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SLC2A3 is a ferroptosis marker engaged in transmembrane glucose transport.

However, the effect of SLC2A3 on the prognosis of patients with cancer remains

unclear. This study aimed to explore the prognostic implications of SLC2A3 and

its underlying immune mechanisms in gastric cancer. The mRNA expression

profiles and corresponding clinical data of patients with gastric cancer were

downloaded from The Cancer Genome Atlas and Gene Expression Omnibus

databases. Differentially expressed genes related to SLC2A3 were identified

using the R package “limma.” Gene ontology and Kyoto Encyclopedia of Genes

and Genomes enrichment analyses, gene set enrichment analysis, and gene set

variation analysis were used to explore the underlying mechanisms. The

protein–protein and miRNA interaction networks were analyzed using

Cytoscape software. Immune cell infiltration was assessed using single-

sample gene set enrichment analysis. Univariate and multivariate Cox

regression analyses revealed the relationship between SLC2A3 expression

and prognosis. SLC2A3 was found to be highly expressed in tumor tissues

and was associated with an unfavorable prognosis in patients with gastric

cancer. Functional enrichment analysis showed that SLC2A3 is related to

cytokine–cytokine receptor interaction, epithelial–mesenchymal transition,

T cell receptor signaling pathway, B cell receptor signaling pathway, and

immune checkpoints. SLC2A3 is also involved in immune response

regulation and is regulated by multiple miRNAs, including miR-195-5p, miR-

106a-5p, miR-424-5p, and miR-16-5p. Univariate and multivariate Cox

regression analyses indicated that SLC2A3 can be used as an independent

prognostic factor for predicting the outcome in patients with gastric cancer.

SLC2A3 and related miRNAs are potential prognostic biomarkers and

therapeutic targets.
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Introduction

Gastric cancer is a gastrointestinal malignancy that accounts

for 17.2% of all malignant tumors, and it is associated with the

second-highest fatality rate among all common tumors

worldwide (Thrift et al., 2020). Owing to the continuous

improvement in the level of medical diagnosis in recent years,

the diagnosis rate of gastric cancer has also increased (Sumiyama,

2017). Although advances in medicine have led to development

of treatments for gastric cancer, the overall clinical outcomes of

gastric cancer are still poor, with rapid development and poor

treatment efficacy (Smyth et al., 2020). In recent years, with the

continuous development and growth of molecular biology and

genomics, screening for novel prognostic markers has gradually

become a new strategy for predicting the prognosis of patients

and also contributes to the treatment of patients with cancer.

SLC2A3 encodes solute carrier family 2-member 3 (also known

as GLUT3, a ferroptosis marker), which mainly engages in

transmembrane transport (e.g., for glucose transport) (Reckzeh

and Waldmann, 2020). SLC2A3 functions as a tumor promoter

and accelerates aerobic glycolysis in gastric cancer cells, and it

potentially contributes to the M2 subtype transition of infiltrating

macrophages in the microenvironment of gastric cancer. Thus,

SLC2A3 may be useful as a biomarker to determine the prognosis

and immune infiltration (Yao et al., 2020). Inhibition of SLC2A3 by

miR-129-5p suppresses glucose consumption in gastric cancer cells

by regulating the PI3K-Akt and MAPK signaling pathways,

suggesting that SLC2A3 is a potential therapeutic target for the

treatment of gastric cancer (Chen et al., 2018). Thesefindings indicate

that SLC2A3 may have a potential role in the prognosis of gastric

cancer and regulation of tumor-infiltrating immune cells. However,

whether SLC2A3 affects the prognosis of gastric cancer has not yet

been systematically or elaborately elucidated.

This study aimed to determine the prognostic value of

SLC2A3 expression in gastric cancer. We found that SLC2A3,

as a ferroptosis marker, was highly expressed in gastric cancer

tissues and was associated with poor prognosis in patients with

gastric cancer, and it contributed through immune-related

pathways.

Materials and methods

Data acquisition and preprocessing

The transcriptome data of gastric cancer in counts and

FPKM formats were downloaded from The Cancer Genome

Atlas-Stomach Adenocarcinoma (TCGA-STAD, https://portal.

gdc.cancer.gov) database using the R package “TCGAbiolinks”

(version 3.6.5, http://r-project.org/) (Mounir et al., 2019), and the

data in FPKM format were converted to the TPM format. Clinical

information of 375 patients with gastric cancer was also acquired

from the TCGA database.

Reliable datasets GSE66229 (Oh et al., 2018) and

GSE12266 (Granchi et al., 2010) were downloaded from

the Gene Expression Omnibus (GEO; https://www.ncbi.

nlm.nih.gov/geo/) database using the R package

“GEOquery” (version 3.6.5, http://r-project.org/) (Davis

and Meltzer, 2007). The samples in the datasets were all

from Homo sapiens, and the platform was based on the

GPL570 [HG-U133_Plus_2] Affymetrix Human Genome

U133 Plus 2.0 Array. The GSE66229 dataset contains two

GEO datasets: GSE62254 (Cristescu et al., 2015) and

GSE66222. The GSE62254 dataset included 300 gastric

cancer samples, and the GSE66222 dataset included

100 normal control samples. The GSE12266 dataset

contained a total of 200 gastric cancer samples, of which

eight were eliminated due to quality issues. Therefore, in the

GEO database, 592 samples were included in this study and

divided into the control (100 samples) and tumor groups

(492 samples). The abovementioned samples were subjected

to background correction and data normalization to obtain

the gene expression matrices of the two datasets. The R

package “sva” was used to remove the batch effects and

obtain the combined gene expression matrix.

Analysis of SLC2A3 expression in gastric
cancer

In the TCGA and GEO datasets, SLC2A3 expression in

gastric cancer and adjacent normal tissues was analyzed, and

the results were visualized using the R package “ggplot2” (https://

ggplot2.tidyverse.org). The R package “survminer” (https://

CRAN.R-project.org/package=survminer) was used to select

the optimal cutoff value for grouping according to the

expression level of SLC2A3, and the R package “survival”

(https://CRAN.R-project.org/package=survival) was used to

draw a survival curve.

The expression data for gastric cancer were downloaded from

the Genotype-Tissue Expression database (https://gtexportal.

org/home/) to analyze the expression of SLC2A3 in various

organs. In the TCGA database, pan-cancer FPKM data were

downloaded and converted into the TPM format to analyze the

differences in SLC2A3 expression in different tumors and

adjacent normal tissues.

Screening and functional analysis of
differentially expressed genes

In both TCGA and GEO datasets, the tumor samples were

grouped according to the median of SLC2A3 expression and

the DEGs of the gene expression matrix were screened using

the R package “limma” (Ritchie et al., 2015), with the criteria

of p < 0.05 and |logFC|>0.5. When the value of |logFC| was 1,
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1.5, or 2, the GEO dataset would obtain very few DEGs

because the threshold was too high. In order to keep the

threshold consistent, we took |logFC| > 0.5 both in the TCGA

and GEO datasets (Huang et al., 2021; Bruzas et al., 2022). The

volcano map and heat map of DEGs were drawn using the

“ggplot2” R package to visualize the differential expression

of DEGs.

The “clusterProfiler” R package (Yu et al., 2012) was used

to perform the Gene Ontology (GO) and Kyoto Encyclopedia

of Genes and Genomes (KEGG) enrichment analysis on

DEGs. Similarly, the “clusterProfiler” R package was also

used to conduct the gene set enrichment analysis (GSEA)

analysis on DEGs. The “c2. cp.kegg.v7.0. entrez.gmt” gene set

was selected as the reference. The false discovery rate (FDR) <
0.25 and p < 0.05 were considered to be significantly enriched.

Gene set variation analysis

In the TCGA dataset, the R package “GSVA”

(Hänzelmann et al., 2013) was used to perform GSVA on

the expression matrix, and the “c2. cp.kegg.v7.0. Entrez. gmt”

gene set was used as the reference. The tumor samples were

grouped according to the median of SLC2A3 expression, and

the differential pathways between the high- and low-

expression groups were analyzed using the R package

“limma.” The top 10 pathways with significant differences

were selected and visualized as a heat map drawn using the R

package “pheatmap.” Eighteen genes in the common

biological function pathway were used as reference gene

sets for GSVA. We also determined differences in this

pathway between the high- and low-expression groups, and

the results were visualized using the R package “ggplot2”.

Protein–protein interaction and miRNA
interaction networks

Protein interaction network analysis on SLC2A3 was

performed using the STRING database (https://string-db.

org/) (Szklarczyk et al., 2017) and visualized using

Cytoscape software. The Cytohubba plugin was used to

calculate the most important genes and to show the protein

interaction network.

The R package “multiMiR” (Ru et al., 2014) was used to

predict miRNAs that interacted with SLC2A3, and the

intersection of these miRNAs with those in the miRTarBase

database was taken. The obtained prediction results were

visualized using Cytoscape software. The miRNAs whose

verification was “Luciferase Reporter Gene Experiment” were

selected and used to analyze their expression in tumor and

adjacent normal tissues.

Immune cell infiltration analysis

Single-sample gene set enrichment analysis (ssGSEA) can

calculate the rank value of each gene according to the gene

expression profile and then statistical analysis was performed

(Bindea et al., 2013).We analyzed the gene expression matrix and

cell markers to obtain an immune cell infiltration matrix. The

fraction of 24 immune cells in the high- and low-expression

groups was shown by R software.

Tumor microenvironment cells and the extent to which

infiltrating immune and stromal cells in the tumor contribute

significantly to prognosis are analyzed. In the tumor

microenvironment, immune and stromal cells are the two

main types of non-tumor components and have been

proposed to be valuable for the diagnosis and prognostic

evaluation of tumors (Zhang et al., 2020). The immune and

stromal scores calculated based on the ESTIMATE algorithm can

facilitate the quantification of immune and stromal components

in tumors. In this algorithm, immune and stromal scores were

calculated by analyzing specific gene expression signatures of

immune and stromal cells to predict the infiltration of non-

tumor cells. In addition, we calculated the StromalScore,

ImmuneScore, and ESTIMATEScore of each sample using the

R package “ESTIMATE” (Yoshihara et al., 2013) and the

correlation between the expression level of SLC2A3 and each

score was shown as a scatter plot. Differences in scores between

the high- and low-expression groups were also analyzed.

Clinical model construction

Univariate and multivariate Cox regression analyses were

conducted using the R package “survival” based on

SLC2A3 expression and some clinical variables (T stage, N

stage, M stage, pathologic stage, gender; age, histologic grade,

and residual tumor), and the results are shown as forest diagrams.

In addition, in some subgroups, we analyzed the effect of

SLC2A3 expression on the survival of patients with gastric

cancer.

A clinical prognostic model was analyzed and constructed

using the R packages “rms” (https://CRAN.R-project.org/

package=rms) and “survival,” and a nomogram was

constructed. In addition, we performed calibration analysis to

evaluate the predictive ability of the model.

Statistical analysis

R software (version 4.1.0, https://www.r-project.org/) was used

for statistical analyses. The independent t-test was used for

comparison of normally distributed variables, and the

Mann–Whitney U test was used for comparison of non-normally
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distributed variables. All statistical tests were two-sided, and

statistical significance was set at p < 0.05.

Results

SLC2A3 is highly expressed and is a poor
prognostic factor in gastric cancer

First, the expression of SLC2A3 was analyzed in tumor and

adjacent normal tissues in the TCGA and combined GEO

datasets. As shown in Figures 1A,B, compared with the

adjacent normal tissues, SLC2A3 was highly expressed in

tumor tissues in both TCGA (p < 0.001) and GEO datasets

(p < 0.0001). In the TCGA dataset, survival analysis indicated

that a high expression level of SLC2A3 was significantly

associated with poor prognosis in patients with gastric cancer,

both in overall survival (OS; p = 0.001; Figure 1C) and disease-

specific survival (DSS; p = 0.008; Figure 1D). In the GEO dataset,

we obtained similar results; the high expression level of

SLC2A3 was significantly associated with poor prognosis in

patients with OS (p = 0.001; Figure 1E). These results suggest

that SLC2A3 is highly expressed in tumor tissues and is related to

poor prognosis in patients with gastric cancer.

We also analyzed the expression of SLC2A3 in different

organs and pan-carcinomas using the TCGA database. The

results showed that SLC2A3 had the highest expression in

blood (Figure 1F). Compared with adjacent normal tissues,

FIGURE 1
SLC2A3 was highly expressed and was a prognostic factor for poor outcomes in gastric cancer. Expression of SLC2A3 in TCGA (A) and GEO (B)
databases. The relationship of SLC2A3 expression with OS (C) or DSS (D) in the TCGA database and OS (E) in the GEO database. Expression of
SLC2A3 in various organs (F) and pan-carcinomas (G) in the TCGA database.
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SLC2A3 was highly expressed in gastric cancer, colon cancer, and

other tumors (p < 0.05; Figure 1G). These results further suggest

that SLC2A3 is highly expressed in gastric cancer tissues.

Then, according to the median value of

SLC2A3 expression, 375 patients with complete clinical

data in the TCGA database were divided into high- and

low-expression groups. The T stages of patients were

significantly different between the two groups (p = 0.002;

Table 1), suggesting that high SLC2A3 expression is associated

with the T stage in patients with gastric cancer.

Screening of DEGs

A total of 3,135 DEGs between the high- and low-expression

groups were obtained from the TCGA database and are shown as

a volcano plot (Figure 2A). The top 20 genes with significant

differences are shown in a heatmap (Figure 2B). A similar

screening method was applied to the GEO database, and the

volcano plot and heat map are shown in Figures 2C,D,

respectively.

Functional enrichment analysis of DEGs by
Gene ontology and Kyoto Encyclopedia of
Genes and Genomes

To explore the biological functions of SLC2A3, we

further performed GO and KEGG enrichment analysis on

DEGs obtained from the TCGA database. GO_BP analysis

results showed that DEGs were mainly related to external

encapsulating structure organization, extracellular matrix

organization, and extracellular structure organization

(Table 2 and Figure 3A). GO_CC analysis results showed

that DEGs were mainly associated with the collagen-

containing extracellular matrix, external side of the

plasma membrane, and the endoplasmic reticulum lumen.

(Table 2; Figure 3B). Meanwhile, GO_MF analysis results

showed that DEGs were mainly related to receptor-ligand

activity, signaling receptor activator activity, and

extracellular matrix structural constituents. (Table 2;

Figure 3C).

The results of KEGG analysis suggested that the

pathways enriched by DEGs mainly included

TABLE 1 Clinical traits between SLC2A3 high- and low-expression groups.

Characteristic Levels Low expression of SLC2A3 High
expression of SLC2A3

p

N 187 188

Age, n (%) ≤65 88 (23.7%) 76 (20.5%) 0.312

>65 99 (26.7%) 108 (29.1%)

Gender, n (%) Female 66 (17.6%) 68 (18.1%) 0.945

Male 121 (32.3%) 120 (32%)

T stage, n (%) T1 16 (4.4%) 3 (0.8%) 0.002

T2 40 (10.9%) 40 (10.9%)

T3 92 (25.1%) 76 (20.7%)

T4 39 (10.6%) 61 (16.6%)

N stage, n (%) N0 58 (16.2%) 53 (14.8%) 0.577

N1 50 (14%) 47 (13.2%)

N2 40 (11.2%) 35 (9.8%)

N3 32 (9%) 42 (11.8%)

M stage, n (%) M0 167 (47%) 163 (45.9%) 0.965

M1 12 (3.4%) 13 (3.7%)

Pathologic stage, n (%) Stage I 32 (9.1%) 21 (6%) 0.256

Stage II 59 (16.8%) 52 (14.8%)

Stage III 71 (20.2%) 79 (22.4%)

Stage IV 16 (4.5%) 22 (6.2%)

Residual tumor, n (%) R0 152 (46.2%) 146 (44.4%) 0.616

R1 6 (1.8%) 9 (2.7%)

R2 7 (2.1%) 9 (2.7%)

Histologic grade, n (%) G1 6 (1.6%) 4 (1.1%) 0.082

G2 77 (21%) 60 (16.4%)

G3 98 (26.8%) 121 (33.1%)
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FIGURE 2
Volcano plot and heat map of DEGs. Volcano plot (A) and heat map (B) of DEGs screened in the TCGA database. Volcano plot (C) and heat map
(D) of the DEGs screened in the GEO database.

TABLE 2 GO enrichment of DEGs.

Ontology ID Description P value Q value

BP GO:0,045,229 External encapsulating structure organization 2.44E-64 1.08E-60

BP GO:0,030,198 Extracellular matrix organization 2.95E-64 1.08E-60

BP GO:0,043,062 Extracellular structure organization 5.12E-64 1.25E-60

BP GO:0,007,159 Leukocyte cell-cell adhesion 3.16E-32 5.81E-29

BP GO:0,002,683 Negative regulation of immune system process 1.12E-28 1.65E-25

CC GO:0,062,023 Collagen-containing extracellular matrix 3.25E-59 2.55E-56

CC GO:0,009,897 External side of plasma membrane 6.10E-26 2.40E-23

CC GO:0,005,581 Collagen trimer 1.49E-24 3.89E-22

CC GO:0,005,788 Endoplasmic reticulum lumen 5.38E-15 1.06E-12

CC GO:0,005,604 Basement membrane 2.52E-13 3.96E-11

MF GO:0,005,201 Extracellular matrix structural constituent 1.25E-45 2.24E-42

MF GO:0,048,018 Receptor ligand activity 3.27E-31 2.93E-28

MF GO:0,030,546 Signaling receptor activator activity 1.88E-30 1.12E-27

MF GO:0,005,539 Glycosaminoglycan binding 3.10E-29 1.39E-26

MF GO:0,019,955 Cytokine binding 9.24E-24 3.30E-21
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neuroactive ligand–receptor interaction,

cytokine–cytokine receptor interaction, and cell

adhesion molecules (Table 3; Figure 3D). The two

pathways with the best enrichment results were

cytokine–cytokine receptor interaction (Figure 3E) and

viral protein interaction with cytokines and cytokine

receptors (Figure 3F). Among these, CCL2, CCL19, and

other genes play an important role in the signal

transduction process of the two pathways.

Functional enrichment analysis of DEGs by
gene set enrichment analysis

To further explore the function of DEGs, GSEA analysis was

conducted and it was found that the pathways mainly involved

were the chemokine signaling pathway, cytokine-cytokine

receptor interaction, ECM receptor interaction, focal adhesion,

oxidative phosphorylation, pathways in cancer, Toll-like receptor

signaling pathway, and natural killer cell-mediated cytotoxicity

FIGURE 3
GO and KEGG enrichment analysis of DEGs. GO enrichment analysis of DEGs in GO_BP (A), GO_CC (B), and GO_MF (C). KEGG enrichment
analysis of DEGs (D). Exhibition of cytokine–cytokine receptor interaction (E) and viral protein interaction with cytokine and cytokine receptors (F).
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pathways, of which ECM receptor interaction, cytokine–cytokine

receptor interaction, and Toll-like receptor signaling pathway

pathways were closely related to ferroptosis (Table 4, Figure 4).

Pathway enrichment analysis of DEGs by
GSVA

To further analyze the difference between the high- and low-

expression groups, we selected the 10 pathways with the most

significant differences to display as a heat map (Figure 5A). In the

high-SLC2A3 expression group, the immune-related pathways,

such as the T cell receptor signaling pathway, B cell receptor

signaling pathway, and Toll-like receptor signaling pathway,

were significantly enriched.

Subsequently, we analyzed the differences in different

biological function pathways between the high- and low-

expression groups. Angiogenesis, CD86_T cells, EMT-1, EMT-

2, and EMT-3, immune checkpoints, fibroblast TGFβ, and Wnt

pathways were highly enriched in the high-expression group. In

contrast, DNA damage repair, Fanconi anemia, homologous

recombination, and nucleotide excision repair were highly

enriched in the low-expression group (Figures 5B–M).

PPI network of SLC2A3 and its interaction
with miRNAs

We further analyzed the correlation between SLC2A3 and

other molecules. We inputted the SLC2A3 gene into the STRING

database and visualized its interactions using Cytoscape software

(Figure 6A). After calculating the correlation between molecules

using the CytoHubba plugin, we selected the top 10 genes with

significant differences to further show their internal relationships

(Figure 6B).

The miRNAs interacting with SLC2A3 were predicted using

the miRTarBase database, and we obtained 79 miRNAs

(Figure 6C), two of which were verified to bind to

SLC2A3 via luciferase reporter gene experiments. The

expression of miR-195-5p was significantly decreased in

TABLE 3 KEGG enrichment of DEGs.

ID Description P value Q value Count

hsa04060 Cytokine–cytokine receptor interaction 1.03E-24 2.34E-22 122

hsa04061 Viral protein interaction with cytokine and cytokine receptor 5.48E-21 4.57E-19 58

hsa04514 Cell adhesion molecules 6.03E-21 4.57E-19 74

hsa05150 Staphylococcus aureus infection 1.28E-19 7.29E-18 55

hsa04080 Neuroactive ligand–receptor interaction 2.18E-19 9.91E-18 124

hsa04640 Hematopoietic cell lineage 3.52E-17 1.33E-15 53

hsa05144 Malaria 7.79E-16 2.53E-14 34

hsa04974 Protein digestion and absorption 1.83E-15 5.21E-14 52

hsa05323 Rheumatoid arthritis 7.41E-15 1.87E-13 48

hsa04512 ECM–receptor interaction 4.29E-13 9.75E-12 44

TABLE 4 Pathway enrichment in GSEA.

ID SetSize NES P value Q values

KEGG_CELL_ADHESION_MOLECULES_CAMS 130 2.347,126,682 1.00E-10 8.42E-10

KEGG_CHEMOKINE_SIGNALING_PATHWAY 187 2.423,098,421 1.00E-10 8.42E-10

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 262 2.474,431,198 1.00E-10 8.42E-10

KEGG_ECM_RECEPTOR_INTERACTION 83 2.575,153,081 1.00E-10 8.42E-10

KEGG_FOCAL_ADHESION 199 2.370,966,486 1.00E-10 8.42E-10

KEGG_HEMATOPOIETIC_CELL_LINEAGE 84 2.527,143,211 1.00E-10 8.42E-10

KEGG_LEISHMANIA_INFECTION 69 2.388,049,815 1.00E-10 8.42E-10

KEGG_OXIDATIVE_PHOSPHORYLATION 116 −2.575,690,856 1.00E-10 8.42E-10

KEGG_PARKINSONS_DISEASE 113 −2.419,185,523 1.00E-10 8.42E-10

KEGG_PATHWAYS_IN_CANCER 325 1.937,317,481 1.00E-10 8.42E-10
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gastric cancer tissues compared with adjacent normal tissues (p <
0.0001; Figure 6D). These findings suggest that there is a close

relationship between SLC2A3 and miR-195-5p in gastric cancer.

Immune cell infiltration analysis

The results of the immune cell infiltration analysis showed

that there were significant differences in almost all immune cells

(except NK CD56bright, Th17, and Th2 cells) between the high-

and low-expression groups (Figure 7A). Most of the immune

cells showed significantly higher infiltration in the high-

expression group. ESTIMATE analysis results showed that the

expression of SLC2A3 was positively correlated with the

StromalScore (r = 0.550, p < 0.001; Figure 7B), ImmuneScore

(r = 0.420, p < 0.001; Figure 7C), and ESTIMATEScore (r = 0.530,

p < 0.001; Figure 7D) calculated using the ESTIMATE algorithm.

Further analysis indicated that the StromalScore (p < 0.001;

Figure 7E), ImmuneScore (p < 0.001; Figure 7F), and

ESTIMATEScore (p < 0.001; Figure 7G) were significantly

higher in the high-expression group than in the low-

expression group. These results suggest that SLC2A3 is closely

associated with immune cell infiltration.

Construction of a clinical prognosis
prediction model

Univariate and multivariate Cox regression analyses were

performed to explore the relationship between

SLC2A3 expression and clinicopathological parameters. In the

univariate Cox regression analysis, SLC2A3 was found to be a

FIGURE 4
GSEA of DEGs. NES: normalized enrichment score, FDR: false discovery rate. KEGG_CHEMOKINE_SIGNALING_PATHWAY (A),
KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION (B), KEGG_ECM_RECEPTOR_INTERACTION (C), KEGG_FOCAL_ADHESION (D),
KEGG_OXIDATIVE_PHOSPHORYLATION (E), KEGG_PATHWAYS_IN_CANCER (F), KEGG_RIBOSOME (G),
KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY (H), KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY (I).
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poor prognostic factor for gastric cancer (hazard ratio: 1.777,

95% confidence interval: 1.269–2.487, p < 0.001; Figure 8A), as

well as age, TNM stage, pathologic stage, and residual tumor.

Similarly, in the multivariate Cox regression analysis,

SLC2A3 was a poor prognostic factor for gastric cancer

(hazard ratio: 1.624, 95% confidence interval: 1.086–2.430, p =

0.018; Figure 8B), as well as age, pathologic stage, and residual

tumor. Subsequently, in the subgroup survival analysis, we found

that patients in the high-expression group had a poorer prognosis

in G3 grade (p = 0.017; Figure 8C). Similarly, the high expression

level of SLC2A3 was also a poor prognostic factor in the II–IV

subgroup of tumor pathological staging (p = 0.011; Figure 8D).

We then constructed a clinical prognostic model based on the

results obtained from Cox regression analysis, and the results

indicated that the higher the expression value of SLC2A3, the

lower the probability of survival for patients at 1, 3, and 5 years.

Meanwhile, female sex, younger age, lower TNM stage, lower

pathologic stage, lower histologic grade, and smaller residual

tumor (Figure 8E) were associated with higher survival

probability for patients. To evaluate the predictive ability of

the model, calibration curves were drawn to show the

prediction results at 1, 3, and 5 years. The abscissa is the

survival probability predicted by the model, the ordinate is the

observed survival probability, and the gray diagonal line is the

FIGURE 5
GSVA of DEGs. GSVA of DEGs (A). Differences in various pathways between the high- and low-expression groups (B–M).
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ideal situation line. The blue lines and dots represent the model

predictions at different time points. The calibration charts

showed that the model had good predictive ability at 1, 3, and

5 years (Figures 8F–H).

Discussion

Gastric cancer is one of the most common gastrointestinal

tumors and has high morbidity and mortality, threatening

human life and health (Machlowska et al., 2020). With the

continuous improvement of medical diagnosis and treatment

technology, postoperative adjuvant chemotherapy can

significantly improve the survival time of patients with

advanced gastric cancer (Sexton et al., 2020). However,

postoperative recurrence and metastasis problems are still

important factors affecting the prognosis of gastric cancer,

and the 5-year survival rate is only 20%–35% (Johnston and

Beckman, 2019). In recent years, the screening basis of predictive

biomarkers for gastric cancer treatment has entered the promoter

methylation level (Chen et al., 2021). Therefore, identifying key

biomarkers and targets affecting prognosis remains a significant

research focus, which will contribute to the clinical outcomes of

patients with gastric cancer.

SLC2A3, a ferroptosis marker (Jiang et al., 2017), was found

to be highly expressed in gastric cancer, colon cancer, and other

tumors. Its overexpression was associated with poor survival and

was an unfavorable prognostic indicator for patients with gastric

cancer, which was consistent with previous research studies

(Chen et al., 2018; Yao et al., 2020). A study on colorectal

carcinoma also underscored that upregulation of the

SLC2A3 gene was associated with decreased overall and

FIGURE 6
PPI network and miRNA analysis of SLC2A3. The PPI network was visualized using Cytoscape software (A) and optimized using the CytoHubba
plugin (B) Predicted miRNAs interacting with SLC2A3 are shown (C), and miR-195-5p expression was analyzed in gastric cancer (D).
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disease-free survival in patients with colorectal cancer, suggesting

that determination of SLC2A3 expression might be useful for

predicting the prognosis of these patients (Kim et al., 2019). This

further demonstrates the important role of SLC2A3 in predicting

tumor prognosis; however, the precise mechanism remains

elusive.

A previous study in colorectal cancer showed that

SLC2A3 could regulate the epithelial–mesenchymal transition

(EMT) classical pathway and PD-L1-mediated immune

responses (Gao et al., 2021), which was consistent with our

research results. Unlike the findings of this study, the results

of our functional enrichment analysis showed that

SLC2A3 might be related to cytokine–cytokine receptor

interaction, EMT, T cell receptor signaling pathway, B cell

receptor signaling pathway, and immune checkpoints.

Likewise, these pathways had a significant difference between

FIGURE 7
Immune cell infiltration. (A) Relationship between the expression of SLC2A3 and immune cell infiltration. Relationship between the expression
of SLC2A3 and StromalScore (B), ImmuneScore (C), and ESTIMATEScore (D). Differences in StromalScore (E), ImmuneScore (F), and ESTIMATEScore
(G) were analyzed between the high- and low-expression groups.

Frontiers in Genetics frontiersin.org12

Lin et al. 10.3389/fgene.2022.919313

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.919313


the high-expression group and the low-expression group, as was

well-known that EMT was one of the important reasons for

tumormetastasis and poor prognosis (Lin et al., 2020). Therefore,

based on these results, we inferred that a high SLC2A3 expression

level leads to an unfavorable prognosis in gastric cancer, which

might be associated with EMT.

FIGURE 8
Construction of the clinical prognosis prediction model. Univariate (A) and multivariate (B) Cox regression analyses. Survival analyses between
high- and low-expression groups in the G3 (C) and stage II–IV (D) groups. Nomogram (E) and calibration curve at 1, 3, and 5 years (F–H) for
prognostic prediction.
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Based on the results of the immune microenvironment

analysis, we also found that multiple immune cells were

significantly different between the high- and low-SLC2A3

expression groups and that StromalScore, ImmuneScore,

and ESTIMATEScore were closely related to

SLC2A3 expression. These results suggest that SLC2A3 is

involved in immunological regulation. This is consistent

with the results of a previous study; the analysis with

global gene expression profiling of human colorectal cancer

cell lines showed that the expression of SLC2A3 was positively

correlated with CD4+ and CD8+ T cells (Gao et al., 2021). In

addition, transfection of SW480 and RKO cells with

SLC2A3 siRNA significantly attenuated PD-L1 expression.

These results strongly suggest that SLC2A3 may be

involved in the immune response and immune checkpoint

regulation of multiple cancers.

In addition, analysis of SLC2A3-related miRNAs showed

that SLC2A3 is closely related to multiple miRNAs, such as

miR-195-5p, miR-106a-5p, miR-424-5p, and miR-16-5p. The

correlation of miR-106a-5p and SLC2A3 has been

demonstrated in human glioma, and inhibition of

SLC2A3 by miR-106a attenuated cell proliferation,

inhibited glucose uptake, and conferred a favorable survival

for patients with glomerular basement membrane disease (Dai

et al., 2013). This is also in line with our abovementioned

finding that high SLC2A3 expression leads to poor prognosis

in patients with gastric cancer. Moreover, a study of human

bladder cancer T24 cells reported that miR-195-5p directly

targeted the 3′-untranslated region of GLUT3 and

downregulated GLUT3 (protein encoded by SLC2A3)

expression to decrease glucose uptake, inhibit cell growth,

and promote cell apoptosis (Fei et al., 2012). These findings

indicate that SLC2A3 is regulated by a variety of miRNAs,

particularly miR-195-5p, miR-106a-5p, miR-424-5p, and

miR-16-5p, which affect its function. In contrast, our

research findings in gastric cancer suggested that there was

a close relationship between SLC2A3 and miR-195-5p,

indicating that the interaction of SLC2A3 and miR-195-5p

might occur not only in bladder cancer but also in stomach

cancer.

Conclusion

Taken together, our findings show that SLC2A3, a

ferroptosis marker, is a prognostic marker for poor

outcomes and is associated with multiple immune cells.

SLC2A3 is also regulated by multiple miRNAs, thereby

affecting its ferroptosis- and transmembrane glucose

transport-related functions. Understanding the roles of

SLC2A3 and the relationship between ferroptosis and

tumor immunity can provide valuable insights for treating

patients with gastric cancer.
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