to use
the default parameters in FUMA. A CADD score with a threshold
of 12.37 for a variant was considered deleterious (Kircher et al.,
2014). The lower a RegulomeDB score, the more likely it is to be a
regulatory element. Mapping SNPs to genes used 3 options
including positional mapping, eQTL mapping, and chromatin
interaction mapping. We restricted to eQTLGen, whole blood,
and 13 brain tissues from GTEx v8 in eQTL mapping. Only
significant SNP-gene pairs with FDR correction (p < 0.05) were
identified to map genes. Chromatin interaction mapping was
restricted to PsychENCODE, enhancer-promoter (EP)
correlations from FANTOM5, adult cortex, and fetal cortex.
The significance threshold of interaction was set at FDR <
1 × 10−6.

Transcriptome-Wide Association Study
We applied S-PrediXcan (Barbeira et al., 2018) to test the
association between the predicted expression levels of 13 brain
tissues, skeletal muscle, pituitary, and whole blood from GTEx v8
and ALS, respectively. S-MultiXcan (Barbeira et al., 2019)
integrated multiple tissue panels to improve the power to
detect ALS-associated genes. Prediction models trained on
GTEx v8 were obtained on the PredictDB website (http://
predictdb.org). Genes with association FDR < 0.05 were
considered to be significantly associated with ALS. A circus
plot for multiple TWASs was created by the R package
“circlize” (Gu et al., 2014).

We compared the identified loci with the published TWASs
and GWASs (Supplementary Table S1, p threshold < 5 × 10−8),
which was visualized with the R package “VennDiagram” (Chen
and Boutros, 2011). However, the latest TWAS (Megat et al.,
2021) was unavailable in the medRxiv and not included in the
comparison.

Colocalization Analysis
We applied COLOC (Giambartolomei et al., 2014) to assess the
probability of the same variant being responsible for ALS risk
and gene expression. Default conservative priors, p1 (1 × 10−4),
p2 (1 × 10−4), and p12 (1 × 10−5) for a causal SNP in either ALS
or gene expression and a shared causal SNP. We assessed the
posterior probability of colocalization between ALS and Brain-
eMeta (Ng et al., 2017), 13 brain tissues, skeletal muscle,
pituitary, and whole blood from GTEx v8, eQTLGen,
respectively. For three eQTL datasets, cis-association
analyses were defined for SNPs within 1 MB of the
transcription start site or the center of the probe (Qi et al.,
2018; Võsa et al., 2021; Aguet et al., 2020). A detailed summary
of eQTL data is in Supplementary Table S2. The regions in
colocalization assessment had at least one SNP with a p value <
1 × 10−6 from GWAS that had a p value < 1 × 10−4 in the eQTL
dataset. We applied suggested combination cutoffs (PP4 ≥
0.75, PP3 + PP4 ≥ 0.9, and PP4/PP3 ≥ 3) as powerful evidence
supporting a causal role for the gene to be a mediator of ALS
risk. The regional association plots were generated by R
package “LocusCompareR” (Liu et al., 2019).
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Summary Data-Based Mendelian
Randomization Analysis and HEIDI Test
SMR (Zhu et al., 2016) was performed to evaluate the association
between an exposure and an outcome in Mendelian randomization
analysis principles by removing nongenetic confounding using a
variant as an instrument variable. We used the same tissue as in the
COOC analysis. A Benjamini–Hochberg method correction (FDR <
0.05) was used in each SMR analysis. HEIDI was applied to
distinguish pleiotropy from linkage, and a threshold (HEIDI >
0.01) was considered to have little evidence of heterogeneity. We
used SMR with the following parameters: p-value threshold p < 1 ×
10−6 to select the top eQTL for the SMR test, a threshold for the
difference in SNP allele frequency between datasets was set to 1, and
other parameters were default options.

RESULTS

Study Design and Analysis Workflow
A schematic overview of the study design is illustrated in
Figure 1. We conducted a survey of 26 GWASs (Dunckley
et al., 2007; Schymick et al., 2007; Van Es et al., 2007; Cronin
et al., 2008; Van Es et al., 2008; Landers et al., 2009; van Es et al.,
2009; Laaksovirta et al., 2010; Shatunov et al., 2010; Kwee et al.,
2012; The ALSGENConsortium, 2013; Deng et al., 2013; Diekstra

et al., 2014; Fogh et al., 2014; Xie et al., 2014; McLaughlin et al.,
2015; Chen et al., 2016; Fogh et al., 2016; van Rheenen et al., 2016;
Benyamin et al., 2017; Nicolas et al., 2018; Dekker et al., 2019;Wei
et al., 2019; Iacoangeli et al., 2020; Nakamura et al., 2020) of ALS
in the NHGRI-EBI GWAS Catalog (till September 2021) and
additionally included one most recent GWAS (van Rheenen et al.,
2021) and 3 recent post-GWASs (Du et al., 2018; Xiao et al., 2020;
Park et al., 2021) to summarize the current knowledge on the
candidate genes of ALS (Supplementary Table S1; Figure 2B).
We then based our post-GWAS analyses on ALS GWAS from
Nicolas et al. (2018), which represents the largest-ever GWAS
data for ALS, totaling 20,806 cases and 59,804 controls of
European ancestry. We first characterized a large set of
possible tissues and cell types potentially functionally involved
in the development of ALS by conducting a gene property
analysis using FUMA. We next annotated the potential
functions of a set of candidate genes using CADD score,
RegulomeDB score, relative physical positioning with ALS-
associated SNPs, evidence of eQTL, and chromatin
interactions. We further prioritized the causality for a list of
candidate genes and tissues by applying TWAS, COLOC, and
SMR to 18 eQTL datasets from GTEx v8, eMeta, and eQTLGen.
We finally integrated the findings from different methods and
provided a list of variants and genes in corresponding tissues with
high probabilities of causality.

FIGURE 1 | Schematic overview of the study design. Data, data collection and preprocessing. Characterization, characterizing ALS risk loci, including gene
property analysis and functional annotation. Prioritization, putative causal genes prioritization and summarizing the evidence.
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Gene Property Analysis Highlights a List of
Tissues and Cell Types
The FUMA has implemented the MAGMA tissue-specificity
analysis using 54 tissues from GTEx. We identified 13 brain
regions and pituitary with nominally significant association with
ALS–gene associations (p < 0.05), and two regions showed
significance after Bonferroni correction: cerebellum (p = 2.7 ×
10−5) and cerebellar hemisphere (p = 1.3 × 10−4) (Supplementary
Figure S2). We thus focused on the 13 brain regions and pituitary
in our subsequent analyses and additionally included skeletal
muscle, which has been implied in ALS progression (Loeffler
et al., 2016; Badu-Mensah et al., 2020), and whole blood, which
was also implied in previous studies (Park et al., 2021).

MAGMA cell-type specificity analyses in a total of 196 cell types
were performed in 8 different mouse and human scRNA-seq
datasets. In the PsychENCODE, we identified both excitatory and
inhibitory neurons as significantly (FDR < 0.05) associated with ALS
(Supplementary Figure S3A; Supplementary Table S3), meaning
that in these cells gene expression profiles were significantly
associated with ALS-gene associations. Within-dataset step-wise
conditional analyses identified inhibitory neuron 6 showing
independent association (Supplementary Figure S3B;
Supplementary Tables S4, S5), further highlighting the
likelihood of inhibitory neuron 6 being the basic functional unit
of ALS. In seven mouse datasets, within-dataset conditional analyses

additionally identified oligodendrocytes and gamma-aminobutyric
acidergic (GABAergic) neurons (Gad1/Gad2) as significantly
associated cell types (Supplementary Figure S3A;
Supplementary Tables S3–S5). Cross-dataset conditional analysis
highlighted that inhibitory neuron 6, oligodendrocytes, and
GABAergic neurons (Gad1/Gad2) are likely driven by distinct
genetic signals, while various oligodendrocytes from different
datasets are likely driven by similar genetic signals
(Supplementary Figure S3C; Supplementary Table S6).

In addition, MAGMA identified seven genes showing
significant association with ALS, and all have been identified
in previous GWASs (Supplementary Figure S1).

Functional Annotation of ALS-Associated
SNPs and Genes
We annotated the functionality of 233 ALS-associated candidate
SNPs from the 6 independent genome-wide significant loci
(5q33.1 rs10463311, 9p21.2 rs3849943, 12q13.3-14.1
rs142321490, 12q14.2 rs74654358, 19p13.11 rs12973192, and
21q22.3 rs75087725) (Kircher et al., 2014). Of 233 candidate
SNPs, CADD identified a total of 17 SNPs at 3 loci (9p21.2,
12q13.3, and 12q14.2) with high scores (>12.37), suggesting a
strong deleterious effect of these variants (Supplementary Table
S7). At 9p21.2, 14 SNPs had high scores tightly surrounding

FIGURE 2 | Identification of genes associated with ALS by TWAS analysis and comparison with other studies. (A) Genes associated with ALS were identified by
S-PredictXcan and S-MetaXcan across tissues (FDR < 0.05). Meta_tissue represented the joint effect of gene expression from different tissues using S-MetaXcan. The
circles represented different tissues from outside to inside, where the brain tissues were clustered together, while each sector expressed a different gene. The strength of
color of each cell indicated the significance of the association of genes (sectors) with ALS in different tissues (circles). Among these genes, red and orange,
respectively, indicate genes newly discovered from S-PrediXcan and S-MultiXcan, blue indicates the five replicated TWAS-discovered genes recently, and black
indicates genes previously reported by GWAS. Brain tissues are grouped, and grouped genes with similar TWAS patterns are shown (the number of significant signals
labeled in the innermost ring). (B) Venn diagram displayed loci identified in different studies. The gray circle represents published GWASs, the blue circle represents two
recent TWASs from Xiao et al. (2020) and Park et al. (2021), and the orange circle represents our current TWAS. The number represents the number of loci in each region.
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C9orf72, with the highest score observed for rs3736319 (18.5),
83 bp upstream of MOB3B, and 7.6 kbp downstream of C9orf72,
and the second-highest score observed for rs10967965 (17.2), an
intronic variant of MOB3B. At 12q14.1, two SNPs had high
scores, including a UTR5 variant of NAB2 (rs185306972) and
a nonsynonymous variant of KIF5A (rs113247976). At 12q14.2,
one synonymous variant of TBK1 (rs41292019) had a high score.
RegulomeDB (Boyle et al., 2012) further revealed three SNPs at
9p21.2 with strong evidence of regulation supported by eQTL and
TF binding/DNase peak (evidence level 1f, Supplementary Table
S7). All three were located in the intronic region of MOB3B and
very close to C9orf72 (<60 kbp), with one (rs10967965) also
highlighted in the CADD analysis. These results provided
evidence for the presence of deleterious variants with
pathogenic effects and SNPs with regulatory effects in three
ALS-associated loci and provided the list of candidate genes in
these loci.

Positional mapping, eQTL mapping, and chromatin
interaction mapping were mapped to 58 genes, among which
4 genes were mapped by all three mapping methods, including
5q33.1 TNIP1, 9p21.2 C9orf72, MOB3B, and IFNK
(Supplementary Table S8). Interestingly, different from other
loci, the 9p21.2 locus clearly contained a DNA loop (Fudenberg
et al., 2016) in brain tissues (Supplementary Figure S4), which
made parts of DNA closer together and allowed genes to be
activated by regulatory elements known as enhancers. The two
loci (12q14.1 and 12q14.2) contained more signals for both eQTL
and chromatin interactions compared with the other four loci
(Supplementary Figure S5). These results provided direct
evidence for a list of SNPs and genes that are potentially
functionally involved in the development of ALS.

Multi-Tissue TWAS Identified Novel
Functional Candidate Genes
S-PrediXcan found a total of 31 genes at 19 distinct loci showing
significant (FDR < 0.05) association with ALS risk in at least one
tissue. Among the 19 loci, 5 (1q23.3, 6q14.1, 16q24.1, 17p13.2,
and 22q13.33) are newly identified (Figure 2B), highlighting six
genes (NR1I3, PCP4L1, UBE3D, ZDHHC7, MIS12, and
DENND6B). In addition, 16 genes have not been previously
suggested as functional candidates for ALS (Figure 2A;
Supplementary Table S10). Among the 31 genes, the most
significant finding was C9orf72 (FDR = 5.03 × 10−18 in
Brain_Nucleus_accumbens_basal_ganglia), which was at orders
of magnitude more significant than any other gene in any tissue
(minimum FDR = 0.001). C9orf72, representing the most well-
established gene involved in the risk of ALS, was significant not
only in 11 brain regions but also in the pituitary, skeletal muscle,
and blood. The second most significant finding was the gene
SCFD1 at 14q12, which also showed a significant association with
ALS risk in 10 brain regions, pituitary, skeletal muscle, and blood
(min FDR = 0.001 in Brain_Cerebellar_Hemisphere). The 16
newly identified genes had similar significance levels (with FDR
ranging between 0.001 and 0.05), and all were significant in up to
three tissues. Among these 16 genes, 13 from 11 loci were

significant in at least one brain tissue, and 3 from 3 different
loci were significant only in nonbrain tissues, that is, skeletal
muscle (12q13.3 PIP4K2C), blood (17q12DHRS11), and pituitary
(16q24.1 ZDHHC7).

S-MultiXcan found a total of 22 genes at 14 distinct loci,
among which six genes at six distinct loci were not identified in
S-PrediXcan (Figure 2A; Supplementary Table S11), among
which, five loci were novel. The most significant was ARFGEF1
(FDR = 6.4 × 10−4), which involves vesicular trafficking and has
previously been suggested to play a role in pathogenesis in ALS
(Saris et al., 2009). Overall, our S-PrediXcan and S-MultiXcan
together identified 21 novel genes at 15 novel loci,
complementing the lists of previously established functional
candidate genes and ALS-associated loci.

We additionally conducted a TWAS using two different
methods, that is, a unified test for molecular signatures
(UTMOST) (Hu et al., 2019) and joint-tissue imputation (JTI)
(Zhou et al., 2020). As the key gene C9orf72 was not imputed in
the UTMOST model, we focused on JTI. JTI identified a total of
18 genes (14 loci) in 16 tissues from GTEx v8 that reached the
FDR < 0.05 significance level in the corresponding tissue. Among
these, 11 genes (5q33.1 TNIP1, 9p21.2 C9orf72, 10q25.2 ACSL5,
12q13.3 B4GALNT1, 12q13.3 PIP4K2C, 14q12 SCFD1,
14q32.12 TRIP11, 17q12 DHRS11, 17q12 ZNHIT3,
17q12 GGNBP2, and 17q22 DYNLL2) at eight distinct loci
overlapped with S-PrediXcan and S-MultiXcan
(Supplementary Table S12). For the remaining seven genes,
two genes (SLC9A8 and SNAI1) were located at the locus
20q13.13, whereas S-PrediXcan identified a different gene
SPATA2. One gene, PLOD2 at 3q24, though failed to be
identified by PrediXcan, was reported by our subsequent SMR
analysis. The remaining four genes (4p16.3 NSD2,
5q22.1 CAMK4, 11p13 AL356215.1, and 20q11.22 PIGU) at
four different loci have not been reported before
(Supplementary Table S12).

Colocalization Highlights
Genotype-Mediated Genes in
Corresponding Tissues
We conducted a series of eQTL colocalization analyses in 13 brain
tissues, pituitary, skeletal muscle, and blood from GTEx v8 and
eQTLGen. These analyses identified a total of 9 genes at 5 loci
showing significant evidence (PP4 > 0.75, PP3 + PP4 > 0.9, and
PP4/PP3 > 3, Figure 3A; Supplementary Table S13) of
colocalization with eQTLs in at least one tissue. These
included 5q33.1 (TNIP1 and GPX3), 9p21.2 (C9orf72), 10q25.2
(ZDHHC6 and ACSL5), 14q12 (SCFD1 and G2E3), and 14q32.12
(TRIP11 and RP11-529H20.6).

The strongest signal according to the PP4/PP3 was identified
for rs2453555 at 9p21.2 (PP4/PP3 = 82.5), which was highly
significantly associated with ALS risk (GWAS p = 6.5 × 10−30),
and at the same time served as a highly significant eQTL of
C9orf72 in the pituitary gland (eQTL p = 4.4 × 10−12), strongly
suggesting a causal relationship (Figure 3B). This SNP was also a
significant eQTL of C9orf72 in spinal cord cervical at a much
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lower significance level (eQTL p = 8.1 × 10−6, PP4/PP3 = 5.2).
This locus showed no evidence of colocalization with eQTLs in
other tissues investigated. The SNP rs2453555 is in very high
linkage disequilibrium (LD) with the most significant SNP
(rs3849943, p = 3.8 × 10−30, r2 = 0.98) in the GWAS of
Nicolas et al. (2018). This result pinpoints rs2453555, which
may regulate the expression of C9orf72 in the pituitary, and
consequently modifies the risk of ALS. A very recent study failed
in finding colocalization signals for C9orf72 (Mountjoy et al.,
2021). Compared with their study, our study used the newest
version of GTEx, which has an average 24% increased sample size.

The second strongest signal was observed for
10q25.2 ZDHHC6 in the cerebellum (56.7) as well as in other
five different brain tissues (5.1–19.9). The other gene (ACSL5) at
this locus also showed significant colocalization (5.1) but at a
much lower significance level than ZDHHC6, and the signal was
observed only in blood. The third signal was 5q33.1 TNIP1 with
colocalization signals in the cerebellar hemisphere (18.0) and
blood (9.7) but not in other tissues. The other gene at this locus
(GPX3) was significant in only blood (10.0). The fourth signal was
14q12 SCFD1 in six brain tissues, skeletal muscle, and blood at
similar significance levels (PP4/PP3 ranging between 9.9 and 12
except in nucleus accumbens basal ganglia, where PP4/PP3 = 6.0).
The other gene at this locus (G2E3) was detected only in skeletal
muscle at a further decreased level of significance (5.5). The last
signal was 14q32.12 TRIP11 in the cerebellum, cerebellar
hemisphere, pituitary, skeletal muscle, and blood with similar
levels of significance (5.1–6.1). The other gene at this locus (RP11-
529H20.6) showed a relatively weak colocalization signal in the

blood (3.7). These results provided direct evidence of causality for
a specific set of SNPs, genes, and corresponding tissues likely
functionally involved in the development of ALS
(Supplementary Table S13).

SMR Illustrates the Causal Relationships
Between SNPs, Gene Expression, and ALS
Risk
We conducted a comprehensive SMR analysis for ALS based on
the GWAS of Nicolas et al. (n = 80,610) in 9 brain tissues,
pituitary, and skeletal muscle. We identified a total of 9 genes
from 6 loci with significant evidence mediating the genetic
associations observed in these loci (FDR < 0.05 and HEIDI >
0.01, Table 1). These included 3q24 PLOD2, 9p21.2 C9orf72,
10q22.2 NDST2, 14q12 SCFD1, 17q12 GGNBP2, MYO19,
DYNLL2, ZNHIT3, and 22q13.33 PLXNB2. Among these 6
loci, 3q24 (PLOD2 and rs149615181, skeletal muscle) and
22q13.33 (PLXNB2 and rs62241220, blood) have not been
previously reported. Interestingly, at 9p21.2, C9orf72 was
found highly significantly mediating the association between
rs2453565 and the risk of ALS in the pituitary (FDR = 2 ×
10−5), which was at orders of magnitude more significant than in
other brain and nonbrain tissues. This SNP is in very high LD
with rs2453555 (r2 = 0.95) identified by our colocalization
analysis. This result boosted the likelihood of a causal chain
between rs2453555/rs2453565, expression of C9orf72 in the
pituitary, and the risk of ALS. In the recent study of van
Rheenen et al. (2021), the HEIDI test rejected the hypothesis

FIGURE 3 | Colocalization of genetic ALS association and eQTL in different tissues. (A) Heatmap of significant colocalization (PP4 ≥ 0.75, PP3 + PP4 ≥ 0.9, and
PP4/PP3 ≥ 3) in a total of 16 tissues analyzed. The horizontal axis represented genes under different cytobands, and the vertical axis represented different tissues, where
brain regions and the blood tissues were lined up together, respectively. The cell color indicated the posterior probability of colocalization with orange indicating larger
values, and the size of the inside squares was proportional to the PP4/PP3 ratio. (B) Illustration of the C9orf72 locus in the pituitary (PP4 ≥ 0.99, PP3 + PP4 ≥ 0.99,
and PP4/PP3 = 82.5). Each dot represented a genetic variant with the candidate causal variant, rs2453555, shown as a purple diamond. The color of other variants
indicated their linkage disequilibrium (r2) based on the 1000 Genomes Project European reference panel with the purple diamond from blue to red. The left panel showed
−log10 p values for SNP associations with ALS on the x-axes, and −log10 p values for associations with gene expression levels on the y-axes. The right panel illustrated
genomic positions based on GRCh37 on the x-axes and −log10 p values of ALS GWAS (upper panel) and −log10 p values of gene expression at C9orf72 in the pituitary
gland (below panel) on the y-axes.
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that expression of C9orf72 could mediate the association between
rs2453555 and ALS risk in blood. Our finding stresses the
pituitary being the correct tissue where C9orf72 plays a
functional role in the development of ALS.

At 14q12, SCFD1 in blood (FDR = 3.6 × 10−3 in eQTLGen),
cerebellum (FDR = 0.03), and skeletal muscle (FDR = 0.04)
showed significant mediatory effects on genetic association
with ALS. Notably, rs229243 was detected to increase the risk
of ALS by modifying SCFD1 expression in skeletal muscle. This
SNP is also a significant eQTL of SCFD1 in skeletal muscle as
found in our colocalization analysis (PP4/PP3 = 9.9). A recent
SMR analysis (Iacoangeli et al., 2021) found that rs229243 had a
regulatory effect on ALS risk mediated by the expression of
SCFD1 in the blood and cerebellum. Our SMR and
colocalization results thus further provided evidence for
skeletal muscle as an additional tissue possibly of function.

At 17q12, expressions of four genes (GGNBP2, MYO19,
DYNLL2, and ZNHIT3) in the blood significantly mediated the
genetic association in this locus (Supplementary Table S14).
Among these four genes, GGNBP2 was the most significant
(FDR = 0.03), consistent with a previous study (Benyamin et al.,
2017).

Integration of Evidence Pinpoints Causal
Genes in Corresponding Tissues
Overall, our study identified a total of 43 genes at 24 loci showing
significant evidence of causality (Supplementary Table S15).
Among these 43 genes, 23 genes at 17 loci have not been
functionally linked with ALS in previous studies. Among the
24 loci, 10 loci (nine from TWAS, one from SMR) have not been
associated with ALS risk in previous studies.

A total of eight genes at six loci were significant in at least two out
of three analyses. These included 5q33.1 TNIP1, 9p21.2 C9orf72,
10q25.2 ACSL5, 10q22.2 NDST2, 14q12 SCFD1, 17q12 MYO19,
GGNBP2, and ZNHIT3. All these six loci have been previously
associated with ALS risk, and all eight genes have been previously
suggested as the functional candidates. Integrating the results from

three different analyses conducted in various tissues, our study
further revealed their most likely corresponding functional tissues
(Table 2).

The most significant finding was for 9p21.2 C9orf72, which
was highly significant in all three analyses, and all three analyses
pinpointed pituitary as the most likely functional tissue, with
orders of magnitude more significant than in any other tissues.
We thus propose that in the pituitary, the expression of C9orf72,
regulated by rs2453555, is causally associated with ALS risk.

14q12 SCFD1 in the cerebellum, skeletal muscle, and blood
were significant in all three analyses, and multiple other brain
tissues were supported by two analyses, emphasizing the multi-
tissue effect of SCFD1.

The remaining four loci (5q33.1, 10q25.2, 10q22.2, and 17q12)
were supported by two analyses, but all suggesting blood instead of
brain tissues being the causal tissue. This finding is somehow
surprising and requires experimental validations in future studies.
For 17q12, three genes (MYO19, GGNBP2, and ZNHIT3) are
functional candidates. A previous study (Park et al., 2021)
suggested MYO19 as the most likely functional candidate of this
locus, while another (Benyamin et al., 2017) suggested GGNBP2.
Our analysis suggested that GGNBP2 is less competitive with the
other two as it had a more significant HEIDI (p = 0.04).

DISCUSSION

This study represents the most comprehensive post-GWAS of ALS
to date. Our gene property analysis highlighted inhibitory neuron 6,
oligodendrocytes, and GABAergic neurons (Gad1/Gad2) as
functional cell types of ALS and confirmed cerebellum and
cerebellar hemisphere as functional tissues of ALS. Functional
annotation analysis detected the presence of multiple deleterious
variants at 3 loci (9p21.2, 12q14.1, and 12q14.2) and highlighted a list
of SNPs that are potentially functional. TWAS, COLOC, and SMR
identified 43 genes at 24 loci, including 23 novel genes and 10 novel
loci, showing significant evidence of causality. Integrating multiple
lines of evidence identified that rs2453555 at 9p21.2 and rs229243 at

TABLE 1 | Genes mediating the genetic associations with ALS in six loci from SMR and HEIDI analyses.

Locus Gene SNP FDR HEIDI Tissue Database

3q24 PLOD2 rs149615181 0.04 0.69 Muscle_Skeletal GTEx v8
9p21.2 C9orf72 rs2453565 2.00 × 10−5 0.14 Pituitary GTEx v8

rs700795 0.02 0.19 Brain_Spinal_cord_cervical_c-1 GTEx v8
10q22.2 NDST2 rs11000785 0.05 0.07 Blood eQTLGen
14q12 SCFD1 rs7144204 3.6 × 10−3 0.10 Blood eQTLGen

rs448175 0.01 0.35 Blood GTEx v8
rs229152 0.03 0.45 Brain_Cerebellum GTEx v8
rs229243 0.04 0.31 Muscle_Skeletal GTEx v8
rs2070339 0.03 0.22 Multiple brain regions Brain-eMeta

17q12 GGNBP2 rs11650008 0.03 0.04 Blood eQTLGen
MY O 19 rs7222903 0.04 0.60 Blood eQTLGen
DYNLL2 rs2877858 0.04 0.16 Blood eQTLGen
ZNHIT3 rs4796224 0.05 0.50 Blood eQTLGen

22q13.33 PLXNB2 rs62241220 0.02 0.77 Blood eQTLGen

All genes with FDR < 0.05 and HEIDI > 0.01 are shown. Loci that have not been identified in previous GWASs or post-GWASs are indicated in bold. Genes that have not been reported in
previous SMR studies are indicated in bold. Tissues that have not been reported in previous SMR studies are indicated in bold.
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14q12 functionally contribute to the development of ALS by
regulating the expression of C9orf72 in pituitary and SCFD1 in
skeletal muscle, respectively.

Our gene property analysis identified a functional relationship
between a novel cell type and ALS risk, especially inhibitory neuron
6. This finding is an important supplement to previous findings
suggesting microglia (Clarke and Patani, 2020), astrocytes (Do-Ha
et al., 2018; Saez-Atienzar et al., 2021), and glutamatergic neurons
Cronin et al. (2008) as the key cell types functionally involved in the
development of ALS. Our finding on inhibitory neurons is highly
consistent with a recent study, which showed that genetic variants
associated with ALS were mostly located in genes expressed in
neurons, particularly in inhibitory neurons, and ALS risk loci were
significantly enriched in excitatory and inhibitory neurons using
single-cell assay for transposase-accessible chromatin sequencing
(scATAC-seq) profiles (Megat et al., 2021). It is known that
inhibitory neurons release the neurotransmitter gamma-
aminobutyric acid (GABA) to regulate the initiation of excitatory
neurons, ensuring our brain functions smoothly and accident-free
(Foerster et al., 2013; Ramirez-Jarquin and Tapia, 2018). A loss of
inhibitory neuron influence is an important factor leading to ALS
pathogenesis (Turner and Kiernan, 2012).

Integrating multiple lines of evidence, we propose that rs2453555
at 9p21.2 functionally contribute to the development of ALS by
regulating the expression of C9orf72 in the pituitary. This SNP is the
top significant in both COLOC and SMR (rs2453555 and rs2453565
in high LD with top rs3849943) analysis, strongly suggesting a
functional role. This SNP tagging a highly pathogenic repeat
expansion (GGGGCC) is also in high LD with multiple
pathogenic variants at 9p21.2, although the possibility of the
presence of multiple causal variants at this locus cannot be
excluded. The aggregation of dipeptide repeats proteins (DPRs)
originating from the C9orf72 repeat expansion could result in
disorders of hormone secretion and regulation in the pituitary,
followed by disruption of the hypothalamic-pituitary axis
(Pellecchia et al., 2010; Dedeene et al., 2020). Our identification

of pituitary was highly consistent in our TWAS, COLOC, and SMR
analysis. The failure of identification of pituitary and rs2453555 in
the recent two studies (Mountjoy et al., 2021; van Rheenen et al.,
2021) is likely because only blood and cortex or a smaller eQTL
dataset were used. In addition, the cervical spinal cord was also of
interest to another tissue as a similar pattern of rs2453555. A recent
neuroimaging study reported that significant cerebral white matter
(WM) atrophy was detected at every cervical vertebral level of
C9orf72 hexanucleotide expansion carriers (Querin et al., 2019).
In contrast, another study showed that the cervical spinal cord
progressively occurs to thin in ALS patients with C9orf72 repeat
expansion (van der Burgh et al., 2019). This discrepancy could be
due to many factors, such as sample size, imaging techniques, and
statistical analysis methods.

Multiple lines of evidence support that rs229243 at 14q12
functionally contributes to the development of ALS by modifying
the expression of SCFD1 in the skeletal muscle, providing a possible
functional tissue. SCFD1 is involved in vesicular transport between
the endoplasmic reticulum and the Golgi (Hou et al., 2017).
Surprisingly, skeletal muscle was also found to be the relevant
tissue for SCFD1. Although the weakening of skeletal muscle was
thought to be the initial hallmark of ALS, whether ALS originates in
peripheral tissues (dying-back phenomenon) (Dadon-Nachum et al.,
2011), including skeletal muscle or motor neurons (dying-forward
phenomenon) (Braak et al., 2013) has been fiercely debated. Skeletal
muscle was not considered pivotal to the etiology and treatment of
ALS until recent years (Loeffler et al., 2016). Current studies about
skeletalmuscle degeneration/regeneration process focused onmutant
SOD1 mouse mode to the pathology of ALS (Cheng et al., 2019;
Badu-Mensah et al., 2020; Steyn et al., 2020), but to our knowledge,
SCFD1 has never been investigated in molecular biology experiments
or genetic models. Our findings could contribute to the
understanding of skeletal muscle pathology and may provide a
new therapeutic target for ALS. In addition, we also found 23
novel functional candidate genes (Supplementary Table S15),
among which 12 have supportive evidence from the literature.

TABLE 2 | Integration of TWAS, COLOC, and SMR results.

Locus Gene Tissue TWAS COLOC (PP4/PP3) SMR (HEIDI) Overall evidence

5q33.1 TNIP1 Blood 2.2 × 10−3 0.91 (9.70) 3.6 × 10−3 (6.7 × 10−4) pp

9p21.2 C9orf72 Brain_Spinal_cord_cervical_c-1 7.00 × 10−13 0.81 (5.10) 1.5 × 10−2 (0.19) ppp

C9orf72 Pituitary 5.00 × 10−14 0.99 (82.50) 2.00 × 10−5 (0.14) ppp

10q25.2 ACSL5 Blood 2.7 × 10−2 0.82 (5.10) — pp

10q22.2 NDST2 Blood 3.3 × 10−2 — 4.9 × 10−2 (0.07) pp

14q12 SCFD1 Brain_Cerebellum 1.7 × 10−3 0.92 (11.81) 3.1 × 10−2 (0.45) ppp

SCFD1 Muscle_Skeletal 3.7 × 10−2 0.91 (9.85) 3.8 × 10−2 (0.31) ppp

SCFD1 Blood 1.5 × 10−3 0.92 (12.00) 1.1 × 10−2 (0.35) ppp

SCFD1 Brain_Anterior_cingulate_cortex_BA24 3.3 × 10−3 0.92 (11.85) — pp

SCFD1 Brain_Cerebellar_Hemisphere 1.1 × 10−3 0.92 (11.35) — pp

SCFD1 Brain_Cortex 2.4 × 10−3 0.91 (10.75) — pp

SCFD1 Brain_Frontal_Cortex_BA9 1.3 × 10−3 0.92 (11.80) — pp

SCFD1 Brain_Nucleus_accumbens_basal_ganglia 2.7 × 10−3 0.77 (6.01) — pp

17q12 MY O 19 Blood 2.2 × 10−3 — 4.0 × 10−2 (0.6) pp

GGNBP2 Blood 1.3 × 10−2 — 2.5 × 10−3 (0.04) pp

ZNHIT3 Blood 3.5 × 10−2 — 4.9 × 10−2 (0.5) pp

Blood refers to whole blood from GTEx v8 or eQTLGen depending on which is more significant. The TWAS column indicates the p-value (FDR). The COLOC column indicates PP4 and
PP4/PP3. The SMR column indicates the p-value (FDR) of the SMR test and the HEIDI test. The number of asterisks in the overall evidence column represents the number of significant
results from three different analyses.
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However, our study is not without limitations. First, the
sample size of ALS GWAS is relatively small compared with
the latest GWAS (van Rheenen et al., 2021), a parallel to our
study. The sample size in different tissues and types for eQTL
tissues limited our ability to identify ALS-related genes and
explore the search for causal genes in other pathologically
relevant tissues. Second, LD structure (Giambartolomei et al.,
2014) and gender differences (Aguet et al., 2020) in the sample
may bias findings due to the unavailability of raw data. Third,
with the constraints of currently available data, only cis-eQTL
data were included in our analysis, which may miss the actual
causal genes. Fourth are the tissue pleiotropy and cell-type
heterogeneity. The disease rarely works in a single tissue.
Some genes could exert a causal effect on disease in specific
tissues or cell types different from our reference panel, which may
introduce bias and incompleteness. Therefore, identification of
the possible causal tissue or cell type of each gene may be a hot
topic for future development, and single-cell RNA sequencing
holds promise for more refined studies in the future. Finally,
further biological function experiments are needed to confirm the
biological role of these genes in the pathology of ALS.

In conclusion, we established causal relationships between
genetic variants, candidate genes, functional cell types and tissues,
and ALS risk. The prioritized genes and tissues serve as targets for
future functional and drug discovery studies.
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GLOSSARY

ALS amyotrophic lateral sclerosis

LD linkage disequilibrium

eQTL expression quantitative trait loci

FTD frontotemporal dementia

AD Alzheimer’s disease

PD Parkinson’s disease

FUMA functional mapping and annotation

MAGMA Multi-marker Analysis of GenoMic Annotation

CADD Combined Annotation–Dependent Depletion

GWAS genome-wide association study

TWAS transcriptome-wide association analysis

MASHR multivariate Adaptive Shrinkage in R

COLOC colocalization

SMR summary data-based Mendelian randomization analysis

HEIDI heterogeneity in dependent instruments

FDR false discovery rate

GTEx Genotype-Tissue Expression

scATAC-seq single-cell assay for transposase-accessible chromatin
sequencing

scRNA-seq single-cell RNA sequencing

OR odds ratio

GABAA gamma-aminobutyric acid type A

C9orf72 C9orf72-SMCR8 complex subunit

SCFD1 Sec1 family domain containing 1

TNIP1 TNFAIP3-interacting protein 1

G2E3 G2/M-phase-specific E3 ubiquitin protein ligase

B4GALNT1 beta-1,4-N-acetyl-galactosaminyltransferase 1

ZDHHC7 zinc finger DHHC-type palmitoyltransferase 7

MYO19 myosin XIX

DHRS11 dehydrogenase/reductase 11

GGNBP2 gametogenetin binding protein 2

SPATA2 spermatogenesis-associated 2

ZSWIM8 zinc finger SWIM-type containing 8

ACSL5 acyl-CoA synthetase long chain family member 5

UBE3D ubiquitin protein ligase E3D

NDST2 N-deacetylase and N-sulfotransferase 2

ZNHIT3 zinc finger HIT-type containing 3

POLD2 DNA polymerase delta 2, accessory subunit

DYNLL2 dynein light chain LC8-Type 2

KIF3B kinesin family member 3B

ARFGEF1 ADP ribosylation factor guanine nucleotide exchange factor 1

GPX3 glutathione peroxidase 3

RPL26L1 ribosomal protein L26-like one

CTDSP2 CTD small phosphatase 2

TRIP11 thyroid hormone receptor interactor 11

CHCHD1 coiled-coil-helix-coiled-coil-helix domain containing one

HDGFRP3 hepatoma-derived growth factor-related protein 3

CTSB cathepsin B

SLC26A10 solute carrier family 26 member 10

LINC00426 long intergenic non-protein coding RNA 426

MOB3B MOB kinase activator 3B

ZDHHC6 zinc finger DHHC-type palmitoyltransferase 6

ATXN3 ataxin 3

UNC13A Unc-13 homolog A

C21orf2 chromosome 21 open reading frame 2

SOD1 superoxide dismutase one
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