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Background: Indiolethylamine-N-methyltransferase (INMT) is a

methyltransferase responsible for transferring methyl groups from methyl

donor SAM to its substrate. S-adenosyl-l-methionine (SAM), obtained from

the methionine cycle, is a naturally occurring sulfonium compound that is vital

to cellular metabolism. The expression of INMT is down-regulated in many

tumorous tissues, and it may contribute to tumor invasion and metastasis.

Nevertheless, the expression of INMT and its relationship to methylation and

immune infiltrates in head and neck squamous cell carcinoma (HNSC) remains a

mystery. Thus, we evaluated expression, clinicopathological features,

prognosis, several critical pathways, DNA methylation, and immune cell

infiltration for the first time.

Methods: Analysis of the clinicopathological characteristics of INMT

expression, several tumor-related bioinformatics databases were utilized. In

addition, the role of INMT expressionwas analyzed for prognosis. Several INMT-

related pathways were enriched on the LinkedOmics website. In addition, we

have analyzed the methylation of INMT in HNSC in detail by using several

methylation databases. Lastly, the relationship between INMT gene expression

and immune infiltration was analyzed with ssGSEA, Timer, and TISIDB.

Results: In HNSC, mRNA and protein levels were significantly lower than in

normal tissues. The low expression of INMT was statistically associated with T

stage, histological grade, gender, smoking history, and alcohol consumption.

HNSC patients with low INMT expression have a poorer OS (overall survival)

compared to those with high levels of expression. In addition, the multivariate

analysis revealed INMT expression to be a remarkable independent predictor of

prognosis in HNSC patients. An analysis of gene enrichment showed that

several pathways were enriched in INMT, including the Ras signaling
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pathway, the cGMP-PKG signaling pathway, and others. Moreover, methylation

patterns of INMT detected in a variety of methylation databases are closely

associated with mRNA expression and prognosis. Finally, INMT was significantly

correlated with immune infiltration levels.

Conclusion: HNSC with low levels of INMT exhibits poor survival,

hypomethylation, and immune infiltration. For HNSC, this study presented

evidence that INMT is both a biomarker of poor prognosis and a target of

immunotherapy.

KEYWORDS

Indiolethylamine-N-methyltransferase, head and neck squamous cell carcinoma, low
expression, poor prognosis, methylation, immune infiltration

Introduction

Around 700,000 cases of head and neck squamous cell

carcinoma (HNSC) occur worldwide annually (Siegel et al.,

2020). The 5-year overall survival (OS) for HNSC patients has

remained at 60%, despite the advancing treatment (Chi et al.,

2015). When determining the prognosis of patients with HNSC,

the TNM classification system considers tumor size, location, and

metastatic status. A treatment strategy is then developed (Lydiatt

et al., 2017). The TNM system is not without its flaws, however,

as patients with the same stage of cancer react to treatments

differently (Budach and Tinhofer, 2019). As a result of HNSC’s

high degree of heterogeneity, biomarkers must be stable, reliable,

and broad-spectrum (O’Sullivan et al., 2013). As a consequence,

HNSC requires useful therapeutic targets or identification of

potential prognostic biomarkers.

DNA methylation is one of the most important epigenetic

modifications (Baylin and Jones, 2016), the nucleic acid sequence

does not change, and the gene expression can be inherited,

playing key roles in the regulation of gene expression,

genomic imprinting, X chromosome inactivation, and

tumorigenesis (Jones and Baylin, 2007; Smith and Meissner,

2013). DNA methylation is catalyzed by a family of DNA

methyltransferases (Dnmts) that transfer a methyl group from

S-adenyl methionine (SAM) to the fifth carbon of a cytosine

residue to form 5 mC (Moore et al., 2013). As an essential amino

acid, methionine is found in the diet of mammals. It is converted

to the principal cellular methyl donor, S-adenosylmethionine

(SAM, also known as AdoMet), by the transfer of adenosine from

ATP to the methionine sulfur. Methionine adenosyltransferase

(MAT) is responsible for catalyzing this reaction (Kaiser, 2020).

SAM is a naturally arising sulfonium compound that is essential

for cellular metabolism. SAM has been shown to slow the

progression of several types of human tumors over the last

few decades (Ansorena et al., 2002; Lu and Mato, 2008;

Martinez-Lopez et al., 2008). Indolethylamine-N-

methyltransferase (INMT) is a methyltransferase that transfers

one or more methyl groups from the methyl donor S-adenosyl-l-

methionine (SAM) to the substrate (Axelrod, 1962; Herman

et al., 1985; Thompson and Weinshilboum, 1998). It is,

therefore, demonstrated that INMT contributes to the

detoxification of selenium compounds and that it is involved

in the regulation of the tryptophan metabolic pathway (Kuehnelt

et al., 2015). Researchers found that INMT levels were lower in

lung, meningioma, and prostate cancers (Kopantzev et al., 2008;

Larkin et al., 2012; Schulten et al., 2016); however, the role of

INMT in cancer is unclear.

The purpose of this article is to investigate the role of INMT

in HNSC and its potential prognostic value. In the first step of the

process, we gathered comprehensive gene expression data,

clinical information, and prognostic information about HNSC

patients from TCGA as well as other sources. The second step

was to analyze protein expression, protein-protein interactions,

and functional enrichment in HNSC using various related

databases. Moreover, we used several methylation databases to

analyze the methylation of INMT in HNSC in detail. Finally, the

tissue microenvironment of tumor cells plays an important role

in tumor development, which led us to explore the relationship

between immune cells and INMT in the immune

microenvironment of HNSC. Based on the results of this

study, INMT may be utilized as either an indicator of

prognosis or a therapeutic target for HNSC.

Materials and methods

Data acquisition and processing

Our study consists of extracting RNA-Seq expression data

and clinical information associated with INMT in HNSC from

the TCGA official website (Tomczak et al., 2015). So, 502 HNSC

samples, as well as 44 adjacent normal tissue samples, were

retained for analysis. To further analyze gene expression data

obtained through RNA-Seq, the FPKM generated workflow data

was converted to TPM format, and a log2 conversion was

performed. Genomic information on INMT was also collected

from selected samples, including TNM stage, clinical stage,

histological grade, age, sex, smoking history, drinker, and
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radiation therapy. The mRNA expression data were presented as

mean ± standard deviation. A Pearson correlation analysis was

also utilized to determine the association between INMT

expression levels and immune checkpoint gene expression.

Since the research was conducted using data obtained from

TCGA, it was not necessary to obtain Ethics Committee

approval for this research. As a final step, gene expression

profiles of GSE30784 were acquired from the Gene Expression

Omnibus (GEO) database (Edgar et al., 2002) to further verify

that INMT was downregulated in HNSC tissues.

Analyze on the TIMER website

TIMER (Li et al., 2017) is a web server that performs analyses

of gene expression and immunological cells that infiltrate tumors

of a variety of cancer types. Based on analyses of TIMER, we

assessed whether INMT is differentially expressed in a variety of

tumor types as compared to normal tissues. As part of our study,

we explored the association between INMT and six immune

infiltrating cells of the tumor as well as 16 molecular markers of

immune cells.

Kaplan-Meier Plotter database analysis

The Kaplan-Meier plotter (Nagy et al., 2018) is an open,

intuitive online tool that can be used to perform prognostic

analysis in multiple cancer tissues. Based on the Kaplan-Meier

plotter website, a link between clinical outcomes and INMT

expression in HNSC was first assessed. The level of INMT

expression within related immune cell subsets was then

utilized for prognostic analysis. A hazard ratio (HR) based on

95% confidence intervals (CIs) was calculated along with the log-

rank p-value.

Indiolethylamine-N-methyltransferase
protein expression, functional enrichment
analysis, and protein-protein interaction
networks

UALCAN’s website makes it easy to analyze publicly

available cancer data, such as protein expression, by providing

easy-to-use tools such as CPTAC (Edwards et al., 2015;

Chandrashekar et al., 2017). Using UALCAN, we examine the

expression of INMT proteins throughout CPTAC.

Using the LinkFinder module on the LinkedOmics website

(Vasaikar et al., 2018), the differentially expressed genes

associated with INMT were analyzed from the TCGA HNSC

dataset, and Pearson correlation coefficients were utilized to

determine the correlation between the results, which were

represented in a volcano plot and heat map, respectively. An

analysis of Gene Ontology (biological processes, cellular

components, and molecular functions) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways using

Gene Set Enrichment Analysis (GSEA) is performed by Link

Interpreter. Furthermore, we employed the GEPIA database

(Tang et al., 2017) to visualize heat maps showing the top

50 genes positively and negatively associated with INMT,

respectively.

Protein-protein interactions (PPI) of INMT-binding proteins

were analyzed on the STRING database (Szklarczyk et al., 2011)

with parameters like the meaning of edges of the network

(“evidence”), active sources of interaction (“experiments”), the

minimum needed score for an interaction study [“Low

confidence (0.150)”], and the maximum number of

interactions to be calculated (“no more than 50 interactors”).

Afterward, the information about 50 INMT-binding proteins

with experimental evidence was identified from the interaction

network. The intersection analysis of INMT-co-expressed genes

and INMT-interacted genes was performed using an interactive

Venn diagram viewer. Utilizing the Timer, we investigated the

link between INMT expression and the common genes identified

through intersection analysis.

Methylation and expression analysis of
Indiolethylamine-N-methyltransferase

Researchers have found that DNA methylation is a

significant epigenetic mechanism capable of governing gene

expression and influencing cancer cell behavior. UCSC Xena

is a genome-based database (Goldman et al., 2020), and we used

this database for the analysis of INMT methylation and

expression. After that, we analyzed methylation levels of

INMT on both HNSC and paracancerous normal tissues

using UALCAN and DiseaseMeth version 2.0 (Xiong et al.,

2017). Additionally, using MEXPRESS (Koch et al., 2015),

INMT expression was correlated with DNA methylation

status in our study. Finally, we performed a multivariate

survival analysis using MethSurv (Modhukur et al., 2018) to

determine the distribution of CpG islands.

Immune infiltration analysis

In the study conducted by Bindea et al. (2013), the marker

genes were extracted from 24 immune cells. To determine the

amount of tumor-infiltrating immune cells, single-sample GSEA

(ssGSEA) (Finotello and Trajanoski, 2018) was initially

employed using HNSC mRNA TPM data from the TCGA.

Spearman correlation was applied to establish the

correlation between INMT and these 24 types of immune

cells. A database called TISIDB is available for analyzing

tumor-immune cell interaction (Ru et al., 2019), and we
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also investigated the relation of INMT expression and

methylation to the presence of tumor-infiltrating

lymphocytes using this platform.

Statistical analysis

We used the R (V 3.6.3) and R package ggplot2 to display

the expression differences to conduct statistical analyses.

Comparing HNSC tissues and adjacent normal tissues were

accomplished using paired t-tests and Mann-Whitney U-tests.

To investigate the relationship between clinicopathological

features and INMT expression, Mann-Whitney U-test,

Fisher’s test, Chi-Squared test, and logistic regression were

employed. With the pROC package (V 1.17.0.1), INMT

expression was assessed for diagnostic accuracy using ROC

curves. To assess the effect of INMT on survival, Kaplan-Meier

and log-rank tests were performed using the survminer package

(V 0.4.9). To estimate the risk of death, we performed

multivariate and univariate analyses using Cox proportional

hazard models. In multivariate Cox regression analysis,

variables with p < 0.15 in univariate Cox regression are

included in the analysis. As a result of the Cox regression

models, the independent prognostic factors acquired from the

multivariate analysis were employed to develop nomograms,

each predicting the probability of survival at 1-, 3-, and 5-years.

Based upon the RMS package (V 6.2-0), we created nomograms

containing important clinical characteristics as well as

calibration plots. We calculated the discrimination of the

nomogram utilizing a concordance index (C-index). Our

study employed two-tailed statistical tests with a significance

level of 0.05 or less.

Results

Abnormally low level of Indiolethylamine-
N-methyltransferase expression in head
and neck squamous cell carcinoma

Initially, we utilized the TIMER website to probe the

mRNA expression of INMT. INMT mRNA expression was

FIGURE 1
Variations in the expression levels of INMT betweenmalignancies and themRNA and protein expression levels in HNSC. (A) The expression level
of INMT in multiple tumors derived from TCGA data in TIMER. Note: *p < 0.05, **p < 0.01, ***p < 0.001. (B) Volcano plots of the DEGs in GEO. (C,D)
Differential levels of INMT mRNA expression in HNSC. (E) The expression level of INMT protein according to CPTAC.
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FIGURE 2
Clinical pathological characteristics correlated with INMT mRNA expression levels using the TCGA dataset. INMT mRNA expression was
statistically related to T stage (A), histologic grade (E), gender (F), smoke (H), and alcohol history (I). Nonetheless, no statistical association was
discovered between the expression levels of INMT and N stage (B), M stage (C), clinical stage (D), age (G), and radiation therapy (J). ROC analysis of
INMT in HNSC (K).
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significantly lower in multiple human cancers, specifically in

HNSC, in comparison with their respective normal tissues

(Figure 1A). After that, we selected dataset GSE30784 (Chen

et al., 2008) from the HNSC database to identify differentially

expressed genes (DEGs). Comparing samples of 167 HNSC

patients with low INMT with 62 samples of patients with high

INMT. The analysis identified 3630 DEGs that covered

1898 upregulated genes and 1732 downregulated genes as

statistically significant between the two cohorts (|Log2-fold

change| > 1, adjusted p-value < 0.05). We still found that

INMT was down-regulated in the differentially expressed

genes identified (Figure 1B).

The INMT expression data from TCGA were further

analyzed to demonstrate the mRNA and protein expression

of INMT in HNSC. Unpaired data analysis illustrated that the

mRNA expression of INMT was statistically lower in HNSC

samples (n = 502) as compared with normal samples (n = 44)

(Figure 1C, 1.411 ± 0.83 vs. 2.255 ± 1.26, p < 0.001).

Additionally, an analysis of paired data indicated that the

levels of mRNA expression of INMT in HNSC tissues (n =

43) were statistically lower than those in adjacent normal

tissues (n = 43) (Figure 1D, 1.391 ± 0.944 vs. 2.263 ± 1.274,

p = 0.002).

As a final step, we analyzed CPTAC with UALCAN to

analyze the expression of INMT protein. It was found that the

protein expression of INMT in HNSC was significantly lower

than in normal tissues (Figure 1E, p < 0.05).

Association with Indiolethylamine-N-
methyltransferase expression and
clinicopathological variables

Firstly, a Mann-Whitney U-test was conducted to develop

an understanding of the link between the INMT expression

and clinical-pathological characteristics of HNSC tissues.

According to Figures 2A–K, decreased INMT was

remarkably correlated with T stage (p = 0.02), histological

grade (p = 0.02), gender (p = 0.01), smoker (p = 0.02), and

alcohol history (p = 0.02). The expression of INMT did not

correlate statistically significantly with other clinical-

pathological characteristics, including N stage, M stage,

clinical stage, age, and radiation therapy. As a result of

using the Fisher exact test, as well as the chi-square test

(Supplementary Table S1), similar results were obtained.

Additional analysis revealed that the AUC value for

INMT was 0.703 (CI: 0.620–0.786) (Figure 2K).

Furthermore, univariate logistic regression of INMT

expression (Table 1) further demonstrated that INMT

expression was also closely associated with clinical-

characteristics, including histologic grade [Odds Ratio

(OR) = 1.660, CI: 1.096–2.530, p = 0.017], Gender (OR =

1.637, CI: 1.099–2.451, p = 0.016), smoker (OR = 1.874, CI:

1.220–2.906, p = 0.004), alcohol history (OR = 1.598, CI:

1.092–2.347, p = 0.016), but not T, N, and M stages, clinical

stage, age, radiation therapy. At a cutoff of 2.328, INMT had

a sensitivity, specificity, and accuracy of 45.5,85.7 and 82.4%,

respectively. The negative predictive value was 94.7%, and

the positive predictive value was 21.7%. Collectively, these

results suggest that INMT may serve as a biomarker for poor

prognosis in HNSC.

Short overall survival is associated with
low mRNA expression of
Indiolethylamine-N-methyltransferase

Kaplan-Meier curves and Kaplan-Meier plots were utilized

to investigate the relationship between INMT mRNA

expression and the overall survival (OS) of patients with

HNSC. Kaplan-Meier survival analysis of the TCGA-HNSC

data set uncovered that patients with low INMT expression had

a worse overall survival than those with high INMT expression

(HR = 0.72, CI: 0.55–0.94, p = 0.017; Figure 3A). Similarly, the

TABLE 1 The association between INMT expression and clinical-pathological characteristics (logistic regression).

Characteristics Total(N) Odds Ratio (OR) p value

T stage (T3&T4 vs. T1&T2) 487 0.703 (0.484–1.019) 0.063

N stage (N1&N2&N3 vs. N0) 480 1.016 (0.710–1.454) 0.930

M stage (M1 vs. M0) 477 0.234 (0.012–1.593) 0.195

Clinical stage (Stage III & Stage IV vs. Stage I & Stage II) 488 0.919 (0.603–1.399) 0.695

Histologic grade (G3&G4 vs. G1&G2) 483 1.660 (1.096–2.530) 0.017

Gender (Male vs. Female) 502 1.637 (1.099–2.451) 0.016

Age (>60 vs.≤60) 501 1.041 (0.733–1.478) 0.822

Radiation therapy (Yes vs. No) 441 1.100 (0.743–1.630) 0.634

Smoker (Yes vs. No) 492 1.874 (1.220–2.906) 0.004

Alcohol history (Yes vs. No) 491 1.598 (1.092–2.347) 0.016
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Kaplan-Meier Plotter result indicated that low INMT

expression was related to worse overall survival in HNSC

(HR = 0.62, CI: 0.47–0.83, p = 0.0002; Figure 3B).

Based on a Cox regression model, univariate analysis of OS

identified that poor OS was strongly associated with INMT

expression (p = 0.017, CI: 1.059–1.81), M stage (p = 0.002, CI:

0.078–0.572), radiation therapy (p = 0.002, CI: 1.203–2.212)

(Supplementry Table S2; Figure 3C). However, at multivariate

Cox regression analysis, INMT expression (p = 0.007, CI:

1.129–2.151), T stage (p = 0.005, CI: 0.406–0.855), N stage (p =

0.025, CI: 0.492–0.954), M stage (p = 0.024, CI: 0.078–0.836), and

radiation therapy (p < 0.001, CI: 1.417–2.813) could independently

predict adverse OS (Supplementary Table S2; Figure 3D). In

addition, this study found that patients with low INMT

expression have a 1.559 times greater risk of adverse OS than

those with elevated INMT expression (Figure 3D).

Considering the results discussed previously, INMT mRNA

may serve as an independent prognostic indicator for HNSC.

Based on a multivariate Cox regression analysis of TCGA data, an

OS prediction model was developed. We constructed a nomogram

of OS that incorporates INMT as well as other prognostic factors,

including T stage, N stage, M stage, and radiation therapy

FIGURE 3
The prognostic significance of INMT expression in HNSC. (A) A survival curve for OS based on TCGA data; (B) A survival curve for OS based on
Kaplan-Meier Plotter; (C,D) Univariate and multivariate Cox analyses of INMT and pathological characteristics; (E) A nomogram incorporating INMT
and other prognostic factors for HNSC utilizing TCGA data; (F) The calibration curve of the nomogram.
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(Figure 3E). The higher the point on the nomogram, the worse the

prognosis. According to the calibration curve, the performance of

INMT was evaluated, and the C-index of the OS was 0.660

(Figure 3F). Overall, this nomogram may be a more accurate

predictor of survival than individual prognostic factors for patients

with HNSC.

Functional inference of Indiolethylamine-
N-methyltransferase in head and neck
squamous cell carcinoma

In the LinkedOmics web portal, a LinkFinder module was

available to investigate the co-expression pattern of INMT in

FIGURE 4
The co-expression genes for INMT in HNSC are derived from the LinkedOmics. (A) All the significantly associated genes with INMT were
distinguished by the Pearson test in the HNSC cohort. (B,C) Heat maps depicting the 50 most significant genes positively and negatively associated
with INMT in HNSC. Genes that are positively related are outlined in red, whereas genes that are negatively related are outlined in blue. (D) Survival
map of the 50 most significant genes positively and negatively related to INMT in HNSC.
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TCGA-HNSC to provide knowledge about INMT’s biological

function. As depicted in Figure 4A, 10,950 genes (dark red dots)

positively correlate with INMT, whereas 5,433 genes (dark green

dots) negatively correlate with INMT. The diagrams in Figures

4B,C illustrate heat maps of the top 50 genes positively and

negatively associated with INMT, respectively. In addition, the

top 50 genes with a high probability of becoming low-risk

markers in HNSC, 43/50 of which had a favorable hazard

ratio (HR) should be noted. Contrary to this, we found 40 of

the top 50 genes to have unfavorable HR among the top

50 negatively remarkable genes (Figure 4D).

Analysis of the KEGG pathways indicated enrichment in

riboflavin metabolism, dilated cardiomyopathy, renin-angiotensin

system, hematopoietic cell lineage, cGMP-PKG signaling pathway,

Ras signaling pathway, and so on (Supplementary Figure 1A). In

addition, GO term annotation revealed that co-expressed genes of

INMTwere primarily related to organ growth, regulation of metal ion

transport, B cell activation, etc., with the biological process

(Supplementary Figure 1B), a protein complex involved in cell

adhesion, platelet dense granule, sarcoplasm, etc., with the cellular

components (Supplementary Figure 1C), and extracellular matrix

structural constituent, nucleotide receptor activity, purinergic receptor

activity, etc., with the molecular function (Supplementary Figure 1D).

To further explore the internal mechanism underlying the INMT

gene’s involvement in tumorigenesis, the STRINGwebsite was utilized

to explore the PPI network analysis. With the help of experimental

evidence, Figure 5A visualized the interaction network of 50 INMT-

binding proteins. We also screened out the common genes such as

GNA13, GNA15, and GNG7 by comparing the top 50 co-expressed

genes with the top 50 interacted genes (Figure 5B). Furthermore, the

level of INMT expression was strikingly positively associated with that

of GNA13 (r = 0.371, p = 1.82e-17), GNG7 (r = 0.659, p = 1.61e−62)

and negatively associated with that of GNA15 (r = −0.333, p =

3.27e−14) (Figure 5C).

Expression of Indiolethylamine-N-
methyltransferase is related to its
methylation

Various methods were used to investigate the correlation

between INMT expression levels and their methylation status

FIGURE 5
An analysis of INMT-related genes based on PPI networks. (A) A network visualization for INMT-binding proteins was created using the STRING
database. (B) An intersection analysis was performed between co-expressed genes and genes that interacted with INMT. (C) INMT expression
correlates with screened genes including GNA13, GNA15, and GNG7.
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to elucidate the abnormal downregulation mechanisms found

in HNSC tissues. Using the UCSC Xena database, we first

examined the DNA methylation levels of the INMT in HNSC.

INMT mRNA expression is related to DNA methylation

(Figure 6A). As shown in Figure 6B, the results of the

UALCAN analysis indicated that INMT had a trend of

higher methylation levels in normal head and neck

samples than in HNSC samples (p = 9.52E-08). As in the case

FIGURE 6
Methylation analysis of INMT. (A)Heatmap illustrating the correlations between INMTmRNA and methylation in HNSC as determined by UCSC
Xena. (B)Methylation was assessed via UALCAN. (C) DiseaseMeth version 2.0 was used to determine methylation. (D)Methylation of the INMT DNA
sequence related to gene expressionwas visualized utilizingMEXPRESS. A blue line in the plot illustrates the expression of INMT. On the right, you can
see Pearson’s coefficients of correlation and p values for methylation sites and query gene expression.
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of DiseaseMeth version 2.0, the methylation of INMT in

paracancerous normal tissues was greater than that in HNSC

tissues (p = 4.70E-11; Figure 6C). Moreover, through MEXPRESS

database, we identified eleven methylation sites (cg18285819,

cg13134297, cg22007110, cg03012028, cg21110092, cg25936815,

cg09797340, cg26586843, cg18873686, cg04749372, cg00194277) in

the DNA sequences of INMT that were positively related to their

expression levels. Conversely, only one methylation site (cg27345762)

was negatively correlated with INMT expression levels (Figure 6D).

Third, we presented heatmaps of the differentially methylated regions

associated with INMT (Supplementary Figure 2A). Interestingly, we

were able to validate the two predicted methylation sites

(cg04749372 and cg00194277) using the Methsurv database.

cg04749372 was detected in the open sea region and 1stExon

region, and cg00194277 was detected in the open sea region and 3′
UTR region (Supplementary Figure 2A). As we continued to use

Methsurv, we found that cg18589624, located in the TSS1500 region

and open ocean, was associated with a poor prognosis (Supplementary

Figure 2B).

Association between Indiolethylamine-N-
methyltransferase with immune
infiltration level

As both KEGG and GO enrichment analyses illustrated that

INMT may be involved in the tumor immune response,

employing the TIMER, we first investigated the association

between INMT expression and the six types of tumor-

infiltrating immune cells. Pearson correlation analysis

(Figure 7A) confirmed that there were significant positive

associations between INMT expression and all six types of

immune cells. Additionally, we utilized ssGSEA to assess the

interrelation between INMT and 24 immune cell subsets in

HNSC and found that INMT is strongly correlated with

B cells, CD8+T cells, Cytotoxic cells, DC, Eosinophils, iDC,

Macrophages, Mast cells, NK CD56bright cells, NK cells,

pDC, T cells, T helper cells, Tem, TFH, Th1 cells, Th17 cells,

Th2 cells, TReg (Supplementary Figure 3A). INMT exhibits a

close negative correlation with Tgd (Supplementry Figure 3A).

FIGURE 7
The relationship between the INMT level and immune infiltration level in HNSC. (A) Analysis of the correlation between INMT expression and the
levels of immune cell infiltration in HNSC tissues using the TIMER database. (B) Relationship between expression of INMT and 28 types of TILs across
human heterogeneous cancers. (C) Relationship between INMT expression and the gene levels of more than 40 common immune checkpoints in
HNSC.
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As well, similar results were also achieved using the TISIDB

database (Figure 7B; Table 2). The TISIDB database was also

examined to determine the interrelation between INMT

methylation and 28 types of tumor-infiltrating lymphocytes

(TILs). The data shown in Supplementary Figure 3B and

Table 2 show that INMT methylation was significantly

positively related to 27 kinds of immune cells, except for

CD56dim NKT cells. We then examined how INMT

expression correlates with tumor-infiltrating immune cell gene

marker levels in HNSC samples by examining the TIMER

website. As shown in Table 3, INMT levels in HNSC tissues

were strongly associated with fourteen immune cells’ all markers

(B cells, CD8+ T cells, dendritic cells, M2 macrophages,

monocytes, neutrophils, T general cells, T exhaustion cells,

TAMs, Tfhs, Th1s, Th2s, Th17s, and Tregs).

Immune checkpoint inhibitors (ICIs), a novel approach to

cancer immunotherapy, have already been shown to improve the

outcomes of many types of cancer patients (Pardoll, 2012;

Topalian et al., 2015). We then investigated the association

between the expression of the INMT gene and the expression

of over 40 common immune-control genes. A noteworthy

finding was that INMT expression is related to almost

41 immune checkpoint markers in HNSC, including PDCD1,

CTLA4, CD160, CD200, and so on (Figure 7C). The data

presented here indicate that PD-1 (PDCD1) and CTLA4, two

biomarkers used to evaluate immune-checkpoint inhibitor

efficacy (Pardoll, 2012), showed a highly significant

correlation with INMT expression in HNSC.

The last analysis is performed in HNSC using Kaplan-Meier

plotters to explore the association between INMT expression and

the prognosis of eight immune cells. In addition, we identified

that patients with low INMT levels in enriched B cells (p =

0.0019), CD4+ memory T cells (p = 0.0036), CD8+ T cells (p =

4.3e-05), macrophages (p = 0.015), regulatory T-cells (p =

TABLE 2 Tumor lymphocyte infiltration in HNSC is related to INMT expression and methylation, respectively (TISIDB).

INMT expression INMT methylation

Rho P Rho P

Activated CD8 T cell (Act_CD8) 0.096 0.028 0.356 3.78E-17

Central memory CD8 T cell (Tcm _CD8) 0.111 0.011 0.213 1.02E-06

Effector memory CD8 T cell (Tem _CD8) 0.187 1.71E-05 0.423 <2.2E-16
Activated CD4 T cell (Act_CD4) 0.123 0.005 0.31 5.67E-13

Central memory CD4 T cell (Tcm _CD4) −0.065 0.137 0.187 1.83E-05

Effector memory CD4 T cell (Tem _CD4) 0.359 1.48E-17 0.21 1.37E-06

T follicular helper cell (Tfh) 0.309 6.49E-13 0.343 9.46E-16

Gamma delta T cell (Tgd) 0.029 0.515 0.332 9.44E-15

Type 1 T helper cell (Th1) 0.371 <2.2E-16 0.351 1.64E-16

Type 17 T helper cell (Th17) 0.183 2.78E-05 0.24 3.04E-08

Type 2 T helper cell (Th2) 0.135 0.002 0.296 7.07E-12

Regulatory T cell (Treg) 0.229 1.25E-07 0.357 2.92E-17

Activated B cell (Act_B) 0.48 <2.2E-16 0.237 4.53E-08

Immature B cell (Imm_B) 0.348 3.13E-16 0.372 <2.2E-16
Memory B cell (Mem_B) 0.361 7.23E-18 0.107 0.015

natural killer cell (NK) 0.365 6.56E-19 0.252 6.09E-09

CD56bright natural killer cell (CD56bright) −0.195 7.81E-06 0.211 1.23E-06

CD56dim natural killer cell (CD56dim) 0.005 0.907 −0.014 0.745

Myeloid derived suppressor cell (MDSC) 0.228 1.43E-07 0.433 <2.2E-16
Natural killer T cell (NKT) 0.242 2.25E-08 0.295 7.08E-12

Activated dendritic cell (Act_DC) 0.026 0.552 0.3 3.32E-12

Plasmacytoid dendritic cell (pDC) 0.237 4.77E-08 0.144 0.001

Immature dendritic cell (iDC) 0.026 0.561 0.237 4.69E-08

Macrophage (Macrophage) 0.367 <2.2E-16 0.266 7.85E-10

Eosinophi (Eosinophil) 0.332 9.54E-15 0.234 7.17E-08

Mast (Mast) 0.495 <2.2E-16 0.161 <0.001
Monocyte (Monocyte) 0.084 0.056 0.33 1.28E-14

Neutrophil (Neutroph) −0.035 0.428 0.24 3.07E-08
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0.0039), type 1 T-helper cells (p = 0.0014), type 2 T-helper cells

(p = 0.001) had a worse prognosis (Supplementary Figure 4).

Hence, these findings strongly demonstrate that the INMT gene

might contribute to tumor immunity.

Discussion

Even though significant progress over the past few years,

there is continued evidence of increased morbidity and mortality

associated with HNSC. To improve the survival rate of HNSC

patients, it is imperative to make an accurate prediction of

TABLE 3 The relevance between INMT and the biomarkers of immune
cells in HNSC was analyzed utilizing the Timer platform.

Description Gene markers HNSC

None Purity

cor p cor p

B cell CD19 0.476 *** 0.476 ***

CD79A 0.522 *** 0.526 ***

CD8+ T cell CD8A 0.27 *** 0.249 ***

CD8B 0.324 *** 0.305 ***

Dendritic cell ITGAX 0.388 *** 0.376 ***

NRP1 0.307 *** 0.293 ***

CD1C 0.427 *** 0.416 ***

HLA-DPA1 0.313 *** 0.294 ***

HLA-DRA 0.304 *** 0.287 ***

HLA-DQB1 0.245 *** 0.231 ***

HLA-DPB1 0.337 *** 0.32 ***

M1 Macrophage PTGS2 0.01 0.82 0.025 0.577

IRF5 0.255 *** 0.251 ***

NOS2 0.39 *** 0.405 ***

M2 Macrophage MS4A4A 0.342 *** 0.318 ***

VSIG4 0.321 *** 0.302 ***

CD163 0.331 *** 0.313 ***

Monocyte CSF1R 0.399 *** 0.383 ***

CD86 0.285 *** 0.266 ***

Natural killer cell KIR2DS4 0.062 0.159 0.044 0.331

KIR3DL3 0.094 0.032 0.073 0.108

KIR3DL2 0.292 *** 0.279 ***

KIR3DL1 0.159 ** 0.146 *

KIR2DL4 0.086 0.049 0.091 0.045

KIR2DL3 0.121 * 0.102 0.023

KIR2DL1 0.068 0.123 0.056 0.212

Neutrophils CCR7 0.489 *** 0.493 ***

ITGAM 0.399 *** 0.378 ***

CEACAM8 0.12 * 0.108 0.017

T cell (general) CD3D 0.326 *** 0.313 ***

CD3E 0.393 *** 0.383 ***

CD2 0.39 *** 0.379 ***

T cell exhaustion CTLA4 0.309 *** 0.298 ***

(Continued in next column)

TABLE 3 (Continued) The relevance between INMT and the biomarkers
of immune cells in HNSC was analyzed utilizing the Timer platform.

Description Gene markers HNSC

None Purity

cor p cor p

LAG3 0.187 *** 0.173 **

HAVCR2 0.326 *** 0.306 ***

GZMB 0.154 ** 0.135 *

PDCD1 0.3 *** 0.286 ***

TAM CCL2 0.5 *** 0.484 ***

IL10 0.406 *** 0.395 ***

CD68 0.177 *** 0.157 **

Tfh BCL6 0.359 *** 0.378 ***

IL21 0.294 *** 0.264 ***

Th1 TBX21 0.313 *** 0.297 ***

STAT4 0.324 *** 0.314 ***

IFNG 0.12 * 0.095 0.035

IL13 0.201 *** 0.183 ***

Th2 GATA3 0.246 *** 0.236 ***

STAT6 0.157 ** 0.162 **

STAT5A 0.378 *** 0.355 ***

Th17 STAT3 0.298 *** 0.29 ***

IL17A 0.205 *** 0.196 ***

Treg FOXP3 0.454 *** 0.448 ***

CCR8 0.454 *** 0.443 ***

STAT5B 0.442 *** 0.429 ***

TGFB1 −0.089 0.041 −0.088 0.052

*p< 0.01; **p< 0.001; ***p< 0.0001.
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prognosis. Thus, HNSC needs useful therapeutic targets or the

identification of potential biomarkers of prognosis. The purpose

of this article is to examine the role of INMT as a potential

marker in HNSC as well as its potential prognostic value.

INMT belongs to a large class of N-methyltransferases that

utilize SAM as a methyl donor. SAM is used by INMT to transfer

methyl groups to the nitrogen of substrates containing indolyl alkyl

amino groups and, subsequently, to create SAH. During the past

decade, the antiproliferative, proapoptotic, and antimetastatic

properties of SAM have been extensively studied in pan-cancer.

SAM has been demonstrated to induce cell cycle arrest, inhibit the

migration and invasion of two HNSC cell lines (oral Cal-33 and

laryngeal JHU-SCC-011), and modulate through the main

signaling pathways such as AKT, β-catenin, and SMAD (Mosca

et al., 2020). According to the Gene Cards database (Safran et al.,

2021), NNMT is an important paralog of INMT. Expression of

NNMT on ovarian cancer cells supported migration, proliferation,

growth, and metastasis in vivo. In cancer-associated fibroblasts

(CAFs), the expression of NNMT was associated with depletion of

SAM and a reduction in histone methylation, resulting in

alterations in gene expression (Eckert et al., 2019).

Evidence suggests that the expression of INMT is reduced in

several cancers (Kopantzev et al., 2008; Larkin et al., 2012; Schulten

et al., 2016). As a result of pan-cancer analysis, we also discovered

that different expressions of INMT were observed in various types

of tumors (Figure 1A). Research has shown that when INMT is

overexpressed in prostate cancer cells, INMT inhibits cell

proliferation and induces apoptosis by activating MAPK, TGFβ,
and Wnt signaling pathways (Jianfeng et al., 2022).

Another study examined the role of PTEN in endometrial

cancer and found that deregulation of the INMT gene is linked to

the absence of PTEN (Lian et al., 2006). The current study found

that INMT is downregulated in HNSC at both the mRNA level

and the protein level (Figures 1C–E). Taken together, we

hypothesized that INMT may also act a crucial part in the

initiation, progression, and metastatic phases of HNSC.

There is a correlation between reduced INMT expression and

several clinical parameters including T stage, histologic grade,

gender, smoking status, and alcohol consumption (Figure 2) as

well as poor overall survival (Figures 3A,B). In addition, the

multivariate analysis further indicates that INMT expression was

an independent predictor of prognosis in HNSC patients (Figures

3C–F; Table 1; Supplementary Tables S1, S2). Hence, INMT

downregulation occurs in nearly all HNSC samples, contributing

to their progression. In terms of its potential as a prognostic

marker, INMT warrants further clinical investigation.

To discover more about the role of INMT in HNSC, path

enrichment analysis was carried out using the LinkedOmics

database. The enrichment analysis revealed that low INMT

expression was enriched in pathways and biological functions

that were related to tumorigenesis, such as the Ras, cGMP-PKG

signaling pathways, and so on (Figure 4). Cellular receptors, such

as RTKs and GPCRs, activate classic Ras signaling (Rauen, 2013).

It is known that Ras-GTP stimulates a wide range of downstream

effectors, although the best known of these are the MAPK, the

PI3K (Rodriguez-Viciana et al., 1994; Pacold et al., 2000), and the

Ral pathways (Rebhun et al., 2000). The PI3K/AKT and Raf/

MAPK/ERK pathways are frequently mutated in cancer, resulting

in aberrant activation of signaling pathways (Yang et al., 2019; Guo

et al., 2020). Cancer cells, particularly those of the breast and colon,

have been identified to be susceptible to the cyclic GMP (cGMP)/

protein kinase G (PKG) cascade (Browning et al., 2010; Fallahian

et al., 2011;Wen et al., 2015). The HNSC cells also express essential

components of the cGMP-PKG signaling axis (Tuttle et al., 2016).

We screened out the common members of INMT, such as

GNA13, GNA15, and GNG7, by comparing INMT-top50_co-

expressed genes with INMT-interacted genes (Figure 5B).

According to a recent study, GNA13 expression is associated

with drug resistance and tumor-initiating phenotypes in HNSC

(Rasheed et al., 2018). In addition, recurrent DNA

hypermethylation and reduced protein expression in the

GNG7 gene have been reported in HNSC (Hartmann et al.,

2012).

CpGs methylation in promoter regions is usually regarded as a

repressive mark because it inhibits gene expression. In response,

we looked online database for DNA methylation patterns that

might explain INMT’s downregulation in HNSC. In comparison

with adjacent normal samples, HNSC samples exhibited

hypomethylation of INMT. Recent studies suggest, however,

that they can also act as activation marks, depending on their

location and density along gene structures (Jones, 2012; Yang et al.,

2014), as methylation of gene bodies and CpG-poor sites has been

observed in active genes (Shenker and Flanagan, 2012). Although

the mechanism underlying transcription elongation remains

unclear, it appears to be related to structural requirements

(Jones, 2012). By analyzing 542 human transcription factors

(TFs) with methylation-sensitive SELEX (systematic evolution

of ligands by exponential enrichment), a paper on the impact

of cytosine methylation on DNA binding specificities published in

Science in 2017 (Yin et al., 2017), they discovered that numerous

TFs favor CpG-methylated regions. The majority of these belong

to the extended family of homeodomains. Based on structural

analysis, methylcytosine specificity depends on hydrophobic

interactions with the 5-methyl group of methylcytosine.

Combined with this paper and by querying the Gene Cards

database, we speculated that the promoter methylation of

INMT in HNSCC can positively regulate the expression of

INMT, which may be related to the binding of transcription

factors such as SCRT2 and NR2F1.

Tumor-infiltrating lymphocytes (TILs) are stromal cells that

are capable of enhancing and maintaining an immunosuppressive

microenvironment, stimulating immune escape, and consequently

promoting tumor progression (Callahan and Wolchok, 2019;

Demaria and Vivier, 2020; Yu et al., 2020). In the Golgi

apparatus and vesicles, INMT is mainly involved in protein

processing and cellular secretion. Through cell secretion, tumor
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cells can alter the tumor microenvironment. Tissue

immunotherapy is critically impacted by the complexity and

diversity of immune cell infiltration in the tumor

microenvironment (Jianfeng et al., 2022). Our study revealed

that INMT is closely linked to the tumor microenvironment, as

an enzyme crucial to tryptophan metabolism. Upon

comprehensive analysis of the results obtained in Timer,

ssGSEA, and TISIDB, it can be seen that INMT expression was

positively correlated with the infiltration of B cells, CD8 + T cells,

Eosinophils, Macrophages, Mast cells, NK cells, pDC, T cells, T

helper cells, Tem, Tfh, Th1 cells, Th17 cells, Th2 cells, and Treg

(Figures 7A,B; Supplementary Figure 3A; Table 2). After

correction for cell purity, INMT showed a positive interrelation

with the majority of immune cell markers (Table 3). The findings

of this study suggest that INMT is associated with the immune

infiltration of HNSC. Specifically, the INMT level was significantly

correlated with several markers of T helper cells (Th1, Th2, Tfh,

and Th17) in HNSC. Consequently, it may have contributed to the

poor prognosis of HNSC through the recruitment and regulation

of immune cells. In addition, Mutations of p53 causing hotspots

are often immunogenic, eliciting intratumoral T cell responses.

INMT and p53 can be combined to form targeted anticancer

immunotherapies (Chasov et al., 2021).

In summary, we demonstrated for the first time that

downregulated INMT is strongly associated with

clinicopathological characteristics, poor prognoses, varied

pathways, DNA methylation, and immune cell infiltration in

HNSC. As a result, this study provides valuable insights into

further research on tumor therapy in HNSC. This research is part

of a larger project, which will include validation in a prospectively

enrolled study population.
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