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In plant breeding, the need to improve the prediction of future seasons or new locations
and/or environments, also denoted as “leave one environment out,” is of paramount
importance to increase the genetic gain in breeding programs and contribute to food and
nutrition security worldwide. Genomic selection (GS) has the potential to increase the
accuracy of future seasons or new locations because it is a predictive methodology.
However, most statistical machine learning methods used for the task of predicting a new
environment or season struggle to produce moderate or high prediction accuracies. For
this reason, in this study we explore the use of the partial least squares (PLS) regression
methodology for this specific task, and we benchmark its performance with the Bayesian
Genomic Best Linear Unbiased Predictor (GBLUP) method. The benchmarking process
was done with 14 real datasets. We found that in all datasets the PLS method
outperformed the popular GBLUP method by margins between 0% (in the Indica data)
and 228.28% (in the Disease data) across traits, environments, and types of predictors.
Our results show great empirical evidence of the power of the PLS methodology for the
prediction of future seasons or new environments.

Keywords: Bayesian genomic-enabled prediction, genotype x environment interaction, partial least squares,
disease data, Bayesian analysis, partial least squares, maize and wheat data

INTRODUCTION

Genomic selection (GS) proposed by Meuwissen et al. (2001) is a disruptive methodology that uses
statistical machine learning algorithms and data to improve the selection of candidate lines early in time
without the need tomeasure phenotypic information. The empirical evidence in favor of GSmethodology
can be found in applications of many crops, such as wheat, maize, cassava, rice, chickpea, groundnut, etc.
(Roorkiwal et al., 2016; Crossa et al., 2017; Wolfe et al., 2017; Huang et al., 2019). However, the practical
implementation of GS is challenging because the GS methodology does not always guarantee medium or
high prediction accuracies, since many factors affect the prediction performance.

One important complexity of GS models arises when predicting unphenotype cultivars in specific
environments (e.g., planting data-site-management combinations) by incorporating G×E interaction
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into the genomic-based statistical models. Also important is the
genomic complexity related to G×E interactions for multi-traits,
as these interactions require statistical-genetic models that exploit
the complex multivariate relations due to multi-trait and multi-
environment variance-covariance but also to exploit the genetic
correlations between environments, between traits, and between
traits and environments simultaneously. In GS modeling, the
interaction betweenmarkers and environmental covariates can be
a complex task due to the high dimensionality of the matrix of
markers, environmental covariates, or both. Jarquín et al. (2014)
suggested modeling this interaction using Gaussian processes,
where the associated variance-covariance matrix induces a
reaction norm model. The authors showed that assuming
normality for the terms involving the interaction and also
assuming that the interaction obtained using a first-order
multiplicative model is distributed normally, then the
covariance function is the cell-by-cell product (Hadamard) of
two covariance structures, one describing the genetic information
and the other describing the environmental effects. Many studies
using a reaction norm model indicated that including the G×E
interaction in the model substantially increased the accuracy of
across-environment (locations and/or years) predictions (Crossa
et al., 2017).

Many of the factors that affect the prediction performance of
the GS methodology are under scrutiny to be improved. For
example, the quality of the marker data is of paramount
importance and the breeder needs to be careful to use only
high-quality markers. Also, the quality of the training
population is key to guaranteeing reasonable prediction
accuracies in untested new lines. For this reason, research is in
progress to optimize the design of the training-testing sets.
Regarding statistical machine learning algorithms, there is also
research in progress to select the best algorithm for each
implementation. Currently, it is very common to find
applications in GS using random forest, mixed models,
Bayesian methods (GBLUP, BRR, BayesA, BayesB, BayesC,
and Bayes Lasso), support vector machine, gradient boosting
machine methods, and deep learning methods. But, as stated in
the “No Free Lunch Theorem,” none of these algorithms is the
best statistical machine learning algorithm for predictive
modeling problems such as classification and regression. The
no free lunch theorem indicates that the performance of all
statistical machine learning algorithms is similar in select
specific situations. However, there are niches where a
particular algorithm consistently outperforms the others. For
example, in interacting with images, there is empirical
evidence that deep neural network methods are the best, yet
one limitation of deep neural network models is that they require
considerably large datasets (Montesinos-López O. A. et al., 2018;
Montesinos-López A. et al., 2018; Montesinos-López et al., 2019).

The BayesianmethodGBLUP is quite robust andmost of the time
produces reasonable and competitive predictions with the advantage
that we can implement this method requiring no extra time for the
tuning process. This is due to its efficient default hyperparameters for
most applications, which is an important advantage regarding
support vector machine, gradient boosting machine, random
forest, and deep learning models that require considerable effort

to select a reasonable set of hyperparameters. However, it is important
to note that deep learning methods are the most demanding and
challenging for selecting reasonable hyperparameters since this
algorithm requires many inputs (Montesinos-López O. A. et al.,
2018; Montesinos-López A. et al., 2018).

For the prediction of new environments (or seasons), most
statistical machine learning methods struggle to produce
reasonable predictions because often there is not a good match
between the distribution of the training and testing set. For this
reason, the prediction of a new season or environments is a more
challenging task than when using conventional strategies of cross-
validation (CV1), which tests the performance of lines that have
not beenmeasured in any of the observed environments, and CV2,
which tests the performance of lines that have been measured in
some environments but not in others (Burgueño et al., 2012). This
is significant for small plant breeding programs, where data from
multiple locations are scarce or non-existent, with the need to
predict which lines are more likely to perform better in future
seasons or environments (Monteverde et al., 2019).

In multi-environmental plant breeding field trials, information
on environments may enhance the information in
genotype×environment interactions (GE), and the principal
component regression procedure that relates environments to
the principal component scores of the GE has been proposed
(Aastveit and Martens, 1986). To overcome some of the
interpretation difficulties present in the principal component
regression scores, Aastveit and Martens (1986) proposed the
partial least squares (PLS) regression method as a more direct
and parsimonious linear model. PLS regression describes GE in
terms of differential sensitivity of cultivars to environmental
variables where explanatory variables are linear combinations of
the complete set of measured environmental and/or cultivar
variables with no limit to the number of explanatory
covariables. Vargas et al. (1998, 1999) carried out extensive
studies for assessing the importance of environmental
covariables to interpret and understand GE in multi-
environment plant breeding trials. Furthermore, Crossa et al.
(1999) demonstrated the usefulness of PLS for understanding
GE using environmental and marker covariables.

Based on the above considerations, in this study we explore the
power of PLS for the prediction of new environments, a problem
denoted as “leave one environment out.” The prediction accuracy
of the PLS regression method is compared to that of GBLUP, one
of the most robust and widely used methods in genomic selection.
The benchmarking was done with 14 real datasets in which at
least two environments were evaluated.

MATERIALS AND METHODS

Bayesian GBLUP Model
The model used was

Yij � μ + Li + gj + gLij + ϵij (1)
where Li are the random effects of locations (environments)
distributed as E � (E1, . . . , EI)T ~ NI(0, σ2EH), where H is the
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environmental relationship matrix as computed by VanRaden
(2008), but in place of using genomic information, it was
computed using environmental variables; that is, H � XEXT

E
r ,

where XE is the standardized (centered and scaled) matrix of
dimension I × r containing the environmental information of I
environments and for each environment were measured r
environmental covariates; gj, j � 1, . . . , J, are the random
effects of lines, gLij are the random effects of location-line
interaction (GE) and ϵij are random error components in the
model assumed to be independent normal random variables with
mean 0 and variance σ2. Furthermore, it is assumed that
g � (g1, . . . , gJ)T ~ NJ(0, σ2gG),
gL � (gL11, . . . , gL1J, . . . , gLIJ)T ~ NIJ(0, σ2gL(H ⊗ G)), where
G is the genomic relationship matrix as computed by
VanRaden (2008), ⊗ denotes the Kronecker product and H is
the environmental relationship matrix of size I. Environmental
covariates were available for only the last two datasets (datasets 13
and 14), so for the first 12 datasets the H environmental
relationship matrix was reduced to an identity matrix, II , of
dimension I × I. The implementation of this model was done in
the BGLR library of Pérez and de los Campos (2014). This model
contains GE but was also implemented without GE interaction,
that is, the model (1) without the fourth component on the right
side of Eq. 1, such that

Yij � μ + Li + gj + ϵij (2)

Partial Least Squares (PLS) Method
PLS regression was first introduced by Wold (1966) and was
originally developed for econometrics and chemometrics. It is a
multivariate statistical technique designed to deal with the p> n
problem, i.e., when the number of explanatory variables (p) is
much larger (and more highly correlated) than the number of
observations (n). The PLS works for relating one or more
response variables (Y) to a set of explanatory variables (X)
(Wold, 2001; Boulesteix and Strimmer, 2006).

For PLS regression, the components, called Latent Variables
(LVs) in this context, are obtained iteratively. One starts with the
SVD of the cross-product matrix S � XTY , thereby including
information on the variation in both X and Y , and on the
correlation between them. The first left and right singular
vectors, w and q, are used as weight vectors for X and Y ,
respectively, to obtain scores t and u:

t � Xw � Ew (3)
u � Yq � Fq (4)

where E and F are initialized as both X and Y , respectively. The X
scores t are often normalized:

t � t/ ���
tTt

√
(5)

The Y scores u are not actually necessary in the regression but are
often saved for interpretation purposes. Next, X and Y loadings
are obtained by regressing against the same vector t:

p � ETt (6)

q � FTt (7)
Finally, the data matrices are “deflated”: the information related
to this latent variable, in the form of the outer products tpT and
tqT, is subtracted from the (current) data matrices E and F.

En+1 � En − tpT (8)
Fn+1 � Fn − tqT (9)

The estimation of the next component can then start from the
SVD of the cross-product matrix ET

n+1Fn+1. After every iteration,
vectors w, t, p and q are saved as columns in matrices W, T, P,
and Q, respectively. One complication is that columns of matrix
W cannot be compared directly: they are derived from
successively deflated matrices E and F. It has been shown that
an alternative way to represent the weights is that all columns
relate to the original X matrix is given by

R � W(PTW)−1 (10)
Now, instead of regressingY onX, we use T scores to calculate the
regression coefficients, and later convert these back to the realm
of the original variables by pre-multiplying with matrix R
(since T � XR):

B � R b � RQT (11)
with b � (TTT)−1TTY. Again, here only the first a components
are used. Since regression and dimension reduction are
performed simultaneously, all B, T, W, P, and Q are part of
the output. Both X and Y are considered when calculating the LV
in T. Moreover, they are defined so that the covariance between
the LV and the response is maximized. Finally, predictions for
new data (Xnew) should be made as:

Ŷnew � XnewB � XnewRb � Tnewb (12)
with Tnew � XnewR. How many components are optimal must be
determined, usually by cross-validation. We used the root mean
squared error of prediction (RMSEP), which was minimized with
10-fold cross-validation in the training dataset and for each value
of LV (Mevik and Cederkvist, 2004).

PLS is similar to principal component regression (PCR). In
theory, PLS regression should have an advantage over PCR. One
could imagine a situation where a minor component in X is
highly correlated withY; not selecting enough components would
then lead to poor predictions. In PLS regression, such a
component would be automatically present in the first LV.
However, there is hardly any difference between the use of
PLS regression and PCR; in most situations, the methods
achieve similar prediction accuracies, although PLS regression
usually needs fewer latent variables than PCR. Put the other way
around: with the same number of latent variables, PLS regression
will cover more of the variation in Y and PCR will cover more of
X. Both behave similarly to ridge regression.

It is important to point out that under the PLS regression
method, first we computed the design matrices (dummy
variables) of environments (XL), genotypes (Xg), and GE
interactions (XgL). The dimensions of matrices XL, Xg, and
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XgL were JI × I, JI × J, and JI × JI, respectively. While the
dimension of the response variable (Y), was of JI × 1. Then,
to include the environmental and markers information in the
design matrices of environments (XL), genotypes (Xg), and GE
(XgL), we used the following augmented design matrices:
XLLE, XgLg , and XgL(LE ⊗ Lg) for environments, the
genotypes and GE components, respectively. LE is a matrix of
order I × I that denotes the square root of the environmental
relationship matrix H or order I × I, while Lg is a matrix of order
J × J that denotes the square root of the genomic relationship
matrix G or order J × J. It is important to point out that the
resulting augmented matrices: XLLE, XgLg , and XgL(LE ⊗ Lg )
have the same dimension of the non-augmented matrices XL, Xg,
and XgL, since the matrices for which they were post-multiplied
were square matrices that have the same number of columns of
XL, Xg, and XgL, respectively. For this reason, the input matrix
used in the PLS analysis was X � [XLLE, XgLg , XgL(LE ⊗ Lg)]
when the predictor contained the GE term, which is of order
JI × (I + J + JI), but when the GE term was not included, the
input matrix used was X � [XLLE, XgLg] of order JI × (I + J).
Both models (GBLUP and PLS) were implanted under a
univariate (uni-trait) framework, so the response variable is a
vector that contains information of all environments available in
the dataset. Implementation of both models (GBLUP and PLS)
was done in the R statistical software (R Core Team, 2022).
However, the PLS model was implemented using the PLS library
(Mevik and Wehrens, 2007).

Data Sets
Note that for datasets 1-12, the PLS included only marker
covariables, thus the data augmentation XgLg applies and the
markers are included as the square root of the genomic
relationship matrix G (Lg). For datasets 13-14, the PLS
included both marker and environmental covariables; thus,
data augmentation applies to both factors XLLE, and XgLg
where the environments are included as the square root of the
environmental relationship matrix H (LE).

Datasets 1-3. Elite Wheat Yield Trial (EYT) Years
2013–2014 and 2014-2015, 2015-2016
Three datasets were collected by the Global Wheat Program
(GWP) of the International Maize and Wheat Improvement
Center (CIMMYT) and belong to elite yield trials (EYT)
established in four different cropping seasons with four or five
environments. Dataset 1 is from 2013-2014, dataset 2 is from
2014-2015, and dataset 3 is from 2015-2016. The EYT datasets 1,
2 and 3 contain 776, 775, and 964 lines, respectively. The
experimental design used was an alpha-lattice design and the
lines were sown in 39 trials, each covering 28 lines and 2 checks in
6 blocks with 3 replications. Several traits were available for some
environments and lines in each dataset. In this study, we included
four traits measured for each line in each environment: days to
heading (DTHD, number of days from germination to 50% spike
emergence), days to maturity (DTMT, number of days from
germination to 50% physiological maturity or the loss of the green
color in 50% of the spikes), plant height, and grain yield (GY). For
full details of the experimental design and how the Best Linear

Unbiased Estimates (BLUEs) were computed, see Juliana et al.
(2018).

The lines examined in datasets 2 and 3 were evaluated in five
environments, while dataset 1 was evaluated in four. For EYT
dataset 1, the environments were bed planting with five
irrigations (Bed5IR), early heat (EHT), flat planting, and five
irrigations (Flat5IR), and late heat (LHT). For EYT dataset 2, the
environments were bed planting with two irrigations (Bed2IR),
Bed5IR, EHT, Flat5IR and LHT, while for dataset 3, the
environments evaluated were Bed2IR, Bed5IR, Flat5IR, flat
planting with drip irrigation (FlatDrip), and LHT.

Genome-wide markers for the 2,515 (776 + 775+964) lines in
the two datasets were obtained using genotyping-by-sequencing
(GBS) (Elshire et al., 2011; Poland et al., 2012) at Kansas State
University using an Illumina HiSeq2500. After filtering, 2,038
markers were obtained from an initial set of 34,900 markers. The
imputation of missing marker data was carried out using
LinkImpute (Money et al., 2015) and implemented in TASSEL
(Trait Analysis by Association Evolution and Linkage) version 5
(Bradbury et al., 2007). Lines that had more than 50% missing
data were removed, and 2,515 lines were used in this study (776
lines in the first dataset, 775 lines in the second dataset, and 964
lines in the third dataset).

Dataset 4. Groundnut Data
The phenotypic dataset reported by Pandey et al. (2020) contains
information on the phenotypic performance for various traits in
four environments. In the present study, we assessed predictions
using the trait seed yield per plant (SYPP), pods per plant (NPP),
pod yield per plant (PYPP) and yield per hectare (YPH), for 318
lines in four environments, denoted as Environment1 (ENV1):
Aliyarnagar_Rainy 2015; Environment2 (ENV2): Jalgoan_Rainy
2015; Environment3 (ENV3): ICRISAT_Rainy 2015;
Environment4 (ENV4): ICRISAT Post-Rainy 2015.

The dataset is balanced, resulting in a total of 1,272 assessments
with each line included once in each environment. Marker data were
available for all lines and 8,268 SNP markers remained after quality
control (each marker was coded with 0, 1 and 2).

Dataset 5. Maize Data
This maize dataset was included in Souza et al. (2017) from USP
(Universidad Sao Paulo) and consists of 722 (with 722 × 4 =
2,888 observations) maize hybrids obtained by crossing 49
inbred lines. The hybrids were evaluated in four
environments (Env1-Env4) in Piracicaba and Anhumas, São
Paulo, Brazil, in 2016. The hybrids were evaluated using an
augmented block design, with two commercial hybrids as checks
to correct for micro-environmental variation. At each site, two
levels of nitrogen (N) fertilization were used. The experiment
conducted under ideal N conditions received 100 kg ha-1 of N
(30 kg ha-1 at sowing and 70 kg ha-1 in a coverage application)
at the V8 plant stage, while the experiment with low N received
30 kg/ha of N at sowing. The parent lines were genotyped with
an Affymetrix Axiom Maize Genotyping Array of 616 K SNPs.
Markers with a minor allele frequency (MAF) of 0.05 were
removed. After applying QC, 54,113 SNPs were available to
make the predictions.
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Dataset 6. Disease Data
This dataset contains 438 lines for which three diseases were
recorded: Pyrenophora tritici-repentis (PTR) that causes a disease
originally named “yellow spot” but also known as tan spot, yellow
leaf spot, yellow leaf blotch, or helminthosporiosis. The second
disease, Parastagonospora nodorum (SN), is a major fungal
pathogen of wheat fungal taxon that includes several plant
pathogens affecting the leaves and other parts of the plants.
The third disease, Bipolaris sorokiniana (SB), is the cause of
seedling diseases, common root rot and spot blotch of several
crops such as barley and wheat. The 438 wheat lines were
evaluated in the greenhouse for several replicates, and the
replicates were considered as different environments (Env1,
Env2, Env3, Env4, Env5, and Env6). The total number of
observations was 438 × 6 = 2,628 observations for which the
three traits were measured.

DNA samples were extracted from each line, following the
manufacturer’s protocol. DNA samples were genotyped using
67,436 single nucleotide polymorphisms (SNPs). For a given
marker, the genotype for the ith line was coded as the number
of copies of a designated marker-specific allele carried by the ith
line (absence = zero and presence = one). SNP markers with
unexpected heterozygous genotypes were recoded as either AA or
BB. We kept those markers that had fewer than 15% missing
values. Next, we imputed the markers using observed allelic
frequencies. We also removed markers with MAF<0.05. After
quality control and imputation, a total of 11,617 SNPs were
available for analysis.

Datasets 7-12. Wheat Data
Spring wheat lines selected for grain yield analyses from
CIMMYT first year yield trials (YT) were used as the training
population to predict the quality of lines selected from EYT for
grain yield analyses in a second year. The analyses were
conducted for only the grain yield trait unless specified, and
using six sets of data, as reported below:

- Wheat_1 (2013-14/2014-15), 1,301 lines from the 2013-
14 YT and 472 lines from the 2014-2015 EYT trial. In
this dataset, only the grain yield trait was used.

- Wheat_2 (2014-15/2015-16), 1,337 lines from the 2014-
15 YT and 596 lines from the 2015-2016 EYT trial.

- Wheat_3 (2015-16/2016-17), 1,161 lines from the 2015-
16 YT and 556 lines from the 2016-2017 EYT trial.

- Wheat_4 (2016-17/2017-18), 1,372 lines from the 2016-
17 YT and 567 lines from the 2017-2018 EYT trial.

- Wheat_5 (2017-18/2018-19), 1,386 lines from the 2017-
18 YT and 509 lines from the 2018-2019 EYT trial.

- Wheat_6 (2018-19/2019-20), 1,276 lines from the 2018-
19 YT and 124 lines from the 2019-2020 EYT trial. More
details of these datasets can be found in Ibba et al. (2020).

All the lines were genotyped using genotyping-by-sequencing
(GBS; Poland et al., 2012). The TASSEL version 5 GBS pipeline
was used to call marker polymorphisms (Glaubitz et al., 2014),
and a minor allele frequency of 0.01 was assigned for SNP

discovery. The resulting 6,075,743 unique tags were aligned to
the wheat genome reference sequence (RefSeq v.1.0) (IWGSC
2018) with an alignment rate of 63.98%. After filtering for SNPs
with homozygosity >80%, p-value for Fisher’s exact test <0.001
and χ2 value lower than the critical value of 9.2, we obtained
78,606 GBS markers that passed at least one of those filters. These
markers were further filtered for less than 50% missing data,
greater than a 0.05 minor allele frequency, and less than 5%
heterozygosity. Markers with missing data were imputed using
the “expectation-maximization” algorithm in the “R” package
rrBLUP (Endelman, 2011).

Datasets 13. Indica
The rice dataset, Monteverde et al. (2019), contains information
on the phenotypic performance of four traits (GY = Grain Yield,
PHR = Percentage of Head Rice Recovery, GC = percentage of
Chalky Grain, PH = Plant Height) in three environments (2010,
2011, and 2012). For each year, 327 lines were evaluated and
measured three times (once for each developmental stage:
vegetative, reproductive, and maturation) and for 18
environmental covariates. 1) ThermAmp denotes the thermal
amplitude (°C), average of daily thermal amplitude calculated as
max temperature (°C)—min temperature (°C). 2) RelSun denotes
the relative sunshine duration (%), quotient between the real
duration of the brightness of the Sun and the possible
geographical or topographic duration. 3) SolRad denotes solar
radiation (cal/cm2/day), solar radiation calculated using
Armstrong’s formula. 4) EfPpit denotes effective precipitation
(mm), average daily precipitation in mm added and stored in the
soil. 5) DegDay denotes degrees day in rice (°C), mean of daily
average temperature minus 10°. 6) RelH denotes relative humidity
(hs), sum of hours (0–24 h) where the relative humidity was equal
to 100%. 7) PpitDay denotes the precipitation day, which is the
sum of days when it rained. 8) MeanTemp denotes the mean
temperature (°C), average of temperature over 24 h (0–24 h). 9)
AvTemp denotes average temperature (°C), average temperature
calculated as daily (Max + Min)/2. 10) MaxTemp denotes the
maximum temperature (°C), average of maximum daily
temperature. 11) MinTemp denotes minimum temperature
(°C), average of minimum daily temperature. 12) TankEv
denotes the tank water evaporation (mm), amount of
evaporated water under influence of Sun and wind. 13) Wind
denotes wind speed (2 m/km/24 h), distance covered by wind (in
km) over 2 m height in 1 day. 14) PicheEv denotes piche
evaporation (mm), the amount of evaporated water without
the influence of the Sun. 15) MinRelH denotes the minimum
relative humidity (%), lowest value of relative humidity for the
day. 16) AccumPpit denotes accumulated precipitation (mm),
daily accumulated precipitation. 17) Sunhs denotes sunshine
duration, sum of total hours of sunshine per day. 18) MinT15
denotes the minimum temperature below 15°, the sum of the days
where the minimum temperature was below 15°.

This dataset is balanced, giving a total of 981 assessments with
each line included once in each environment. Marker data were
available for all lines and 16,383 SNP markers remained after
quality control (each marker was coded with 0, 1, and 2).
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Datasets 14. Japonica
This rice dataset was also reported by Monteverde et al. (2019)
but belongs to the tropical Japonica population and contains
phenotypic information on the same four traits as for the Indica
population (GY = Grain Yield, PHR = Percentage of Head Rice
Recovery, GC = percentage of Chalky Grain, PH = Plant Height)
in five environments (2009, 2010, 2011, 2012, and 2013). In
2009, 2010, 2011, 2012, and 2013, 93, 292, 316, 316, and 134
lines were evaluated, respectively. In each year, the same 54
environmental covariates measured in the Indica dataset
(dataset 13) were examined, that is, the 18 covariates
measured in the three developmental stages: vegetative,
reproductive, and maturation. Since this dataset is not
balanced, a total of 1,051 assessments were evaluated in the
five environments. Marker data were available for 320 lines and
16,383 SNP markers remained after quality control (each
marker was coded with 0, 1, and 2).

Metrics for Evaluation of Prediction
Accuracy
We employed the leave-one-environment out type of cross-
validation in each of the 14 datasets (Montesinos-López et al.,
2022). That is, we used I − 1 environments as the training set and
the remaining environments as the testing set until each of the I
environments played the role of testing one time. In the case of
the model (1), we did not require a tuning process, but under PLS
we divided the respective training (information of the I − 1
environments) in inner training (80% of the training) and
validation set (20% of the training). This was done under five
nested cross-validations, which implies the training set was
divided into five parts and one of those was used as the
validation set and the remaining four as inner training. Then,
the average of the five validation sets was reported as prediction
accuracy to select the optimal hyperparameter, which in PLS, was
the number of principal components to retain (Montesinos-
López et al., 2022). Then, with this optimal hyperparameter
(number of principal components), we refitted the model with
the whole training set (information of the I − 1 environments), and
finally, with these trained models, the prediction for the testing set
(a full environment) was obtained. As a metric to evaluate the
prediction accuracy, we used the normalized root mean square

error (NRMSE � RMSE
�y ), where RMSE �

�����������������
1
T(∑T

i�1(yi − f̂(xi))2
√

,

with yi denoting the observed value i, while f̂(xi) represents the
predicted value for observation i, with i � 1, . . . , n). This metric
was computed under the GBLUP (NRMSEGBLUP) and PLS
(NRMSEPLS) methods, and then we calculated with both
metrics the relative efficiency:

RENRMSE � NRMSEGBLUP

NRMSEPLS

When RENRMSE > 1, the best prediction performance in terms of
NRMSE was obtained using the PLS method, but when
RENRMSE < 1, the GBLUP method was superior in terms of
prediction accuracy, and of course, when RENRMSE � 1, both
methods were equally efficient.

RESULTS

The results are given in nine sections. In sections 1–6 are the
results for dataset 1 to dataset 6, respectively, section 7 gives the
results for the datasets (dataset 7 to dataset 12), section 8 gives
the results for dataset 13, and section 9 gives the results for
dataset 14.

Dataset 1. EYT_1
With Predictor = E + G + GE
When the GE was considered in the predictor, we observed relative
efficiencies in terms of NRMSE of the GBLUPmethods vs. the PLS
method for trait DTHD of 0.73, 1.642, 3.343, and 0.434 for
environments Bed5IR, EHT, Flat5IR, and LHT, respectively.
Only in environments EHT and Flat5IR genomic prediction
performance of PLS regression method was superior to GBLUP
by 64.2% (EHT) and 234.3% (Flat5IR). However, across
environments, we observed that the GBLUP method was better
than the PLS since the relative efficiency was equal to 0.929. Across
environments, the GBLUP outperformed the PLS by 7.1% in terms
of prediction performance (Figure 1with predictor = E + G + GE).
For trait DTMT, the RENRMSE were 1.591 (Bed5IR), 0.779 (EHT),
3.457 (Flat5IR) and 0.197 (LHT). Only in environments Bed5IR
and Flat5IR the PLS outperformed the GBLUP by 59.1% and
245.7%, respectively, while in the remaining two of four
environments, the GBLUP method was the best. Across
environments, the GBLUP method was also better than the PLS
by 17.7% (RENRMSE = 0.823) (Figure 1 with predictor = E + G +
GE). Also, in trait GY, only in one out of four environments the
PLS outperformed the GBLUP method, since the RENRMSE were
0.435 (Bed5IR), 0.884 (EHT), 1.825 (Flat5IR) and 0.764 (LHT).
Across environments, the GBLUP was better than the PLS by
18.9% since the RENRMSE = 0.811 (Figure 1with predictor = E + G
+ GE). Finally, for trait Height, the relative efficiencies were 0.889
(Bed5IR), 1.431 (EHT), 7.895 (Flat5IR), 0.145 (LHT), and 1.095
(Global), which means that the PLS outperformed the GBLUP
method by 43.1% (EHT), 689.5% (Flat5IR), and by 9.5% across
environments. But in environments like Bed5IR and LHT, the
GBLUP method was superior to the PLS method by 11.1% and
85.5%, respectively (Figure 1 with predictor = E + G + GE). See
more details in Supplementary Material.

With Predictor = E + G
When only the main effects of environments and genotypes were
considered in the predictor, the RENRMSE for each environment
and across environments for trait DTHD were 1.344 (Bed5IR),
2.175 (EHT), 0.892 (Flat5IR), 0.930 (LHT), and 1.087 (Global), so
the PLS outperformed the GBLUP method by 34.4% (Bed5IR),
117.5% (EHT), and by 8.7% across environments (Figure 1 with
predictor = E + G). For trait DTMT, the RENRMSE were 0.419
(Bed5IR), 3.738 (EHT), 0.875 (Flat5IR), 1.393 (LHT) and 1.455
(Global), so the PLS was better than the GBLUP method by
273.8%, 39.3% and 45.5% in EHT, LHT, and across
environments, respectively (Figure 1 with predictor = E + G),
while in trait GY, the RENRMSE were 1.894 (Bed5IR), 5.372
(EHT), 2.758 (Flat5IR), 1.002 (LHT) and 1.745 (Global). The
PLS outperformed the GBLUP by 89.4%, 437.2%, 175.8%, 0.2%,
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and 74.5% in Bed5IR, EHT, Flat5IR, LHT, and Global,
respectively (Figure 1 with predictor = E + G). Finally, for
trait Height, the relative efficiencies were 1.285 (Bed5IR),
1.143 (EHT), 2.160 (Flat5IR), 0.745 (LHT), and 1.036 (Global),
meaning the PLS method outperformed the GBLUP method in
three out of four environments and across environments by
28.5% (Bed5IR), 14.3 (EHT), 116% (Flat5IR), and 3.6% (across

environments) (Figure 1 with predictor = E + G). See more
details in Supplementary Material.

Dataset 2. EYT_2
With Predictor = E + G + GE
With GE in the predictor, the RENRMSE for traitDTHDwere 0.81
(Bed2IR), 1.386 (Bed5IR), 3.011 (EHT), 2.181 (Flat5IR), 1.059

FIGURE 1 | Relative efficiency in terms of normalized root mean square error (RE_NRMSE) computed by dividing the NRMSE under the best linear unbiased
predictor model (GBLUP) between the NRMSE of the partial least squares regression method. Prediction performance is reported for each environment and across
environments (Global) in dataset 1 (EYT_1), also with two predictors (E + G and E + G + GE). When the RE_NRMSE>1 the PLS outperforms in terms of prediction
performance (lower NRMSE) the GBLUP method.

FIGURE 2 | Relative efficiency in terms of normalized root mean square error (RE_NRMSE) computed by dividing the NRMSE under the best linear unbiased
predictor model (GBLUP) between the NRMSE of the partial least squares regression method. Prediction performance is reported for each environment and across
environments (Global) in dataset 2 (EYT_2), also with two predictors (E + G and E +G +GE). When the RE_NRMSE>1, the PLS outperforms the GBLUPmethod in terms
of prediction performance (lower NRMSE).
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(LHT), and 1.235 (Global), which means that in four out of five
environments, the PLS method was better than the GBLUP
method by 38.6%, 201.1%, 118.1%, and 5.9% in environments
Bed5IR, EHT, Flat5IR, and LHT, respectively. Across
environments, the PLS outperformed the GBLUP method by
23.5% (Figure 2 with predictor = E + G + GE). For trait DTMT,
the RENRMSE were 1.85 (Bed2IR), 1.091 (Bed5IR), 1.135 (EHT),
2.467 (Flat5IR), 1.177 (LHT), and 1.255 (Global), which means
that in the five environments, the PLS was superior to the GBLUB
method by 85% (Bed2IR), 9.1% (Bed5IR), 13.5 (EHT), 146.7%
(Flat5IR), 17.7 (LHT), and 25.5 (across environments) (Figure 2
with predictor = E + G + GE). In trait GY, the PLS method
outperformed the GBLUP method only in two out of five
environments by 17.8% (Bed2IR) and 23.2% (LHT), since the
RENRMSE were 1.178 (Bed2IR), 0.79 (Bed5IR), 0.866 (EHT), 0.875
(Flat5IR), 1.232 (LHT), and 0.966 (Global). For this reason, across
environments, the GBLUP method was better than the PLS
method by 3.4% (Figure 2 with predictor = E + G + GE).
Finally, for trait Height, the relative efficiencies were 3.389
(Bed2IR), 0.526 (Bed5IR), 3.367 (EHT), 2.387 (Flat5IR), 0.509
(LHT) and 1.732 (Global), meaning that PLS was better than the
GLUP method in three out of five environments, with gains of
238.9% (Bed2IR), 236.7% (EHT), 138.7% (Flat5IR), and 73.2%
across environments (Figure 2 with predictor = E + G + GE). See
more details in Supplementary Material.

With Predictor = E + G
Under this predictor for trait DTHD, the RENRMSE efficiencies
were 1.699 (Bed2IR), 1.636 (Bed5IR), 1.224 (EHT), 1.168
(Flat5IR), 1.214 (LHT), and 1.299 (Global). This means that in
the five environments, the PLS outperformed the GBLUPmethod
by 69.9% (Bed2IR), 63.6% (Bed5IR), 22.4% (EHT), 16.8%
(Flat5IR), 21.4% (LHT), and 29.9% (Global) (Figure 2 with
predictor = E + G). For trait DTMT, the PLS was better than
the GBLUP method by 381.7% (Bed2IR), 42.6% (EHT), 217.8%
(Flat5IR), 26.6% (LHT), and 49.7% (Global), since the RENRMSE

were 4.817 (Bed2IR), 0.424 (Bed5IR), 1.426 (EHT), 3.178
(Flat5IR), 1.266 (LHT), and 1.497 (Global) (Figure 2 with
predictor = E + G), while in trait GY. The RENRMSE were
0.931 (Bed2IR), 0.429 (Bed5IR), 0.724 (EHT), 0.571 (Flat5IR),
3.04 (LHT), and 0.998 (Global), so that the PLS outperformed the
GBLUP only in environment LHT by 204% and also across
environments, the GBLUP method was slightly better (0.2%)
than the PLS (Figure 2 with predictor = E + G). Finally, for trait
Height, the relative efficiencies were 1.359 (Bed2IR), 0.559
(Bed5IR), 1.209 (EHT), 3.114 (Flat5IR), 1.293 (LHT), and
1.665 (Global), which means that the PLS method
outperformed the GBLUP method in four out of five
environments and across environments by 35.9% (Bed2IR),
20.9% (EHT), 211.4% (Flat5IR), 29.3% (LHT), and 66.5%
(Global) (Figure 2 with predictor = E + G). See more details
in Supplementary Material.

Dataset 3. EYT_3
With Predictor = E + G + GE
Under this predictor, the relative efficiencies in terms of NRMSE
for trait DTHD were 0.809, 2.935, 4.335, 1.299, 0.932, and 1.283

for Bed2IR, Bed5IR, Flat5IR, FlatDrip, LHT, and Global,
respectively. The PLS was better than the GBLUP in three out
of five environments and across environments by 193.5%,
233.5%, 29.9%, and 28.3% in Bed5IR, Flat5IR, FlatDrip, and
Global, respectively (Figure 3 with predictor = E + G + GE).
For trait DTMT, the RENRMSE were 1.991(Bed2IR), 2.273
(Bed5IR), 1.01 (Flat5IR), 0.802 (FlatDrip), 1.274 (LHT), 1.396
(Global), so in four out of five environments, the PLS
outperformed the GBLUP by 99.1% (Bed2IR), 127.3%
(Bed5IR), 0.1% (Flat5IR), 27.4% (LHT), and 39.6% (Global)
(Figure 3 with predictor = E + G + GE), while in trait GY,
the RENRMSE were 3.385 (Bed2IR), 1.393 (Bed5IR), 1.26
(Flat5IR), 1.444 (FlatDrip), 2.503 (LHT), and 1.741 (Global),
which means that the PLS outperformed the GBLUP by 238.5%
(Bed2IR), 39.3% (Bed5IR), 26% (Flat5IR), 44.4% (FlatDrip),
150.3% (LHT) and 74.1% (Global) (Figure 3 with predictor =
E + G + GE). Finally, for trait Height, the relative efficiencies were
0.923 (Bed2IR), 1.192 (Bed5IR), 0.537 (Flat5IR), 1.858 (FlatDrip),
2.097 (LHT) and 1.181 (Global), which means that the PLS
outperformed the GBLUP in only three environments and
across environments by 19.2% (Bed5IR), 85.8% (FlatDrip),
109.7% (LHT) and 18.1% (Global) (Figure 3 with predictor =
E + G + GE). See more details in Supplementary Material.

With Predictor = E + G
Under this predictor, the RENRMSE for trait DTHD were 0.382,
4.064, 3.487, 0.448, 1.131, and 1.28 for Bed2IR, Bed5IR, Flat5IR,
FlatDrip, LHT, and Global, respectively. The PLS was better than
the GBLUP in three out of five environments and across
environments by 306.4%, 248,7%, 13.1%, and 28% in Bed5IR,
Flat5IR, LHT, and Global, respectively (Figure 3 with predictor =
E + G). For trait DTMT, the RENRMSE were 0.648 (Bed2IR), 2.388
(Bed5IR), 1.845 (Flat5IR), 0.614 (FlatDrip), 1.15 (LHT), and
1.329 (Global), so in three out of five environments, the PLS
outperformed the GBLUP by 138.8% (Bed5IR), 84.5% (Flat5IR),
15% (LHT), and 32.9% (Global) (Figure 3 with predictor = E +
G), while in trait GY, the RENRMSE were 0.547 (Bed2IR), 0.863
(Bed5IR), 0.786 (Flat5IR), 1.205 (FlatDrip), 0.981 (LHT), and
0.865 (Global), which means that the PLS outperformed the
GBLUP only in environment FlatDrip by 20.5%, while in the
remaining four and across environments, the GBLUP
outperformed the PLS method (Figure 3 with predictor = E +
G). Finally, in trait Height, the PLS method outperformed the
GBLUP method in three out of five environments since the
relative efficiencies were 0.917 (Bed2IR), 0.953 (Bed5IR), 1.505
(Flat5IR), 1.641 (FlatDrip), 1.763 (LHT), and 1.281 (Global). That
is, the gains of the PLS over the GBLUP method in the three
environments and across environments were 50.5% (Flat5IR),
64.1% (FlatDrip), 76.3% (LHT), and 28.1% (Global) (Figure 3
with predictor = E + G). See more details in Supplementary
Material.

Dataset 4. Groundnut
With Predictor = E + G + GE
With GE in the predictor, the observed RENRMSE for trait NPP
observed were 2.022 (ALIYARNAGAR_R15), 6.022
(ICRISAT_PR15-16), 1.853 (ICRISAT_R15), 3.177
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(JALGOAN_R15), and 3.495 (Global), which means that in the
four environments, the PLS method was better than the GBLUP
method by 102.2%, 502.2%, 85.3%, 217.7%, and 249.5% in

environments ALIYARNAGAR_R15, ICRISAT_PR15-16,
ICRISAT_R15, JALGOAN_R15, and across environments,
respectively (Figure 4 with predictor = E + G + GE). For trait

FIGURE 3 | Relative efficiency in terms of normalized root mean square error (RE_NRMSE) computed by dividing the NRMSE under the best linear unbiased
predictor model (GBLUP) between the NRMSE of the partial least squares regression method. Prediction performance is reported for each environment and across
environments (Global) in dataset 3 (EYT_3), also with two predictors (E + G and E +G +GE). When the RE_NRMSE>1, the PLS outperforms the GBLUPmethod in terms
of prediction performance (lower NRMSE).

FIGURE 4 | Relative efficiency in terms of normalized root mean square error (RE_NRMSE) computed by dividing the NRMSE under the best linear unbiased
predictor model (GBLUP) between the NRMSE of the partial least squares regression method. Prediction performance is reported for each environment and across
environments (Global) in dataset 4 (Groundnut), also with two predictors (E + G and E + G + GE). When the RE_NRMSE>1, the PLS outperforms the GBLUP method in
terms of prediction performance (lower NRMSE).
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PYPP, the RENRMSE were 1.61 (ALIYARNAGAR_R15), 1.749
(ICRISAT_PR15-16), 4.183 (ICRISAT_R15), 1.304
(JALGOAN_R15) and 2.102 (Global), so that in the four
environments, the PLS was superior to the GBLUB method by
61% (ALIYARNAGAR_R15), 74.9% (ICRISAT_PR15-16), 318.3
(ICRISAT_R15), 30.4 (JALGOAN_R15), and 110.2 (across
environments) (Figure 4 with predictor = E + G + GE). In
trait SYPP, the PLS method outperformed the GBLUP method in
three out of four environments by 25.9% (ICRISAT_PR15-16),
700% (ICRISAT_R15), and 102.5% (JALGOAN_R15), since the
relative efficiencies were 0.899 (ALIYARNAGAR_R15), 1.259
(ICRISAT_PR15-16), 8 (ICRISAT_R15), 2.025
(JALGOAN_R15), and 2.666 (across environments) (Figure 4
with predictor = E + G + GE). Finally, for trait YPH, the relative
efficiencies were 1.74 (ALIYARNAGAR_R15), 4.345
(ICRISAT_PR15-16), 0.929 (ICRISAT_R15), 3.113
(JALGOAN_R15), and 2.617 (across environments). In three
out of four environments and across environments, the best
predictions were obtained with the PLS method, with gains
over the GBLUP method of 74% (ALIYARNAGAR_R15),
334.5% (ICRISAT_PR15-16), 211.3% (JALGOAN_R15) and
161.7% (across environments) (Figure 4 with predictor = E +
G + GE). See more details in Supplementary Material.

With Predictor = E + G
Without the GE term in the predictor, the observed RENRMSE for
trait NPP were 0.965 (ALIYARNAGAR_R15), 0.957
(ICRISAT_PR15-16), 5.072 (ICRISAT_R15), 2.494
(JALGOAN_R15), and 2.124 (Global), which means that in
two out of four environments and across environments, the
PLS method was better than the GBLUP method by 407.2%
(ICRISAT_R15), 149.4% (JALGOAN_R15), and 112.4% (Global)
(Figure 4 with predictor = E + G). For trait PYPP, the observed
RENRMSE were 0.894 (ALIYARNAGAR_R15), 3.291
(ICRISAT_PR15-16), 2.097 (ICRISAT_R15), 1.995
(JALGOAN_R15), and 2.263 (Global), which means that in
three out of four environments and across environments, the
PLS was superior to the GBLUB method by 229.1%
(ICRISAT_PR15-16), 109.7% (ICRISAT_R15), 99.5%
(JALGOAN_R15), and 126.3% (across environments)
(Figure 4 with predictor = E + G). In trait SYPP, the PLS
method outperformed the GBLUP method in the four
environments by 40% (ALIYARNAGAR_R15), 271.6%
(ICRISAT_PR15-16), 666.7% (ICRISAT_R15), 364.7%
(JALGOAN_R15), and 313.9% (across environments), since
the relative efficiencies were 1.4 (ALIYARNAGAR_R15), 3.716
(ICRISAT_PR15-16), 7.667 (ICRISAT_R15), 4.647
(JALGOAN_R15), and 4.139 (across environments) (Figure 4
with predictor = E + G). Finally, for trait YPH, the relative
efficiencies were 3.364 (ALIYARNAGAR_R15), 1.777
(ICRISAT_PR15-16), 2.557 (ICRISAT_R15), 2.283
(JALGOAN_R15), and 2.475 (across environments). That is,
in the four environments and across environments, the best
predictions were obtained with the PLS method with gains
over the GBLUP method of 236.4% (ALIYARNAGAR_R15),
77.7% (ICRISAT_PR15-16), 155.7% (ICRISAT_R15), 128.3%
(JALGOAN_R15), and 147.5% (across environments)

(Figure 4 with predictor = E + G). See more details in
Supplementary Material.

Dataset 5. Maize Data
With Predictor = E + G + GE
With GE, the observed RENRMSE for trait GY were 1.038 (Env1),
3.417 (Env2), 5.611 (Env3), 2.767 (Env4), and 3.155 (Global),
which means in all environments the PLS method was better than
the GBLUP method by 3.8% (Env1), 241.7% (Env2), 461.1%
(Env3), 176.7% (Env4), and 215.5% across environments
(Figure 5 with predictor = E + G + GE). See more details in
Supplementary Material.

With Predictor = E + G
Without the GE, the observed RENRMSE for trait GY were 0.801
(Env1), 1.041 (Env2), 0.854 (Env3), 2.772 (Env4), and 1.251
(Global), that is, only in two out of four environments and
across environments, the PLS was superior to the GBLUP
method, and the gains observed were 4.1% (Env2), 177.2%
(Env4), and 25.1% across environments (Figure 5 with
predictor = E + G). See more details in Supplementary Material.

Dataset 6. Disease Data
With Predictor = E + G + GE
With GE, the RENRMSE for trait SN were 1.282 (Env1), 8.445
(Env2), 3.431 (Env3), 1.282 (Env4), 5.643 (Env5), 1.292 (Env6),
and 3.57 (Global), which means that in the six environments and
across environments, the PLS method was better than the GBLUP
method by 28.2% (Env1), 744.5% (Env2), 243.1% (Env3), 28.2%
(Env4), 464.3% (Env5), 29.2% (Env6), and 257% (Global)
(Figure 6 with predictor = E + G + GE). In trait PTR, only in
three out of the six environments, the PLS method outperformed
the GBLUP method since the observed RENRMSE were 3.615
(Env1), 1.157 (Env2), 0.932 (Env3), 0.951 (Env4), 0.807 (Env5),
2.788 (Env6), and 1.727 (Global). But, even though in only three
out of six environments, PLS was better than the GBLUP method,
across environments the PLS outperformed the GBLUP by 72.7%
(Figure 6 with predictor = E + G + GE). However, in trait SB in all
environments, the PLSwas superior to theGBLUPmethod because
the observed RENRMSE were 4.221 (Env1), 6.36 (Env2), 6.491
(Env3), 1.388 (Env4), 2.078 (Env5), 1.506 (Env6), and 3.676
(Global). That is, the PLS outperformed the GBLUP method
between 38% and 549.1% (Figure 6 with predictor = E + G +
GE). See more details in Supplementary Material.

With Predictor = E + G
Without GE for trait SN, the PLS outperformed the GBLUP
method between 0.17% and 807.2% since the observed RENRMSE

were 2.86 (Env1), 1.017 (Env2), 3.748 (Env3), 9.072 (Env4), 3.818
(Env5), 4.076 (Env6), and 4.09 (Global) (Figure 6 with predictor
= E + G). In trait PTR, in the six environments, the PLS method
outperformed the GBLUP method since the observed RENRMSE

were 4.936 (Env1), 1.14 (Env2), 4.08 (Env3), 1.194 (Env4), 1.315
(Env5), 6.952 (Env6), and 3.342 (Global) (Figure 6with predictor
= E + G), so that the PLS outperformed the GBLUP method
across environments by 234.2% (Figure 6 with predictor = E + G
+ GE). However, in trait SB in all environments, the PLS was
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superior to the GBLUPmethod since the observed RENRMSE were
2.19 (Env1), 2.214 (Env2), 2.566 (Env3), 5.703 (Env4), 6.434
(Env5), 1.124 (Env6), and 3.367 (Global). That is, the PLS
outperformed the GBLUP method by 236.7% across
environments (Figure 6 with predictor = E + G). See more
details in Supplementary Material.

Dataset 7-12. Wheat Data
With Predictor = E + G + GE
With GE, the RENRMSE for dataset Wheat_1 were 0.915
(YT_13_14), 1.198 (YT_14_15), and 1.041 (Global), that is,
the PLS outperformed the GBLUP method by 19.8%
(YT_14_15), and 4.1% across environments (Figure 7 with

FIGURE 5 | Relative efficiency in terms of normalized root mean square error (RE_NRMSE) computed by dividing the NRMSE under the best linear unbiased
predictor model (GBLUP) between the NRMSE of the partial least squares regression method. Prediction performance is reported for each environment and across
environments (Global) in dataset 5 (Maize), also with two predictors (E + G and E + G + GE). When the RE_NRMSE>1 the PLS outperforms the GBLUP method in terms
of prediction performance (lower NRMSE).

FIGURE 6 | Relative efficiency in terms of normalized root mean square error (RE_NRMSE) computed by dividing the NRMSE under the best linear unbiased
predictor model (GBLUP) between the NRMSE of the partial least squares regression method. Prediction performance is reported for each environment and across
environments (Global) in dataset 6 (Disease), also with two predictors (E +G and E +G+GE). When the RE_NRMSE>1 the PLS outperforms the GBLUPmethod in terms
of prediction performance (lower NRMSE).
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predictor = E + G + GE). In Wheat_2, the RENRMSE were 1.254
(YT_14_15), 1.875 (YT_15_16), and 1.526 (Global), that is, in the
2 years and across years, the best predictions were observed with
the PLS method, and across years the gain of the PLS with regard
to the GBLUP method was 52.6% (Figure 7 with predictor = E +
G + GE). Also, in Wheat_3, the PLS outperformed the GBLUP
method in the 2 years, and across years, the gain was 43.33%,
since the RENRMSE were 1.381 (YT_15_16), 1.573 (YT_16_17),
and 1.433 (Global) (Figure 7 with predictor = E + G + GE). In
Wheat_4 and Wheat_5, the PLS again outperformed the GBLUP
method in the 2 years, and across years, the gain was 264.3%
(Wheat_4) and 100.3% (Wheat_5) since the RENRMSE in
Wheat_4 were 2.41(YT_16_17), 5.073(YT_17_18) and 3.643
(Global), while in Wheat_5, they were 2.9 (YT_17_18), 1.033
(YT_18_19), 2.003 (Global) (Figure 7 with predictor = E + G +
GE). Finally, in Wheat_6, the PLS did not outperform in either
environment the GBLUP method since the RENRMSE were 0.626
(YT_18_19), 0.754 (YT_19_20), and 0.694 (Global) (Figure 7
with predictor = E + G + GE). See more details in Supplementary
Material.

With Predictor = E + G
With GE, the RENRMSE for dataset Wheat_1 were 1.189
(YT_13_14), 2.122 (YT_14_15), and 1.648 (Global), that is, the
PLS outperformed the GBLUP method by 18.9% (YT_14_15),
112.2% (YT_14_15), and 64.8% across environments (Figure 7
with predictor = E + G). In Wheat_2, the RENRMSE were 2.563
(YT_14_15), 0.411 (YT_15_16) and 1.628 (Global), so that in only
one year and across years the best predictions were observed by the
PLSmethod, and across years the gain of the PLS with regard to the
GBLUP method was 62.8% (Figure 7 with predictor = E + G). In
Wheat_3, the PLS also outperformed the GBLUPmethod in 1 year,
and across years the gain was 26.0%, since the RENRMSE were 1.495

(YT_15_16), 0.865 (YT_16_17), and 1.26 (Global) (Figure 7 with
predictor = E + G). In Wheat_4 and Wheat_5, the PLS
outperformed the GBLUP method in the 2 years, and across
years the gain was 117.5% (Wheat_4) and 105.1% (Wheat_5)
since the RENRMSE in Wheat_4 were 2.055 (YT_16_17), 2.296
(YT_17_18) and 2.175 (Global), while in Wheat_5 they were 1.55
(YT_17_18), 2.677 (YT_18_19), 2.051 (Global) (Figure 7 with
predictor = E + G). Finally, in Wheat_6, in neither of the two
environments the PLS outperformed the GBLUPmethod since the
RENRMSE were 0.567 (YT_18_19), 0.184 (YT_19_20) and 0.365
(Global) (Figure 7 with predictor = E + G). See more details in
Supplementary Material.

Dataset 13. Indica
With Predictor = E + G + GE
With GE and considering the environmental covariates (EC), the
RENRMSE for trait GY were 0.888 in 2010, 1.010 in 2011, 1.010 in
2012, and 0.974 (Global), which means that in only one
environment and across environments, the GBLUP method was
better than the PLS method by 11.2% (2010) and 2.6% (Global).
However, for this same trait but not including the environmental
covariates, theRENRMSE were 0.896 in 2010, 1.000 in 2011, 1.037 in
2012, and 0.980 (Global), so that the GBLUP only outperformed
the PLS in 2010 by 10.4% and across years by 2% (Figure 8 with
predictor = E + G + GE). For trait PHR, the environmental
covariates in the predictor the RENRMSE were 0.965 in 2010,
0.947 in 2011, 0.948 in 2012, and 0.953 (Global), which means
that the GBLUP was better than the PLS by 3.5% in 2010, 5.3% in
2011, 5.2% in 2012, and 4.7% (Global). But ignoring the EC, the
RENRMSE were 0.972 in 2010, 0.947 in 2011, 0.940 in 2012, and
0.953 (Global), which means that the GBLUP was better than the
PLS by 2.8% in 2010, 5.3% in 2011, 6.0% in 2012, and 4.7% (Global)
(Figure 8 with predictor = E + G + GE).

FIGURE 7 | Relative efficiency in terms of normalized root mean square error (RE_NRMSE) computed by dividing the NRMSE under the best linear unbiased
predictor model (GBLUP) between the NRMSE of the partial least squares regression method. Prediction performance is reported for each environment and across
environments (Global) in datasets 7-12 (Wheat_1 to Wheat_6), also with two predictors (E + G and E + G + GE). When the RE_NRMSE>1, the PLS outperforms the
GBLUP method in terms of prediction performance (lower NRMSE).
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For trait GC with EC, the RENRMSE were 0.974 in 2010, 0.934
in 2011, 0.992 in 2012, and 0.966 (Global), which means that the
GBLUP was better than the PLS by 2.6% in 2010, 6.63% in 2011,
0.8% in 2012, and 3.4% (Global). But ignoring the EC, the
RENRMSE were 0.979 in 2010, 0.949 in 2011, 0.992 in 2012,
and 0.973 (Global), which means that the GBLUP was better
than the PLS by 2.1% in 2010, 5.1% in 2011, 0.8% in 2012, and
2.7% (Global) (Figure 8with predictor = E + G + GE). Finally, for
trait PH with EC, the RENRMSE were 1.031 in 2010, 1.02 in 2011,
0.925 in 2012, and 0.991 (Global), which means that the GBLUP
was better than the PLS by 7.5% in 2012 and 0.9% (Global). But
ignoring the EC, the RENRMSE were 0.915 in 2010, 0.991 in 2012,
and 0.979 (Global), which means that the GBLUP was better than
the PLS by 8.5% in 2010, 0.9% in 2010, and 2.1% (Global)
(Figure 8 with predictor = E + G + GE). See more details in
Supplementary Material.

With Predictor = E + G
Without the GE and taking into account the EC, we observed the
RENRMSE for trait GY were 0.988 in 2010, 0.981 in 2011, 1.011 in

2012, and 0.993 (Global), which means that the GBLUP was
better than the PLS by 1.2% in 2010, 1.9% in 2011, and 0.7%
(Global). However, without taking into account the EC, the
RENRMSE were 0.955 in 2010, 0.980 in 2011, 1.011 in 2012,
and 0.982 (Global), which means that the GBLUP was better
than the PLS by 4.5% in 2010, 2.0% in 2011, and 1.8% (Global)
(Figure 8 with predictor = E + G). For trait PHR, taking into
account the EC, the RENRMSE were 0.911 in 2010, 0.932 in 2011,
0.955 in 2012, and 0.932 (Global), that is, the GBLUP was better
than the PLS by 8.9% in 2010, 6.8% in 2011, 4.5% in 2012, and
6.8% (Global). While ignoring the EC, the RENRMSE were 0.913 in
2010, 0.933 in 2011, 0.954 in 2012, and 0.933 (Global), so that the
GBLUP was better than the PLS by 8.7% in 2010, 6.7% in 2011,
4.6% in 2010, and 6.7% (Global) (Figure 8 with predictor =
E + G).

For trait GC, taking into account the EC, the RENRMSE were
0.983 in 2010, 0.933 in 2011, 0.986 in 2012, and 0.968 (Global), so
that the GBLUP was better than the PLS by 1.7% in 2010, 6.7% in
2011, 1.4% in 2012, and 3.2% (Global).While ignoring the EC, the
RENRMSE were 0.987 in 2010, 0.935 in 2011, 0.986 in 2012, and

FIGURE 8 | Relative efficiency in terms of normalized root mean square error (RE_NRMSE) computed by dividing the NRMSE under the best linear unbiased
predictor model (GBLUP) between the NRMSE of the partial least squares regression method. Prediction performance is reported for each environment and across
environments (Global) in dataset 13 (Indica), also with two predictors (E +G and E +G+GE). When the RE_NRMSE>1, the PLS outperforms the GBLUPmethod in terms
of prediction performance (lower NRMSE). (A) With environmental covariates (EC) and (B) without EC.
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0.970 (Global), so that the GBLUP was better than the PLS by
1.3% in 2010, 6.5% in 2011, 1.4% in 2012, and 3.0% (Global).
(Figure 8 with predictor = E + G). For trait PH, taking into
account the EC, the RENRMSE were 0.995 in 2010, 0.976 in 2011,
1.013 in 2012, and 0.992 (Global), so that the GBLUP was better
than the PLS by 0.5% in 2010, 2.4% in 2011, and 0.8% (Global).
While ignoring the EC, the RENRMSE were 0.882 in 2010, 0.993 in
2011, 1.026 in 2012, and 0.977 (Global), so that the GBLUP was
better than the PLS by 11.8% in 2010, 0.7% in 2011, and 2.3%
(Global) (Figure 8 with predictor = E + G). See more details in
Supplementary Material.

Dataset 14. Japonica
With Predictor = E + G + GE
With GE the RENRMSE for trait GY with (and without) EC were
0.900 (1.079), 1.012 (1.105), 1.064 (0.959), 1.071 (1.232), 0.957

(0.827), and 1.015 (1.059) for 2009, 2010, 2011, 2012, 2013, and
Global, respectively. Which means that in both cases with (and
without) EC across years, the best prediction performance was
under the PLSmethod, which was superior by 1.5%with EC and by
5.9%without EC (Figure 9with predictor = E +G +GE).While for
trait PHR the RENRMSE with (and without) EC were 1.065 (1.054),
1.240 (1.614), 0.709 (0.720), 1.015 (1.030), 0.991 (0.931), and 1.005
(1.077) for 2009, 2010, 2011, 2012, 2013, and Global, respectively.
Which means that in both cases with (and without) EC across
years, the PLS method outperformed the GBLUP method by 0.5%
with EC and by 7.7% without EC (Figure 9 with predictor = E + G
+ GE). In trait GC the RENRMSE with (and without) EC were 0.831
(0.654), 1.039 (0.853), 1.004 (1.585), 0.952 (0.917), 1.422 (1.321)
and 0.977 (0.862) for 2009, 2010, 2011, 2012, 2013 and Global
respectively, which means that with (and without) EC the GBLUP
outperformed across year the PLS by 1.3% and 13.8% respectively
(Figure 9 with predictor = E + G + GE). Finally, in trait PH the
RENRMSE with (and without) EC were 0.983 (1.004), 0.915 (1.095),
1.598 (2.872), 0.953 (0.944), 1.044 (0.824), 1.089 (1.257) for 2009,
2010, 2011, 2012, 2013, and Global, respectively, which means that
with (and without) EC the PLS method outperformed across years
the GBLUPmethod by 8.9 % and 25.7% respectively (Figure 9with
predictor = E + G + GE). See more details in Supplementary
Material.

With Predictor = E + G
Without GE the RENRMSE for trait GY, with (and without) EC were
1.156 (0.886), 1.096 (0.969), 0.929 (2.188), 0.838 (0.940), 0.954
(0.682), and 0.990 (1.111) for 2009, 2010, 2011, 2012, 2013 and
Global, respectively, which means that without EC the PLS method
outperformed across years the GBLUP method by 11.1%, but with
EC the GBLUP outperformed the PLS by 1% (Figure 9 with
predictor = E + G). In trait PHR the RENRMSE with (and
without) EC were 0.888 (1.031), 0.684 (1.108), 0.914 (1.072),
0.985 (0.984), 1.064 (0.979), and 0.911 (1.034) for 2009, 2010,
2011, 2012, 2013, and Global, respectively, which means that
without EC the PLS method outperformed across years the
GBLUP method by 3.4%, but with EC the GBLUP outperformed
the PLS by 8.9% (Figure 9 with predictor = E + G). For trait GC the
RENRMSE with (and without) EC were 1.089 (1.228), 1.332 (1.279),
1.136 (1.215), 1.047 (0.986), 1.690 (1.094), and 1.218 (1.187) for
2009, 2010, 2011, 2012, 2013, and Global respectively, which means
that with (and without) EC the PLS method outperformed across
years the GBLUP method by 21.8 and 18.7%, respectively (Figure 9
with predictor = E +G). Finally, for trait PH, theRENRMSE with (and
without) EC were 0.959 (0.937), 1.302(1.070), 0.919 (0.969),
0.993(0.996), 0.746 (0.867), and 0.972 (0.968) for 2009, 2010,
2011, 2012, 2013, and Global, respectively, which means that
with (and without) EC the GBLUP method outperformed across
years the PLS method by 2.8 and 3.2%, respectively (Figure 9 with
predictor = E + G). See more details in Supplementary Material.

DISCUSSION

Breeders need novel methodologies to match the productivity
required to feed the world’s increasing population. For this

FIGURE 9 | Relative efficiency in terms of normalized root mean square
error (RE_NRMSE) computed by dividing the NRMSE under the best linear
unbiased predictor model (GBLUP) between the NRMSE of the partial least
squares regressionmethod. Prediction performance is reported for each
environment and across environments (Global) in dataset 14 (Japonica), also
with two predictors (E + G and E +G +GE). When the RE_NRMSE>1, the PLS
outperforms the GBLUP method in terms of prediction performance (lower
NRMSE). (A) With environmental covariates (EC) and (B) without EC.
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reason, the adoption of genomic selection has been successful in
plant breeding since it is a disruptive methodology that offers
significant savings in resources in selecting candidate lines
because GS is a predictive methodology trained with data that
contain phenotypic and genotypic information. GS predicts
breeding values or phenotypic values of new (untested) lines
that were only genotyped, so it allows for earlier selection of lines,
since we can obtain predictions for the lines of interest once the
model is trained. (Crossa et al., 2017).

However, even though GS is efficient and simple to
understand, breeders worldwide are still struggling to put it
into practice successfully. To guarantee the successful
implementation of GS, we need to guarantee moderate or high
prediction accuracies, which is challenging since the resulting
prediction accuracy depends on many factors, such as the degree
of relatedness between the training and testing sets, the statistical
machine learning model used, the size of the training and testing
sets, the trait under study, the quality of inputs like markers and
environmental information, and the prediction problem at hand
(for example, the prediction of lines that were evaluated in other
environments, or the prediction of lines that were not evaluated
in previous years or environments, etc.).

The reaction norm model of Jarquín et al. (2014) has been
successfully used for multi-environmental data and for
incorporating interactions among multi-type input sources
(e.g., dense molecular markers, pedigree, high-throughput
phenotypes, environmental covariables) in several crops
(Perez-Rodriguez et al., 2015; Crossa et al., 2016). One of the
major gaps in GS research for G×E modeling using
environmental data relies in the steps of collection, processing,
and integrating those data into an ecophysiology-smart and
parsimony manner. A method for envirotyping-informed
genomic prediction of GxE using linear and non-linear kernels
was presented by Costa-Neto et al. (2020) in two maize
germplasms and taking account for additive, dominance and
their interaction with environments. These authors showed that
nonlinear kernels are the better option to deal with
environmental similarity realized with environmental
covariables in GS.

For the predictions mentioned above, research is underway to
optimize the GS methodology so that its practical
implementation can be more consistent, robust, and
straightforward. For this reason, with the goal of finding more
robust statistical machine learning methods, we evaluated the
prediction performance of the partial least squares regression in
the context of predicting a new year or environment (leave one
environment out cross-validation strategy). We found the PLS
method was superior to the popular GBLUP method in most
cases when the goal was to predict a complete location or year.

Our results are encouraging because they show that PLS
regression is a powerful tool for this type of prediction
problem, since across all datasets, the PLS outperformed the
GBLUPmethod by large margins (see Figures 1–7). Across traits,
environments, and types of predictors, the PLS outperformed the
GBLUP in terms of normalized root mean square error by 58.8%
in dataset 1 (EYT_1 data), 52.52% in dataset 2 (EYT_2 data),
49.84% in dataset 3 (EYT_3 data), 178.21 in dataset 4 (groundnut

data), 127.07% in dataset 5 (maize data), 228.28% in dataset 6
(disease data), 62.31% in datasets 7-12 (wheat_1 to wheat_6
datasets) and 0% in dataset 13 (Indica dataset). For those
environments that were more similar to the environments in
the training set less error of prediction was observed, while for
those environments that were more different from the
environments in the training set, more error of prediction was
reached. Our findings agree with those reported by Monteverde
et al. (2019) for this type of prediction problem (“leave one
environment out”), but in our case, instead of using Pearson’s
correlation as the metric of prediction performance, we used the
normalized root mean square error.

Although our evaluations are empirical, we found that the PLS
regression method is an efficient statistical machine learning
prediction tool that is especially appropriate for small sample
data with many (possibly correlated) independent variables,
especially useful for small p and large n problems. However,
since we only evaluated the leave one environment out cross-
validation scheme, our assertions are valid only for this context.
However, other authors (Campbell and Ntobedzi, 2007;
Bergström et al., 2012; Vucicevic et al., 2015; Zhang et al.,
2015; Kouskoura et al., 2019) have evaluated the prediction
accuracy of the PLS methodology with conventional strategies
of cross-validation (k-fold cross-validations, stratified-k-fold
cross-validations, etc.) and there is also empirical evidence that
the PLS regression method produces very competitive
predictions.

We observed that implementing the PLS regression is fast for
small datasets, but the larger the dataset, the more computational
resources are required for its implementation. In general, we
observed that the implementation of the PLS is at least two times
slower than the GBLUPmethod. In part this is because under PLS
selecting the optimal number of principal components
(hyperparameters) is by means of an inner five-fold cross-
validation that also is time consuming, but a key factor to a
successful implementation of the PLS regression method. For this
reason, the computational resources required for PLS
implementation become a problem for moderate and large
datasets. However, since the PLS regression only depends on
one hyperparameter (number of principal components to retain),
the tuning process is very easy, but with an increased need on
computational resources.

One reason PLS is very competitive in terms of predictive
modeling is that it automatically performs variable selection by
creating the latent variables (factors) that are linear
combinations of the original independent variables and the
response variable (s). For this reason, PLS is quite efficient
for handling many and correlated predictors, and additionally, it
can detect which inputs (independent variables) are the most
explanatory in a trained model by looking at the model
coefficients (Wold, 2001; Mehmood et al., 2012). Vargas
et al. (1998), Vargas et al. (1999) and Crossa et al. (1999)
have shown the benefits of PLS for identifying the set of
independent variables (environmental as well as molecular
markers) that best explain the genotype by environment
interaction. For all these reasons, PLS regression has become
a well-established tool in predictive and association modeling in
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bioinformatics and genomics, because it is often possible to
interpret the extracted factors in terms of the underlying
physical system; to derive “hard” modeling information from
the soft model.

It is important to note that the PLS regression method is not
restricted only to continuous and univariate response variables
since it can also be used for binary and categorical univariate
response variables and to other tasks such as survival analysis,
multivariate modeling, and modeling of regulation network. At
present, most reported applications of the PLS method to
genomic data focus on the analysis of microarray data from
gene expression experiments.

CONCLUSION

In this study, we compare the prediction performance of the
popular GBLUP (in its Bayesian version) to the partial least
squares (PLS) regression for the prediction of future seasons or
new environments, when the goal is to predict the whole
information of a new year or environment. This prediction
scheme, denoted as “leave one environment out,” is
challenging because many times we do not have any
information or reference for the new year or environment
we want to predict. Consequently, the predictions accuracies
are low or very low. We found that the PLS regression
outperformed the prediction performance of the Bayesian
GBLUP method in terms of normalized root mean square
error by at least 49.84% (across traits, environments, and types
of predictors, when environmental covariates were not
considered), which is an impressive large gain. For this
reason, we encourage doing more research in this direction
to support our findings. However, with our results, we can see
that the PLS regression algorithm is a powerful tool for
predicting new environments (or years) in the context of
genomic selection.
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